1
|
Mather M. Autonomic dysfunction in neurodegenerative disease. Nat Rev Neurosci 2025; 26:276-292. [PMID: 40140684 DOI: 10.1038/s41583-025-00911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
In addition to their more studied cognitive and motor effects, neurodegenerative diseases are also associated with impairments in autonomic function - the regulation of involuntary physiological processes. These autonomic impairments manifest in different ways and at different stages depending on the specific disease. The neural networks responsible for autonomic regulation in the brain and body have characteristics that render them particularly susceptible to the prion-like spread of protein aggregation involved in neurodegenerative diseases. Specifically, the axons of these neurons - in both peripheral and central networks - are long and poorly myelinated axons, which make them preferential targets for pathological protein aggregation. Moreover, cortical regions integrating information about the internal state of the body are highly connected with other brain regions, which increases the likelihood of intersection with pathological pathways and prion-like spread of abnormal proteins. This leads to an autonomic 'signature' of dysfunction, characteristic of each neurodegenerative disease, that is linked to the affected networks and regions undergoing pathological aggregation.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Liu S, Zhao Q, Tang J, Li X, Wang J, Zhao Y, Yang Z, Pan X, Xiang R, Tian J, Wang P. Unraveling the Relation of Parkinson's Disease and Metabolites: A Combined Analysis of Stool and Plasma Metabolites Based on Untargeted Metabolomics Technology. CNS Neurosci Ther 2025; 31:e70424. [PMID: 40376890 DOI: 10.1111/cns.70424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/04/2025] [Accepted: 04/26/2025] [Indexed: 05/18/2025] Open
Abstract
OBJECTIVE Metabolomics technology has been widely utilized to uncover the action mechanisms of Parkinson's Disease (PD) and to identify PD-related biomarkers. In this study, we compared plasma and fecal metabolite levels between PD patients and their healthy spouses (HS), aiming to identify the associations of differential metabolites with intestinal inflammation, intestinal barrier function, and clinical characteristics of PD. METHODS Untargeted metabolomics techniques were used to characterize plasma and fecal metabolite profiles. We identified metabolites with elevated plasma levels in PD patients, while no significant differences were observed in fecal samples. Partial correlation analysis was employed to investigate the associations between these metabolites, markers of intestinal inflammation (calprotectin and lactoferrin), markers of intestinal permeability (α-1-antitrypsin and zonulin), and clinical characteristics of PD patients. RESULTS The study identified ten metabolites that were significantly elevated in the plasma of PD patients compared to HS (p < 0.05), while their fecal concentrations did not differ significantly. Correlation analysis revealed that elevated levels of differential metabolites in the plasma of PD patients were associated with increased intestinal permeability and inflammation. Furthermore, five metabolites, including 3,4-Dihydroxyphenylglycol O-sulfate and Propyl gallate, were linked to PD symptoms. Receiver Operating Characteristic (ROC) curves demonstrated that these metabolites could effectively distinguish between PD patients and HS, with an area under the curve (AUC) of 0.94, indicating excellent predictive performance. CONCLUSIONS This study identified significant metabolite alterations in PD patients and revealed their associations with intestinal barrier dysfunction and clinical characteristics of the disease.
Collapse
Affiliation(s)
- Sufang Liu
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Qiang Zhao
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Jie Tang
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Xianhong Li
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Juan Wang
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Yuting Zhao
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Zhengting Yang
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Xin Pan
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Rui Xiang
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Jing Tian
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Puqing Wang
- Department of Neurology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
3
|
O'Riordan KJ, Moloney GM, Keane L, Clarke G, Cryan JF. The gut microbiota-immune-brain axis: Therapeutic implications. Cell Rep Med 2025; 6:101982. [PMID: 40054458 PMCID: PMC11970326 DOI: 10.1016/j.xcrm.2025.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/15/2024] [Accepted: 01/29/2025] [Indexed: 03/21/2025]
Abstract
The microbiota-gut-brain axis has major implications for human health including gastrointestinal physiology, brain function, and behavior. The immune system represents a key pathway of communication along this axis with the microbiome implicated in neuroinflammation in health and disease. In this review, we discuss the mechanisms as to how the gut microbiota interacts with the brain, focusing on innate and adaptive immunity that are often disrupted in gut-brain axis disorders. We also consider the implications of these observations and how they can be advanced by interdisciplinary research. Leveraging an increased understanding of how these interactions regulate immunity has the potential to usher in a new era of precision neuropsychiatric clinical interventions for psychiatric, neurodevelopmental, and neurological disorders.
Collapse
Affiliation(s)
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Lily Keane
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Cheng YK, Chiang HS. The interrelationship between intestinal immune cells and enteric α-synuclein in the progression of Parkinson's disease. Neurol Sci 2025:10.1007/s10072-025-08114-w. [PMID: 40085320 DOI: 10.1007/s10072-025-08114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by motor impairment, resulting from the accumulation of α-synuclein and neuronal cell death in the substantia nigra of the midbrain. Emerging evidence suggests that α-synuclein aggregation may originate in the enteric nervous system (ENS) and subsequently propagate to the brain via the vagus nerve. Clinical observations, such as prodromal gastrointestinal dysfunction in PD patients and the increased incidence of PD among individuals with inflammatory bowel disease, support the hypothesis that abnormal intestinal inflammation may contribute to the onset of motor dysfunction and neuropathology in PD. This review examines recent findings on the interplay between intestinal immune cells and α-synuclein aggregation within the framework of gut-originated PD pathogenesis. It begins by discussing evidence linking dysbiosis and intestinal inflammation to α-synuclein aggregation in the ENS. Additionally, it explores the potential role of intestinal immune cells in influencing enteric neurons and α-synuclein aggregation, furthering the understanding of PD development.
Collapse
Affiliation(s)
- Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Kuo G, Kumbhar R, Blair W, Dawson VL, Dawson TM, Mao X. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions. Mol Neurodegener 2025; 20:10. [PMID: 39849529 PMCID: PMC11756073 DOI: 10.1186/s13024-025-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn. Recognizing the intricate complexity and multifactorial etiology of α-synucleinopathy, the review illuminates the potential of various membrane receptors, proteins, intercellular spreading pathways, and pathological agents for therapeutic interventions. While significant progress has been made in understanding α-synucleinopathy, the pursuit of efficacious treatments remains challenging. Several strategies involving decreasing α-syn production and aggregation, increasing α-syn degradation, lowering extracellular α-syn, and inhibiting cellular uptake of α-syn are presented. The paper underscores the necessity of meticulous and comprehensive investigations to advance our knowledge of α-synucleinopathy pathology and ultimately develop innovative therapeutic strategies for α-synucleinopathies.
Collapse
Affiliation(s)
- Grace Kuo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William Blair
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Chen X, Li Y, Shen Y, Schwarzschild MA, Gao X. Prodromal Parkinson's disease and subsequent risk of Parkinson's disease and mortality. NPJ Parkinsons Dis 2025; 11:14. [PMID: 39779712 PMCID: PMC11711319 DOI: 10.1038/s41531-024-00863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Association of prodromal Parkinson's disease (PD) with risk of PD and risk of mortality in individuals with PD warrant investigation through large-scale prospective study. We included 501,475 participants without PD at baseline. Eight prodromal features were measured. Incident PD cases were identified via hospital admission, death register, and self-report. Cox regression models were used to compute hazard ratios (HRs) and 95% confidence intervals (CIs). Multivariable-adjusted HRs3+vs.0 prodromal PD features and 95%CIs were 3.12 (2.58-3.78) for men and 2.71 (2.11-3.47) for women. Prodromal PD predicted only PD onset occurred during the first 6 years of follow-up (HR3+vs.0 prodromal features = 10.5; 95% CI: 8.60-12.9), but not after 6 years (HR = 1.00; 95%CI: 0.76-1.32). The presence of prodromal PD conferred a higher risk of mortality among participants with PD. Having prodromal PD were associated with higher probability of developing PD in short-term and higher risk of mortality among individuals with PD.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaqi Li
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Shen
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Michael A Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Isaac-Coss G, Kavuri S, Jayakumar J, Post Z, Sakuraba A. Severe Colonic Dysmotility and Constipation Leading to Hydronephrosis in Advanced Parkinson's Disease: A Case Report and Literature Review. Cureus 2025; 17:e77035. [PMID: 39917098 PMCID: PMC11798885 DOI: 10.7759/cureus.77035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor symptoms and significant non-motor complications, including gastrointestinal disturbances. Constipation, which affects up to 80% of PD patients, is one of the most common and debilitating gastrointestinal symptoms. This case report describes a 77-year-old female with advanced PD, who presented multiple times to the emergency department with recurring symptoms of vomiting, abdominal pain, and severe abdominal distension. Imaging studies revealed rectosigmoid colonic dilation, fecal impaction, and right hydronephrosis and hydroureter, caused by external compression from the distended colon - a rare complication in PD. The condition was clinically diagnosed as colonic dysmotility, linked to alpha-synuclein deposition in the enteric nervous system. Management included a unique combination of rectal tube placement, manual disimpaction, and pharmacological therapy, which successfully alleviated her symptoms and resolved the associated complications. Despite the effective management of symptoms, no current therapies exist to prevent or address the underlying alpha-synuclein-related colonic dysmotility. This case underscores the need for early recognition of severe colonic dysmotility in PD and highlights the importance of further research into targeted treatments that address the complex pathophysiology of gastrointestinal dysfunction in PD.
Collapse
Affiliation(s)
| | - Swathi Kavuri
- Internal Medicine, The Brooklyn Hospital Center, New York, USA
| | | | - Zoe Post
- Gastroenterology and Hepatology, Rush University Medical Center, Chicago, USA
| | - Atsushi Sakuraba
- Gastroenterology and Hepatology, Rush University Medical Center, Chicago, USA
| |
Collapse
|
8
|
Muronets VI, Kudryavtseva SS, Kurochkina LP, Leisi EV, Stroylova YY, Schmalhausen EV. Factors Affecting Pathological Amyloid Protein Transformation: From Post-Translational Modifications to Chaperones. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S164-S192. [PMID: 40164158 DOI: 10.1134/s0006297924604003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 04/02/2025]
Abstract
The review discusses the influence of various factors (e.g., post-translational modifications and chaperones) on the pathological transformation of amyloidogenic proteins involved in the onset and development of neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and spongiform encephalopathies of various origin with special focus on the role of α-synuclein, prion protein, and, to a lesser extent, beta-amyloid peptide. The factors investigated by the authors of this review are discussed in more detail, including posttranslational modifications (glycation and S-nitrosylation), cinnamic acid derivatives and dendrimers, and chaperonins (eukaryotic, bacterial, and phage). A special section is devoted to the role of the gastrointestinal microbiota in the pathogenesis of amyloid neurodegenerative diseases, in particular, its involvement in the transformation of infectious prions and possibly other proteins capable of prion-like transmission of amyloidogenic diseases.
Collapse
Affiliation(s)
- Vladimir I Muronets
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofiya S Kudryavtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia P Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeniia V Leisi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia Yu Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
9
|
Hallbeck M, Ekmark-Lewén S, Kahle PJ, Ingelsson M, Reyes JF. Accumulation of alpha-synuclein pathology in the liver exhibits post-translational modifications associated with Parkinson's disease. iScience 2024; 27:111448. [PMID: 39720536 PMCID: PMC11667178 DOI: 10.1016/j.isci.2024.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/08/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Accumulating evidence demonstrates that alpha-synuclein (α-syn) pathology associated with Parkinson's disease (PD) is not limited to the brain, as it also appears in a select number of peripheral tissues including the liver. In this study, we identified a number of PD-associated α-syn post-translational modifications in the livers of (Thy-1)-h[A30P] mice, a mouse model of familial PD expressing human α-syn harboring the A30P mutation driven by a neuron-specific promoter. Ex vivo, we also demonstrate that human hepatocytes induce post-translational modifications following α-syn fibrillar (PFF) treatment. Moreover, such cells also degrade PFFs over time, whereas oligomeric assemblies are more resistant to degradation, but this process can be enhanced by autophagy stimulators. Collectively, our findings suggest that pathological α-syn is transported to the liver in a modified state or is modified upon arrival, which facilitates its clearance and detoxification, pointing to a role for the liver in the degradation of PD-associated pathology.
Collapse
Affiliation(s)
- Martin Hallbeck
- Department of Biomedical and Clinical Sciences, Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Sara Ekmark-Lewén
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Philipp J. Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- The Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Juan F. Reyes
- Department of Biomedical and Clinical Sciences, Department of Clinical Pathology, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Khalil I, Sayad R, Kedwany AM, Sayed HH, Caprara ALF, Rissardo JP. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). MEDICINE INTERNATIONAL 2024; 4:70. [PMID: 39355336 PMCID: PMC11443310 DOI: 10.3892/mi.2024.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), which can result in significant disability and distress for patients and caregivers. There is a marked variation in the timing, characteristics and rate at which cognitive decline occurs in patients with PD. This decline can vary from normal cognition to mild cognitive impairment and dementia. Cognitive impairment is associated with several pathophysiological mechanisms, including the accumulation of β-amyloid and tau in the brain, oxidative stress and neuroinflammation. Cardiovascular autonomic dysfunctions are commonly observed in patients with PD. These dysfunctions play a role in the progression of cognitive impairment, the incidents of falls and even in mortality. The majority of symptoms of dysautonomia arise from changes in the peripheral autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. Cardiovascular changes, including orthostatic hypotension, supine hypertension and abnormal nocturnal blood pressure (BP), can occur in both the early and advanced stages of PD. These changes tend to increase as the disease advances. The present review aimed to describe the cognitive changes in the setting of cardiovascular dysautonomia and to discuss strategies through which these changes can be modified and managed. It is a multifactorial process usually involving decreased blood flow to the brain, resulting in the development of cerebral ischemic lesions, an increased presence of abnormal white matter signals in the brain, and a potential influence on the process of neurodegeneration in PD. Another possible explanation is this association being independent observations of PD progression. Patients with clinical symptoms of dysautonomia should undergo 24-h ambulatory BP monitoring, as they are frequently subtle and underdiagnosed.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Faculty of Medicine, Alexandria University, Alexandria 5372066, Egypt
| | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hager Hamdy Sayed
- Department of Nuclear Medicine, Assuit University, Assuit 71515, Egypt
| | | | | |
Collapse
|
11
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Merchak AR, Bolen ML, Tansey MG, Menees KB. Thinking outside the brain: Gut microbiome influence on innate immunity within neurodegenerative disease. Neurotherapeutics 2024; 21:e00476. [PMID: 39482179 PMCID: PMC11585893 DOI: 10.1016/j.neurot.2024.e00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
The complex network of factors that contribute to neurodegeneration have hampered the discovery of effective preventative measures. While much work has focused on brain-first therapeutics, it is becoming evident that physiological changes outside of the brain are the best target for early interventions. Specifically, myeloid cells, including peripheral macrophages and microglia, are a sensitive population of cells whose activity can directly impact neuronal health. Myeloid cell activity includes cytokine production, migration, debris clearance, and phagocytosis. Environmental measures that can modulate these activities range from toxin exposure to diet. However, one of the most influential mediators of myeloid fitness is the gut microenvironment. Here, we review the current data about the role of myeloid cells in gastrointestinal disorders, Parkinson's disease, dementia, and multiple sclerosis. We then delve into the gut microbiota modulating therapies available and clinical evidence for their use in neurodegeneration. Modulating lifestyle and environmental mediators of inflammation are one of the most promising interventions for neurodegeneration and a systematic and concerted effort to examine these factors in healthy aging is the next frontier.
Collapse
Affiliation(s)
- Andrea R Merchak
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - MacKenzie L Bolen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - Kelly B Menees
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
Hamilton AM, Krout IN, White AC, Sampson TR. Microbiome-based therapeutics for Parkinson's disease. Neurotherapeutics 2024; 21:e00462. [PMID: 39393983 PMCID: PMC11585879 DOI: 10.1016/j.neurot.2024.e00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Recent experimental and clinical data demonstrate a significant dysregulation of the gut microbiome in individuals with Parkinson's disease (PD). With an immense influence on all aspects of physiology, this dysregulation has potential to directly or indirectly contribute to disease pathology. Experimental models have bridged these associations toward defined contributions, identifying various microbiome-dependent impacts to PD pathology. These studies have laid the foundation for human translation, examining whether certain members of the microbiome and/or whole restoration of the gut microbiome community can provide therapeutic benefit for people living with PD. Here, we review recent and ongoing clinically-focused studies that use microbiome-targeted therapies to limit the severity and progression of PD. Fecal microbiome transplants, prebiotic interventions, and probiotic supplementation are each emerging as viable methodologies to augment the gut microbiome and potentially limit PD symptoms. While still early, the data in the field to date support continued cross-talk between experimental systems and human studies to identify key microbial factors that contribute to PD pathologies.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Ian N Krout
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Alexandria C White
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA.
| |
Collapse
|
14
|
Miyamoto T, Nakajima I, Arikawa T, Miyamoto M. Bowel movement frequency and difficult defecation using constipation assessment scale in patients with isolated REM sleep behavior disorder. Clin Park Relat Disord 2024; 11:100269. [PMID: 39286572 PMCID: PMC11404085 DOI: 10.1016/j.prdoa.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction This study evaluated constipation, including reduced bowel movement frequency and difficult defecation, in patients with isolated rapid eye movement sleep behavior disorder (IRBD), which is prodromal Parkinson's disease (PD) or dementia with Lewy bodies (DLB) in middle-aged and older adults. Methods We used a validated Japanese version of the Constipation Assessment Scale (CAS-J) to evaluate bowel habits over 1 month in 117 men aged 50-86 years and 34 women aged 56-86 years with video-polysomnography-confirmed IRBD and 22 controls. Furthermore, we performed a longitudinal assessment of outcomes at follow-up visits. Results The CAS-J score was higher in the 22 IRBD patients than in 22 age- and gender-matched paired controls. In 151 IRBD patients, the CAS-J score was higher for women than for men. At baseline, the CAS-J score was similar between patients who developed PD and DLB, but the three IRBD patients who developed multiple system atrophy had a low CAS-J score. Those with constipation (CAS-J score ≥ 2) converted to PD or DLB in a significantly shorter time duration (i.e., time frame for phenoconversion) than those with CAS-J score < 2 (log-rank test, p < 0.001). When adjusted for age and gender, Cox hazards analysis revealed that the CAS-J score significantly predicted phenoconversion to PD or DLB (hazard ratio: 5.9, 95 % confidence interval: 1.8-19.1, p = 0.003). Conclusions Constipation, i.e., reduced bowel movement frequency and difficult defecation, was common in middle-aged and elderly patients with IRBD, and CAS-J score predicted phenoconversion to PD or DLB.
Collapse
Affiliation(s)
- Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center, Japan
| | - Itsuo Nakajima
- Center of Sleep Medicine, Dokkyo Medical University, Japan
| | - Takuo Arikawa
- Center of Sleep Medicine, Dokkyo Medical University, Japan
| | | |
Collapse
|
15
|
Zhang J, Shi M, Zhang Q, Chen Y, Yin X, Wang X, Zhang Y. Association between Constipation and the Risk of Parkinson's Disease among Participants in the UK Biobank. Neuroepidemiology 2024:1-10. [PMID: 39159603 DOI: 10.1159/000540955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Constipation is common in patients with Parkinson's disease (PD), but its impact on incident PD remains uncertain. We aimed to prospectively investigate constipation symptoms and the risk of PD. METHODS Participants without PD at baseline from the UK Biobank were included in the study. Information on the regular use of laxatives, bowel movement frequency, and the frequency of hard or lumpy stools was collected. Incident PD was defined by the ICD-10 code. Cox proportional hazards models were used to assess the association between constipation symptoms and incident PD. RESULTS In the analysis of regular laxative use and PD, 490,797 participants were included and 2,735 incident PD were detected. The multivariable adjusted HR of PD in participants who regularly used laxatives was 1.99 (95% confidence interval [CI], 1.70-2.33) compared with those who did not. In the analysis of bowel movement frequency and hard or lumpy stools and PD, 170,017 participants were included and 519 incident PD were detected. The multivariable adjusted HRs were 2.16 (95% CI, 1.74-2.68) and 2.57 (95% CI, 2.00-3.31) for participants with a bowel movement frequency of 3-6 times/week and <3 times/week, respectively, compared with those with a bowel movement frequency of ≥7 times/week; compared with participants who never had hard or lumpy stools, multivariable adjusted HRs were 1.31 (95% CI, 1.07-1.60), 2.32 (95% CI, 1.77-3.05), and 2.94 (95% CI, 2.14-4.05) for those who sometimes had hard or lumpy stools, often had hard or lumpy stools, and most of time/always had hard or lumpy stools, respectively. CONCLUSIONS Constipation measured by the regular use of laxatives, bowel movement frequency, and the frequency of hard or lumpy stools was significantly associated with an increased risk of incident PD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China,
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Soochow University, Suzhou, China
| | - Qilu Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yi Chen
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiangyan Yin
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoxiao Wang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Chamkouri H, Si J, Chen P, Ni H, Bragin DE, Ahmadlouydarab M, Niu C, Chen L. Overcoming challenges of clinical cell therapies for Parkinson's disease with photobiomodulation. INTERDISCIPLINARY MEDICINE 2024; 2:e20240013. [PMID: 40342605 PMCID: PMC12061111 DOI: 10.1002/inmd.20240013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 05/11/2025]
Abstract
Photobiomodulation (PBM) has emerged as a rapidly growing and innovative therapeutic method for various illnesses in recent years. Due to the irreversible nature of Parkinson's disease (PD), it has proven challenging to impede or postpone the progression of the disease. Despite research on pharmacological approaches to halt neuronal degeneration, the viability of these techniques has been called into doubt due to apprehensions over potential side effects and the ethical implications associated with the utilization of embryonic cell transplantation. Hence, developing an innovative therapeutic approach to halting neuronal degeneration and safeguarding neurons from this neurodegenerative disorder is imperative. This review examines the pathogenesis, challenges, and limitations of conventional PD therapies, allowing a closer examination of PBM's distinctive approach within this medical context. Delving into PBM's therapeutic mechanisms in the cells, the effects of different wavelengths on cell therapies in PD patients, and considerations for patient care administration to overcome traditional challenges, this study offers insights into its potential as a promising avenue for PD management.
Collapse
Affiliation(s)
- Hossein Chamkouri
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jianmin Si
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, China
| | - Peng Chen
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, China
| | - Haiyong Ni
- Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou, Anhui, China
| | - Denis E. Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | | - Chaoshi Niu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, China
| | - Lei Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
- Intelligent Manufacturing Institute of HFUT, Hefei, Anhui, China
| |
Collapse
|
17
|
Munhoz RP, Tumas V, Pedroso JL, Silveira-Moriyama L. The clinical diagnosis of Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-10. [PMID: 38325391 PMCID: PMC10849824 DOI: 10.1055/s-0043-1777775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/19/2023] [Indexed: 02/09/2024]
Abstract
After more than 200 years since its initial description, the clinical diagnosis of Parkinson's disease (PD) remains an often-challenging endeavor, with broad implications that are fundamental for clinical management. Despite major developments in understanding it's pathogenesis, pathological landmarks, non-motor features and potential paraclinical clues, the most accepted diagnostic criteria remain solidly based on a combination of clinical signs. Here, we review this process, discussing its history, clinical criteria, differential diagnoses, ancillary diagnostic testing, and the role of non-motor and pre-motor signs and symptoms.
Collapse
Affiliation(s)
- Renato P. Munhoz
- University Health Network, Toronto Western Hospital, Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto, ON, Canada.
- Krembil Research Institute, Toronto, ON, M5T 2S8, Canada.
| | - Vitor Tumas
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências e Ciências do Comportamento, Ribeirão Preto SP, Brazil.
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil.
| | - Laura Silveira-Moriyama
- Universidade Estadual de Campinas, Campinas SP, Brazil.
- UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
18
|
Deliz JR, Tanner CM, Gonzalez-Latapi P. Epidemiology of Parkinson's Disease: An Update. Curr Neurol Neurosci Rep 2024; 24:163-179. [PMID: 38642225 DOI: 10.1007/s11910-024-01339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In recent decades, epidemiological understanding of Parkinson disease (PD) has evolved significantly. Major discoveries in genetics and large epidemiological investigations have provided a better understanding of the genetic, behavioral, and environmental factors that play a role in the pathogenesis and progression of PD. In this review, we provide an epidemiological update of PD with a particular focus on advances in the last five years of published literature. RECENT FINDINGS We include an overview of PD pathophysiology, followed by a detailed discussion of the known distribution of disease and varied determinants of disease. We describe investigations of risk factors for PD, and provide a critical summary of current knowledge, knowledge gaps, and both clinical and research implications. We emphasize the need to characterize the epidemiology of the disease in diverse populations. Despite increasing understanding of PD epidemiology, recent paradigm shifts in the conceptualization of PD as a biological entity will also impact epidemiological research moving forward and guide further work in this field.
Collapse
Affiliation(s)
- Juan R Deliz
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline M Tanner
- Weill Institute for Neurosciences, Department of Neurology, University of California -San Francisco, San Francisco, CA, USA
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
19
|
Ratajska AM, Etheridge CB, Lopez FV, Kenney LE, Rodriguez K, Schade RN, Gertler J, Bowers D. The Relationship Between Autonomic Dysfunction and Mood Symptoms in De Novo Parkinson's Disease Patients Over Time. J Geriatr Psychiatry Neurol 2024; 37:242-252. [PMID: 37831611 PMCID: PMC10990848 DOI: 10.1177/08919887231204542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
BACKGROUND Autonomic dysfunction is prevalent in Parkinson's disease (PD) and can worsen quality of life. We examined: (a) whether specific autonomic symptoms were more strongly associated with anxiety or depression in PD and (b) whether overall autonomic dysfunction predicted mood trajectories over a 5-year period. METHODS Newly diagnosed individuals with PD (N = 414) from the Parkinson's Progression Markers Initiative completed self-report measures of depression, anxiety, and autonomic symptoms annually. Cross-sectional linear regressions examined relationships between specific autonomic subdomains (gastrointestinal, cardiovascular, thermoregulatory, etc.) and mood. Multilevel modeling examined longitudinal relationships with total autonomic load. RESULTS Gastrointestinal symptoms were associated with both higher anxiety (b = 1.04, 95% CI [.55, 1.53], P < .001) and depression (b = .24, 95% CI [.11, .37], P = .012), as were thermoregulatory symptoms (anxiety: b = 1.06, 95% CI [.46, 1.65], P = .004; depression: b = .25, 95% CI [.09, .42], P = .013), while cardiovascular (b = .36, 95% CI [.10, .62], P = .012) and urinary symptoms (b = .10, 95% CI [.01, .20], P = .037) were associated only with depression. Longitudinally, higher total autonomic load was associated with increases in both depression (b = .01, 95% CI [.00, .02], P = .015) and anxiety (b = .04, 95% CI [.01, .06], P < .001) over time, as well as occasion-to-occasion fluctuations (depression: b = .08, 95% CI [.05, .10], P < .001; anxiety: b = .24, 95% CI [.15, .32], P < .001). CONCLUSION Findings suggest autonomic dysfunction, particularly gastrointestinal and thermoregulatory symptoms, may be an indicator for elevated anxiety/depression and a potential treatment target early on in PD.
Collapse
Affiliation(s)
- Adrianna M. Ratajska
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Connor B. Etheridge
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Francesca V. Lopez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Lauren E. Kenney
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Katie Rodriguez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Rachel N. Schade
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Joshua Gertler
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Recinto SJ, Premachandran S, Mukherjee S, Allot A, MacDonald A, Yaqubi M, Gruenheid S, Trudeau LE, Stratton JA. Characterizing enteric neurons in dopamine transporter (DAT)-Cre reporter mice reveals dopaminergic subtypes with dual-transmitter content. Eur J Neurosci 2024; 59:2465-2482. [PMID: 38487941 DOI: 10.1111/ejn.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 05/22/2024]
Abstract
The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.
Collapse
Affiliation(s)
- Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Shobina Premachandran
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Sriparna Mukherjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Samantha Gruenheid
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
21
|
Ahlskog JE. Parkinson's disease progression is multifaceted: Evidence for the underlying benchmarks. Parkinsonism Relat Disord 2024; 121:106037. [PMID: 38360506 DOI: 10.1016/j.parkreldis.2024.106037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Long-term Parkinson's disease (PD) progression is not a homogeneous process and manifests in diverse ways over the lifetime. Recognition of progression benchmarks and their substrates is important for treatment and addressing the expectations of patients, as well as for PD research planning.
Collapse
Affiliation(s)
- J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Tansey MG, Boles J, Holt J, Cole C, Neighbarger N, Urs N, Uriarte-Huarte O. Locus coeruleus injury modulates ventral midbrain neuroinflammation during DSS-induced colitis. RESEARCH SQUARE 2024:rs.3.rs-3952442. [PMID: 38559083 PMCID: PMC10980147 DOI: 10.21203/rs.3.rs-3952442/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.
Collapse
|
23
|
Boles JS, Holt J, Cole CL, Neighbarger NK, Urs NM, Huarte OU, Tansey MG. Locus coeruleus injury modulates ventral midbrain neuroinflammation during DSS-induced colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580010. [PMID: 38405709 PMCID: PMC10888767 DOI: 10.1101/2024.02.12.580010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.
Collapse
Affiliation(s)
- Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jenny Holt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra L. Cole
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K. Neighbarger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nikhil M. Urs
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
24
|
Fu P, Zhu R, Gao W, Gong L. Effects of resistance training on alleviating hypoxia-induced muscle atrophy: Focus on acetylation of FoxO1. J Cell Mol Med 2024; 28:e18096. [PMID: 38149787 PMCID: PMC10844693 DOI: 10.1111/jcmm.18096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
This study aims to explore the role of FoxO1 and its acetylation in the alleviation of hypoxia-induced muscle atrophy by resistance training. Forty male Sprague-Dawley rats were randomly divided into four groups: normoxic control group (C), normoxic resistance training group (R), hypoxic control group (H) and hypoxic resistance training group (HR). Rats in R and HR groups were trained on an incremental weight-bearing ladder every other day, while those in H and HR groups were kept in an environment containing 12.4% O2 . After 4 weeks, muscles were collected for analysis. Differentiated L6 myoblasts were analysed in vitro after hypoxia exposure and plasmids transfection (alteration in FoxO1 acetylation). The lean body mass loss, wet weight and fibre cross-sectional area of extensor digitorum longus of rats were decreased after 4 weeks hypoxia, and the adverse reactions above was reversed by resistance training. At the same time, the increase in hypoxia-induced autophagy was suppressed, which was accompanied by a decrease in the expression of nuclear FoxO1 and cytoplasmic Ac-FoxO1 by resistance training. The L6 myotube diameter increased and the expression of autophagic proteins were inhibited under hypoxia via intervening by FoxO1 deacetylation. Overall, resistance training alleviates hypoxia-induced muscle atrophy by inhibiting nuclear FoxO1 and cytoplasmic Ac-FoxO1-mediated autophagy.
Collapse
Affiliation(s)
- Pengyu Fu
- Key Laboratory of Physical Fitness and Exercise, Ministry of EducationBeijing Sport UniversityBeijingChina
- Department of Physical EducationNorthwestern Polytechnical UniversityXi'anChina
| | - Rongxin Zhu
- Shanghai Research Institute of Sports ScienceShanghaiChina
| | - Weiyang Gao
- School of Languages and Cultural Communication, English DepartmentXi’an Mingde Institute of TechnologyXi’anChina
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of EducationBeijing Sport UniversityBeijingChina
| |
Collapse
|
25
|
Simonet C, Compta Y. Constipation: "Making" or "Marking" motor and cognitive progression already in prodromal synucleinopathy? Parkinsonism Relat Disord 2024; 119:105989. [PMID: 38182449 DOI: 10.1016/j.parkreldis.2024.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Affiliation(s)
- Cristina Simonet
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona, IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN- RND, InstitutClínic de Neurociències UBNeuro (Maria de Maeztu Excellence Centre), Universitat de Barcelona, AGAUR, Barcelona, Catalonia, Spain.
| |
Collapse
|
26
|
Clement G, Cavillon G, Vuillier F, Bouhaddi M, Béreau M. Unveiling autonomic failure in synucleinopathies: Significance in diagnosis and treatment. Rev Neurol (Paris) 2024; 180:79-93. [PMID: 38216420 DOI: 10.1016/j.neurol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Autonomic failure is frequently encountered in synucleinopathies such as multiple system atrophy (MSA), Parkinson's disease (PD), Lewy body disease, and pure autonomic failure (PAF). Cardiovascular autonomic failure affects quality of life and can be life threatening due to the risk of falls and the increased incidence of myocardial infarction, stroke, and heart failure. In PD and PAF, pathogenic involvement is mainly post-ganglionic, while in MSA, the involvement is mainly pre-ganglionic. Cardiovascular tests exploring the autonomic nervous system (ANS) are based on the analysis of continuous, non-invasive recordings of heart rate and digital blood pressure (BP). They assess facets of sympathetic and parasympathetic activities and provide indications on the integrity of the baroreflex arc. The tilt test is widely used in clinical practice. It can be combined with catecholamine level measurement and analysis of baroreflex activity and cardiac variability for a detailed analysis of cardiovascular damage. MIBG myocardial scintigraphy is the most sensitive test for early detection of autonomic dysfunction. It provides a useful measure of post-ganglionic sympathetic fiber integrity and function and is therefore an effective tool for distinguishing PD from other parkinsonian syndromes such as MSA. Autonomic cardiovascular investigations differentiate between certain parkinsonian syndromes that would otherwise be difficult to segregate, particularly in the early stages of the disease. Exploring autonomic failure by gathering information about residual sympathetic tone, low plasma norepinephrine levels, and supine hypertension can guide therapeutic management of orthostatic hypotension (OH).
Collapse
Affiliation(s)
- G Clement
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France.
| | - G Cavillon
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| | - F Vuillier
- Laboratoire d'anatomie, UFR santé, université de Franche-Comté, 19, rue Ambroise-Paré, 25030 Besançon cedex, France
| | - M Bouhaddi
- Laboratoire de physiologie-explorations fonctionnelles, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| | - M Béreau
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| |
Collapse
|
27
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
28
|
Manjarres Z, Calvo M, Pacheco R. Regulation of Pain Perception by Microbiota in Parkinson Disease. Pharmacol Rev 2023; 76:7-36. [PMID: 37863655 DOI: 10.1124/pharmrev.122.000674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
Pain perception involves current stimulation in peripheral nociceptive nerves and the subsequent stimulation of postsynaptic excitatory neurons in the spinal cord. Importantly, in chronic pain, the neural activity of both peripheral nociceptors and postsynaptic neurons in the central nervous system is influenced by several inflammatory mediators produced by the immune system. Growing evidence has indicated that the commensal microbiota plays an active role in regulating pain perception by either acting directly on nociceptors or indirectly through the modulation of the inflammatory activity on immune cells. This symbiotic relationship is mediated by soluble bacterial mediators or intrinsic structural components of bacteria that act on eukaryotic cells, including neurons, microglia, astrocytes, macrophages, T cells, enterochromaffin cells, and enteric glial cells. The molecular mechanisms involve bacterial molecules that act directly on neurons, affecting their excitability, or indirectly on non-neuronal cells, inducing changes in the production of proinflammatory or anti-inflammatory mediators. Importantly, Parkinson disease, a neurodegenerative and inflammatory disorder that affects mainly the dopaminergic neurons implicated in the control of voluntary movements, involves not only a motor decline but also nonmotor symptomatology, including chronic pain. Of note, several recent studies have shown that Parkinson disease involves a dysbiosis in the composition of the gut microbiota. In this review, we first summarize, integrate, and classify the molecular mechanisms implicated in the microbiota-mediated regulation of chronic pain. Second, we analyze the changes on the commensal microbiota associated to Parkinson disease and propose how these changes affect the development of chronic pain in this pathology. SIGNIFICANCE STATEMENT: The microbiota regulates chronic pain through the action of bacterial signals into two main locations: the peripheral nociceptors and the postsynaptic excitatory neurons in the spinal cord. The dysbiosis associated to Parkinson disease reveals increased representation of commensals that potentially exacerbate chronic pain and reduced levels of bacteria with beneficial effects on pain. This review encourages further research to better understand the signals involved in bacteria-bacteria and bacteria-host communication to get the clues for the development of probiotics with therapeutic potential.
Collapse
Affiliation(s)
- Zulmary Manjarres
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Margarita Calvo
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile (Z.M., R.P.); Facultad de Ciencias Biológicas (Z.M., M.C.) and División de Anestesiología, Escuela de Medicina (M.C.), Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain, Santiago, Chile (Z.M., M.C.); and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile (R.P.)
| |
Collapse
|
29
|
Qamar MA, Tall P, van Wamelen D, Wan YM, Rukavina K, Fieldwalker A, Matthew D, Leta V, Bannister K, Chaudhuri KR. Setting the clinical context to non-motor symptoms reflected by Park-pain, Park-sleep, and Park-autonomic subtypes of Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:1-58. [PMID: 38341227 DOI: 10.1016/bs.irn.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Non-motor symptoms (NMS) of Parkinson's disease (PD) are well described in both clinical practice and the literature, enabling their management and enhancing our understanding of PD. NMS can dominate the clinical pictures and NMS subtypes have recently been proposed, initially based on clinical observations, and later confirmed in data driven analyses of large datasets and in biomarker-based studies. In this chapter, we provide an update on what is known about three common subtypes of NMS in PD. The pain (Park-pain), sleep dysfunction (Park-sleep), and autonomic dysfunction (Park-autonomic), providing an overview of their individual classification, clinical manifestation, pathophysiology, diagnosis, and potential treatments.
Collapse
Affiliation(s)
- Mubasher A Qamar
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom.
| | - Phoebe Tall
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom
| | - Daniel van Wamelen
- Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Yi Min Wan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom; Department of Psychiatry, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Katarina Rukavina
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom
| | - Anna Fieldwalker
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Central Modulation of Pain Lab, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Donna Matthew
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom
| | - Valentina Leta
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom; Department of Clinical Neurosciences, Parkinson, and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Kirsty Bannister
- Central Modulation of Pain Lab, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence and Department of Neurology and Neurosciences, King's College Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
30
|
Ma C, Li Y, Mei Z, Yuan C, Kang JH, Grodstein F, Ascherio A, Willett WC, Chan AT, Huttenhower C, Stampfer MJ, Wang DD. Association Between Bowel Movement Pattern and Cognitive Function: Prospective Cohort Study and a Metagenomic Analysis of the Gut Microbiome. Neurology 2023; 101:e2014-e2025. [PMID: 37775319 PMCID: PMC10662989 DOI: 10.1212/wnl.0000000000207849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/03/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Little is known regarding the association between intestinal motility patterns and cognitive function in individuals who are baseline cognitively healthy. The gut microbiome may contribute to the association. We examined the association between bowel movement (BM) pattern and cognitive function and explored the role of the gut microbiome in explaining this association. METHODS In this prospective study, we leveraged 3 cohort studies, Nurses' Health Study (NHS), NHSII, and Health Professionals Follow-Up Study (HPFS). Participants reported BM frequency and subjective cognitive function. In a subset of NHSII participants, we assessed cognitive function using an objective neuropsychological battery. We profiled the gut microbiome in a subset of participants using whole-genome shotgun metagenomics. General linear models, Poisson regression, and logistic regression were used to quantify the association of BM frequency with different cognitive measurements. RESULTS We followed 112,753 men and women (women: 87.6%) with a mean age of 67.2 years at baseline (NHS: 76 years, NHSII: 59 years, HPFS: 75 years) for a median follow-up of 4 years (NHSII and HPFS: 4 years, NHS: 2 years). Compared with those with BM once daily, participants with BM frequency every 3+ days had significantly worse objective cognitive function, equivalent to 3.0 (95% confidence interval [CI],1.2-4.7) years of chronological cognitive aging. We observed similar J-shape dose-response relationships of BM frequency with the odds of subjective cognitive decline and the likelihood of having more subsequent subjective cognitive complaints (both p nonlinearity < 0.001). BM frequencies of every 3+ days and ≥twice/day, compared with once daily, were associated with the odds ratios of subjective cognitive decline of 1.73 (95% CI 1.60-1.86) and 1.37 (95% CI 1.33-1.44), respectively. BM frequency and subjective cognitive decline were significantly associated with the overall gut microbiome configuration (both p < 0.005) and specific microbial species in the 515 participants with microbiome data. Butyrate-producing microbial species were depleted in those with less frequent BM and worse cognition, whereas a higher abundance of proinflammatory species was associated with BM frequency of ≥twice/day and worse cognition. DISCUSSION Lower BM frequency was associated with worse cognitive function. The gut microbial dysbiosis may be a mechanistic link underlying the association.
Collapse
Affiliation(s)
- Chaoran Ma
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA..
| | - Yanping Li
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Zhendong Mei
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Changzheng Yuan
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Jae H Kang
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Francine Grodstein
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Alberto Ascherio
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Walter C Willett
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Andrew T Chan
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Curtis Huttenhower
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Meir J Stampfer
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Dong D Wang
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA..
| |
Collapse
|
31
|
Christodoulou CC, Onisiforou A, Zanos P, Papanicolaou EZ. Unraveling the transcriptomic signatures of Parkinson's disease and major depression using single-cell and bulk data. Front Aging Neurosci 2023; 15:1273855. [PMID: 38020762 PMCID: PMC10664927 DOI: 10.3389/fnagi.2023.1273855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Motor symptoms are well-characterized in Parkinson's disease (PD). However, non-motor symptoms, such as depression, are commonly observed and can appear up to 10 years before motor features, resulting in one-third of individuals being misdiagnosed with a neuropsychiatric disorder. Thus, identifying diagnostic biomarkers is crucial for accurate PD diagnosis during its prodromal or early stages. Methods We employed an integrative approach, combining single nucleus RNA and bulk mRNA transcriptomics to perform comparative molecular signatures analysis between PD and major depressive disorder (MDD). We examined 39,834 nuclei from PD (GSE202210) and 32,707 nuclei from MDD (GSE144136) in the dorsolateral prefrontal cortex (dlPFC) of Brodmann area 9. Additionally, we analyzed bulk mRNA peripheral blood samples from PD compared to controls (GSE49126, GSE72267), as well as MDD compared to controls (GSE39653). Results Our findings show a higher proportion of astrocytes, and oligodendrocyte cells in the dlPFC of individuals with PD vs. MDD. The excitatory to inhibitory neurons (E/I) ratio analysis indicates that MDD has a ratio close to normal 80/20, while PD has a ratio of 62/38, indicating increased inhibition in the dlPFC. Microglia displayed the most pronounced differences in gene expression profiles between the two conditions. In PD, microglia display a pro-inflammatory phenotype, while in MDD, they regulate synaptic transmission through oligodendrocyte-microglia crosstalk. Analysis of bulk mRNA blood samples revealed that the COL5A, MID1, ZNF148, and CD22 genes were highly expressed in PD, whereas the DENR and RNU1G2 genes were highly expressed in MDD. CD22 is involved in B-cell activation and the negative regulation of B-cell receptor signaling. Additionally, CD86, which provides co-stimulatory signals for T-cell activation and survival, was found to be a commonly differentially expressed gene in both conditions. Pathway analysis revealed several immune-related pathways common in both conditions, including the complement and coagulation cascade, and B-cell receptor signaling. Discussion This study demonstrates that bulk peripheral immune cells play a role in both conditions, but neuroinflammation in the dlPFC specifically manifests in PD as evidenced by the analysis of single nucleus dlPFC datasets. Integrating these two omics levels offers a better understanding of the shared and distinct molecular pathophysiology of PD and MDD in both the periphery and the brain. These findings could lead to potential diagnostic biomarkers, improving accuracy and guiding pharmacological treatments.
Collapse
Affiliation(s)
- Christiana C. Christodoulou
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus Institute of Neurology and Genetics Is a Full Member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Tübingen, Germany
| | - Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Eleni Zamba Papanicolaou
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus Institute of Neurology and Genetics Is a Full Member of the European Reference Network-Rare Neurological Diseases (ERN-RND), Tübingen, Germany
| |
Collapse
|
32
|
Lai H, Li XY, Xu F, Zhu J, Li X, Song Y, Wang X, Wang Z, Wang C. Applications of Machine Learning to Diagnosis of Parkinson's Disease. Brain Sci 2023; 13:1546. [PMID: 38002506 PMCID: PMC10670005 DOI: 10.3390/brainsci13111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Accurate diagnosis of Parkinson's disease (PD) is challenging due to its diverse manifestations. Machine learning (ML) algorithms can improve diagnostic precision, but their generalizability across medical centers in China is underexplored. OBJECTIVE To assess the accuracy of an ML algorithm for PD diagnosis, trained and tested on data from different medical centers in China. METHODS A total of 1656 participants were included, with 1028 from Beijing (training set) and 628 from Fuzhou (external validation set). Models were trained using the least absolute shrinkage and selection operator-logistic regression (LASSO-LR), decision tree (DT), random forest (RF), eXtreme gradient boosting (XGboost), support vector machine (SVM), and k-nearest neighbor (KNN) techniques. Hyperparameters were optimized using five-fold cross-validation and grid search techniques. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, sensitivity (recall), specificity, precision, and F1 score. Variable importance was assessed for all models. RESULTS SVM demonstrated the best differentiation between healthy controls (HCs) and PD patients (AUC: 0.928, 95% CI: 0.908-0.947; accuracy: 0.844, 95% CI: 0.814-0.871; sensitivity: 0.826, 95% CI: 0.786-0.866; specificity: 0.861, 95% CI: 0.820-0.898; precision: 0.849, 95% CI: 0.807-0.891; F1 score: 0.837, 95% CI: 0.803-0.868) in the validation set. Constipation, olfactory decline, and daytime somnolence significantly influenced predictability. CONCLUSION We identified multiple pivotal variables and SVM as a precise and clinician-friendly ML algorithm for prediction of PD in Chinese patients.
Collapse
Affiliation(s)
- Hong Lai
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xu-Ying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Fanxi Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Junge Zhu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Xian Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Yang Song
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Xianlin Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| |
Collapse
|
33
|
Mackie PM, Koshy J, Bhogade M, Hammoor T, Hachmeister W, Lloyd GM, Paterno G, Bolen M, Tansey MG, Giasson BI, Khoshbouei H. Complement C1q-dependent engulfment of alpha-synuclein induces ENS-resident macrophage exhaustion and accelerates Parkinson's-like gut pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563832. [PMID: 37961460 PMCID: PMC10634831 DOI: 10.1101/2023.10.24.563832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Deposition of misfolded α-synuclein (αsyn) in the enteric nervous system (ENS) is found in multiple neurodegenerative diseases. It is hypothesized that ENS synucleinopathy contributes to both the pathogenesis and non-motor morbidity in Parkinson's Disease (PD), but the cellular and molecular mechanisms that shape enteric histopathology and dysfunction are poorly understood. Here, we demonstrate that ENS-resident macrophages, which play a critical role in maintaining ENS homeostasis, initially respond to enteric neuronal αsyn pathology by upregulating machinery for complement-mediated engulfment. Pharmacologic depletion of ENS-macrophages or genetic deletion of C1q enhanced enteric neuropathology. Conversely, C1q deletion ameliorated gut dysfunction, indicating that complement partially mediates αsyn-induced gut dysfunction. Internalization of αsyn led to increased endo-lysosomal stress that resulted in macrophage exhaustion and temporally correlated with the progression of ENS pathology. These novel findings highlight the importance of enteric neuron-macrophage interactions in removing toxic protein aggregates that putatively shape the earliest stages of PD in the periphery.
Collapse
Affiliation(s)
- P M Mackie
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
| | - J Koshy
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
| | - M Bhogade
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
| | - T Hammoor
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
| | - W Hachmeister
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
| | - G M Lloyd
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine. Gainesville, FL, 32610
| | - G Paterno
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine. Gainesville, FL, 32610
| | - M Bolen
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine. Gainesville, FL, 32610
| | - M G Tansey
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine. Gainesville, FL, 32610
- Department of Neurology and Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, Florida, 32610
| | - B I Giasson
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine. Gainesville, FL, 32610
| | - H Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine. Gainesville, FL, 32610
| |
Collapse
|
34
|
Fu P, Gong L, Yang L, Tang S, Ma F. Weight bearing training alleviates muscle atrophy and pyroptosis of middle-aged rats. Front Endocrinol (Lausanne) 2023; 14:1202686. [PMID: 37720530 PMCID: PMC10499618 DOI: 10.3389/fendo.2023.1202686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/27/2023] [Indexed: 09/19/2023] Open
Abstract
Background Age-related muscle atrophy and adipose accumulation begin to occur in young and middle-aged individuals, and exercise at an early age improves body composition. Pyroptosis may play an essential role in age-related low-grade inflammation. This study aimed to explore the alleviation of muscle atrophy by weight-bearing training with increasing age via inhibition of pyroptosis. Methods Ninety 8-month-old male SD rats were randomly divided into three groups: (1) normal baseline group (N group, n = 10), sacrificed after adaptive feeding; control group (C group, n = 40); and weight-bearing running group (R group, n = 40). Blood samples, adipose tissue (AT), and extensor digitorum longus (EDL) were collected after 8, 16, 24, and 32-weeks intervention. Results The body weight, muscle mass, fat mass, plasma lipid, AT wet weight, adipocyte cross-sectional area (CSA), and apoptosis rates of AT and EDL were increased, while the muscle mass, wet weight, and fiber CSA of EDL were decreased by aging, which were reversed by exercise. Weight-bearing training promoted protein synthesis in EDL, inhibited protein degradation in EDL, and expression of pyroptotic key proteins in EDL and AT in rats. Conclusion Weight-bearing training improves body composition and alleviates age-related muscle atrophy in rats, and its mechanism may be related to the inhibition of pyroptosis in the EDL and AT and the improvement of muscle protein metabolism.
Collapse
Affiliation(s)
- Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory of Physical Fitness and Exercise of Ministry of Education, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise of Ministry of Education, Beijing Sport University, Beijing, China
| | - Luyao Yang
- Key Laboratory of Physical Fitness and Exercise of Ministry of Education, Beijing Sport University, Beijing, China
- College of Education, Zhejiang University, Hangzhou, China
| | - Shuning Tang
- Key Laboratory of Physical Fitness and Exercise of Ministry of Education, Beijing Sport University, Beijing, China
- School of Public Health, Fudan University, Shanghai, China
| | - Fangyuan Ma
- Key Laboratory of Physical Fitness and Exercise of Ministry of Education, Beijing Sport University, Beijing, China
- School of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
35
|
Videlock EJ, Xing T, Yehya AHS, Travagli RA. Experimental models of gut-first Parkinson's disease: A systematic review. Neurogastroenterol Motil 2023; 35:e14604. [PMID: 37125607 PMCID: PMC10524037 DOI: 10.1111/nmo.14604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND There is strong support from studies in humans and in animal models that Parkinson's disease (PD) may begin in the gut. This brings about a unique opportunity for researchers in the field of neurogastroenterology to contribute to advancing the field and making contributions that could lead to the ability to diagnose and treat PD in the premotor stages. Lack of familiarity with some of the aspects of the experimental approaches used in these studies may present a barrier for neurogastroenterology researchers to enter the field. Much remains to be understood about intestinal-specific components of gut-first PD pathogenesis and the field would benefit from contributions of enteric and central nervous system neuroscientists. PURPOSE To address these issues, we have conducted a systematic review of the two most frequently used experimental models of gut-first PD: transneuronal propagation of α-synuclein preformed fibrils and oral exposure to environmental toxins. We have reviewed the details of these studies and present methodological considerations for the use of these models. Our aim is that this review will serve as a framework and useful reference for neuroscientists, gastroenterologists, and neurologists interested in applying their expertise to advancing our understanding of gut-first PD.
Collapse
Affiliation(s)
- Elizabeth J. Videlock
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Tiaosi Xing
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Ashwaq Hamid Salem Yehya
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
36
|
Quigley EMM. Constipation in Parkinson's Disease. Semin Neurol 2023; 43:562-571. [PMID: 37579786 DOI: 10.1055/s-0043-1771457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Constipation is one of the most common gastrointestinal features of Parkinson's disease (PD), occurring in over 50% of all PD patients during the course of their disease. Furthermore, constipation is now recognized as an important, prodromal symptom and may predate the onset of the classical motor symptoms by decades. Thereafter, the prevalence and severity of constipation in PD tend to parallel the course of both motor and nonmotor phenomena such as cognitive decline and depression. Difficult defecation (obstructed defecation, dyssynergia) is the primary pathophysiology underlying constipation and likely reflects involvement by the PD process of one or more of the many skeletal muscle groups that are involved in effecting defecation. Management of constipation in PD may be complicated by several patient factors including dysphagia, cognitive impairment, depression, and weak sphincter tone. While the armamentarium available to those who treat constipation, in general, has expanded considerably in recent years, the evidence supporting any therapy in the management of this symptom in PD has remained slim.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Division of Gastroenterology and Hepatology, Lynda K and David M Underwood Center for Digestive Disorders, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
37
|
Talman L, Safarpour D. An Overview of Gastrointestinal Dysfunction in Parkinsonian Syndromes. Semin Neurol 2023; 43:583-597. [PMID: 37703887 DOI: 10.1055/s-0043-1771461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Gastrointestinal (GI) dysfunction is a common nonmotor symptom in Parkinson's disease (PD) as well as other parkinsonian syndromes and may precede the onset of motor symptoms by decades. Involvement of all segments of the GI tract can lead to altered responses to medications and worsened quality of life for patients. While some GI symptoms occur in isolation, others overlap. Therefore, understanding the changes in different segments of the GI tract and how they relate to altered responses to PD treatment can guide both diagnostic and pharmacological interventions. Gut microbiota plays a critical role in immune activity and modulation of the enteric and central nervous systems. Understanding this bidirectional relationship helps to elucidate the pathogenesis of neurodegeneration. This review will describe the current understanding of how GI dysfunction develops in parkinsonian syndromes, common symptoms in PD and related disorders, and available treatments.
Collapse
Affiliation(s)
- Lauren Talman
- Department of Neurology School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Delaram Safarpour
- Department of Neurology School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
38
|
Ziogas I, Leta V, Lamprou C, Trivedi D, Zinzalias P, Staunton J, Odin P, Chaudhuri KR, Charisis V, Hadjidimitriou S, Stouraitis T, Hadjileontiadis LJ. Dynamic Monitoring of Probiotics Effect in Parkinson's Disease Patients via Swarm Decomposition and Bispectral Analysis of Electrogastrograms. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082901 DOI: 10.1109/embc40787.2023.10340198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
People with Parkinson's Disease (PwP) experience a significant deterioration of their daily life quality due to non-motor symptoms, with gastrointestinal dysfunctions manifesting as a vanguard of the latter. Electrogastrography (EGG) is a noninvasive diagnostic tool that can potentially provide biomarkers for the monitoring of dynamic gastric alterations that are related to daily lifestyle and treatment regimens. In this work, a robust analysis of EGG dynamics is introduced to evaluate the effect of probiotic treatment on PwP. The proposed framework, namely biSEGG, introduces a Swarm Decomposition-based enhancement of the EGG, combined with Bispectral feature engineering to model the underlying Quadratic Phase Coupling interactions between the gastric activity oscillatory components of EGG. The biSEGG features are benchmarked against the conventional Power Spectrum-based ones and evaluated through machine learning classifiers. The experimental results, when biSEGG was applied on data epochs from 11 PwP (probiotic vs placebo, AUROC: 0.67, Sensitivity/Specificity: 75/58%), indicate the superiority of biSEGG over Power Spectrum-based approaches and justify the efficiency of biSEGG in capturing and explaining intervention- and meal consumption-related alterations of the gastric activity in PwP.Clinical relevance- biSEGG holds potential for dynamic monitoring of gastrointestinal dysfunction and health status of PwP across diverse daily life scenarios.
Collapse
|
39
|
Zhou W, Triadafilopoulos G, Gurland B, Halawi H, Becker L, Garcia P, Nguyen L, Miglis M, Muppidi S, Sinn D, Jaradeh S, Neshatian L. Differential Findings on Anorectal Manometry in Patients with Parkinson's Disease and Defecatory Dysfunction. Mov Disord Clin Pract 2023; 10:1074-1081. [PMID: 37476327 PMCID: PMC10354598 DOI: 10.1002/mdc3.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 04/15/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Gastrointestinal dysfunction, particularly constipation, is among the most common non-motor manifestations in Parkinson's Disease (PD). We aimed to identify high-resolution anorectal manometry (HR-ARM) abnormalities in patients with PD using the London Classification. Methods We conducted a retrospective review of all PD patients at our institution who underwent HR-ARM and balloon expulsion test (BET) for evaluation of constipation between 2015 and 2021. Using age and sex-specific normal values, HR-ARM recordings were re-analyzed and abnormalities were reported using the London Classification. A combination of Wilcoxon rank sum and Fisher's exact test were used. Results 36 patients (19 women) with median age 71 (interquartile range [IQR]: 69-74) years, were included. Using the London Classification, 7 (19%) patients had anal hypotension, 17 (47%) had anal hypocontractility, and 3 women had combined hypotension and hypocontractility. Anal hypocontractility was significantly more common in women compared to men. Abnormal BET and dyssynergia were noted in 22 (61%) patients, while abnormal BET and poor propulsion were only seen in 2 (5%). Men had significantly more paradoxical anal contraction and higher residual anal pressures during simulated defecation, resulting in more negative recto-anal pressure gradients. Rectal hyposensitivity was seen in nearly one third of PD patients and comparable among men and women. Conclusion Our data affirms the high prevalence of anorectal disorders in PD. Using the London Classification, abnormal expulsion and dyssynergia and anal hypocontractility were the most common findings in PD. Whether the high prevalence of anal hypocontractility in females is directly related to PD or other confounding factors will require further research.
Collapse
Affiliation(s)
- Wendy Zhou
- Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordCAUSA
| | - George Triadafilopoulos
- Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordCAUSA
| | - Brooke Gurland
- Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordCAUSA
| | - Houssam Halawi
- Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordCAUSA
| | - Laren Becker
- Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordCAUSA
| | - Patricia Garcia
- Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordCAUSA
| | - Linda Nguyen
- Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordCAUSA
| | - Mitchell Miglis
- Stanford University, Department of Neurology and Autonomic DisordersStanford Neuroscience Health CenterStanfordCAUSA
| | - Srikanth Muppidi
- Stanford University, Department of Neurology and Autonomic DisordersStanford Neuroscience Health CenterStanfordCAUSA
| | - Dong‐In Sinn
- Stanford University, Department of Neurology and Autonomic DisordersStanford Neuroscience Health CenterStanfordCAUSA
| | - Safwan Jaradeh
- Stanford University, Department of Neurology and Autonomic DisordersStanford Neuroscience Health CenterStanfordCAUSA
| | - Leila Neshatian
- Division of Gastroenterology and HepatologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
40
|
Babacan Yildiz G, Kayacan ZC, Karacan I, Sumbul B, Elibol B, Gelisin O, Akgul O. Altered gut microbiota in patients with idiopathic Parkinson's disease: an age-sex matched case-control study. Acta Neurol Belg 2023; 123:999-1009. [PMID: 36719617 DOI: 10.1007/s13760-023-02195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The investigations related to how gut microbiota changes the brain-gut axis in idiopathic Parkinson's disease (PD) attract growing interest. We aimed to determine whether gut microbiota is altered in PD patients and whether non-motor symptoms of PD and disease duration had any relation with alterations of microbiota profiles among patients. METHODS Microbial taxa in stool samples obtained from 84 subjects (42-PD patients and 42-healthy spouses) were analyzed using 16S rRNA amplicon-sequencing. RESULTS We observed a significant decrease of Firmicutes and a significant increase of Verrucomicrobiota at the phylum level. At the family level, Lactobacillaceae and Akkermansiaceae were significantly increased and Coriobacteriales Incertae Sedis were significantly decreased in the PD patients compared to their healthy spouses. Genus level comparison inferred significant increase in abundance only in Lactobacillus while the abundance of Lachnospiraceae ND3007 group, Tyzzerella, Fusicatenibacter, Eubacterium hallii group and Ruminococcus gauvreauii group were all decreased. We determined that the abundance of Prevotella genus decreased, but not significantly in PD patients. In addition, we found differences in microbiota composition between patients with and without non-motor symptoms. CONCLUSION We observed differences in gut microbiota composition between PD patients and their healthy spouses. Our findings suggest that disease duration influenced microbiota composition, which in turn influenced development of non-motor symptoms in PD. This study is the first in terms of both gut microbiota research in Turkish PD patients and the probable effect of microbiota on non-motor symptoms of PD.
Collapse
Affiliation(s)
- Gulsen Babacan Yildiz
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey.
| | - Zeynep Cigdem Kayacan
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
| | - Ilker Karacan
- Science and Advanced Technologies Research Center, Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| | - Bilge Sumbul
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ozlem Gelisin
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ozer Akgul
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Health and Technology University, Istanbul, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
41
|
Hirayama M, Nishiwaki H, Hamaguchi T, Ohno K. Gastrointestinal disorders in Parkinson's disease and other Lewy body diseases. NPJ Parkinsons Dis 2023; 9:71. [PMID: 37147392 PMCID: PMC10160728 DOI: 10.1038/s41531-023-00511-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Parkinson's disease (PD) is pathologically characterized by the abnormal accumulation of α-synuclein fibrils (Lewy bodies) in the substantia nigra and other brain regions, although the role of Lewy bodies remains elusive. Constipation usually precedes the motor symptoms in PD, which is in accordance with the notion that α-synuclein fibrils start from the intestinal neural plexus and ascend to the brain in at least half of PD patients. The gut microbiota is likely to be involved in intestinal and brain pathologies. Analyses of the gut microbiota in PD, rapid-eye-movement sleep behavior disorder, and dementia with Lewy bodies suggest three pathological pathways. First, Akkermansia, which is increased in PD, degrades the intestinal mucus layer and increases intestinal permeability, which triggers inflammation and oxidative stress in the intestinal neural plexus. Second, decreased short-chain fatty acids (SCFAs)-producing bacteria in PD reduce the number of regulatory T cells. Third, SCFAs also aggravate microglial activation with an unelucidated pathway. In addition, in dementia with Lewy bodies (DLB), which is another form of α-synucleinopathies, increased genera, Ruminococcus torques and Collinsella, may mitigate neuroinflammation in the substantia nigra by increasing secondary bile acids. Interventions for the gut microbiota and their metabolites may potentially delay or mitigate the development and progression of PD and other Lewy body diseases.
Collapse
Affiliation(s)
- Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
42
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
43
|
Raeder V, Batzu L, Untucht R, Fehre A, Rizos A, Leta V, Schmelz R, Hampe J, Bostantjopoulou S, Katsarou Z, Storch A, Reichmann H, Falkenburger B, Ray Chaudhuri K, Klingelhoefer L. The Gut Dysmotility Questionnaire for Parkinson's disease: Insights into development and pretest studies. Front Neurol 2023; 14:1149604. [PMID: 37056364 PMCID: PMC10086186 DOI: 10.3389/fneur.2023.1149604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
ObjectiveA total of 48% of patients with Parkinson's disease (PD) present symptoms of gastrointestinal dysfunction, particularly constipation. Furthermore, gastrointestinal tract (GIT)-related non-motor symptoms (NMSs) appear at all stages of PD, can be prodromal by many years and have a relevant impact on the quality of life. There is a lack of GIT-focused validated tools specific to PD to assess their occurrence, progress, and response to treatment. The aim of this study was to develop and evaluate a novel, disease- and symptom-specific, self-completed questionnaire, titled Gut Dysmotility Questionnaire (GDQ), for screening and monitoring gastrointestinal dysmotility of the lower GIT in patients with PD.MethodsIn phase 1, a systematic literature review and multidisciplinary expert discussions were conducted. In phase 2, cognitive pretest studies comprising standard pretests, interviews, and evaluation questionnaires were performed in patients with PD (n = 21), age- and sex-matched healthy controls (HC) (n = 30), and neurologists (n = 11). Incorporating these results, a second round of cognitive pretests was performed investigating further patients with PD (n = 10), age- and sex-matched HC (n = 10), and neurologists (n = 5). The questionnaire was adapted resulting in the final GDQ, which underwent cross-cultural adaptation to the English language.ResultsWe report significantly higher GDQ total scores and higher scores in five out of eight domains indicating a higher prevalence of gastrointestinal dysmotility in patients with PD than in HC (p < 0.05). Cognitive pretesting improved the preliminary GDQ so that the final GDQ was rated as relevant (100/100%), comprehensive (100/90%), easy to understand concerning questions and answer options (100/90%), and of appropriate length (80/100%) by neurologists and patients with PD, respectively. The GDQ demonstrated excellent internal consistency (Cronbach‘s alpha value of 0.94). Evidence for good construct validity is given by moderate to high correlations of the GDQ total score and its domains by intercorrelations (rs = 0.67–0.91; p < 0.001) and with validated general NMS measures as well as with specific items that assess gastrointestinal symptoms.InterpretationThe GDQ is a novel, easy, and quick 18-item self-assessment questionnaire to screen for and monitor gastrointestinal dysmotility with a focus on constipation in patients with PD. It has shown high acceptance and efficacy as well as good construct validity in cognitive pretests.
Collapse
Affiliation(s)
- Vanessa Raeder
- Department of Neurology, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu, Berlin, Germany
| | - Lucia Batzu
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Robert Untucht
- Department of Neurology, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Alexandra Rizos
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Valentina Leta
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Renate Schmelz
- Department of Internal Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jochen Hampe
- Department of Internal Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Zoe Katsarou
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Heinz Reichmann
- Department of Neurology, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Björn Falkenburger
- Department of Neurology, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - K. Ray Chaudhuri
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Lisa Klingelhoefer
- Department of Neurology, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Lisa Klingelhoefer
| |
Collapse
|
44
|
Leta V, Klingelhoefer L, Longardner K, Campagnolo M, Levent HÇ, Aureli F, Metta V, Bhidayasiri R, Chung-Faye G, Falup-Pecurariu C, Stocchi F, Jenner P, Warnecke T, Ray Chaudhuri K. Gastrointestinal barriers to levodopa transport and absorption in Parkinson's disease. Eur J Neurol 2023; 30:1465-1480. [PMID: 36757008 DOI: 10.1111/ene.15734] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Levodopa is the gold standard for the symptomatic treatment of Parkinson's disease (PD). There are well documented motor and non-motor fluctuations, however, that occur almost inevitably once levodopa is started after a variable period in people with PD. Whilst brain neurodegenerative processes play a part in the pathogenesis of these fluctuations, a range of barriers across the gastrointestinal (GI) tract can alter levodopa pharmacokinetics, ultimately contributing to non-optimal levodopa response and symptoms fluctuations. GI barriers to levodopa transport and absorption include dysphagia, delayed gastric emptying, constipation, Helicobacter pylori infection, small intestinal bacterial overgrowth and gut dysbiosis. In addition, a protein-rich diet and concomitant medication intake can further alter levodopa pharmacokinetics. This can result in unpredictable or sub-optimal levodopa response, 'delayed on' or 'no on' phenomena. In this narrative review, we provided an overview on the plethora of GI obstacles to levodopa transport and absorption in PD and their implications on levodopa pharmacokinetics and development of motor fluctuations. In addition, management strategies to address GI dysfunction in PD are highlighted, including use of non-oral therapies to bypass the GI tract.
Collapse
Affiliation(s)
- Valentina Leta
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | | | - Katherine Longardner
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Marta Campagnolo
- Department of Neurosciences (DNS), University of Padova, Padova, Italy
| | | | - Federico Aureli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Vinod Metta
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Kings College Hospital London, Dubai, United Arab Emirates
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.,Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Guy Chung-Faye
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Kings College Hospital London, Dubai, United Arab Emirates
| | | | - Fabrizio Stocchi
- Department of Neurology, University San Raffaele Roma and IRCCS San Raffaele Pisana, Rome, Italy
| | - Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Tobias Warnecke
- Department of Neurology and Neurorehabilitation, Klinikum Osnabrueck-Academic Teaching Hospital of the WWU Muenster, Osnabrueck, Germany
| | - K Ray Chaudhuri
- Parkinson's Foundation Center of Excellence at King's College Hospital, London, UK.,Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | | |
Collapse
|
45
|
Xie L, Chen D, Zhu X, Cheng C. Efficacy and safety of probiotics in Parkinson's constipation: A systematic review and meta-analysis. Front Pharmacol 2023; 13:1007654. [PMID: 36703760 PMCID: PMC9871263 DOI: 10.3389/fphar.2022.1007654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Parkinson's disease (PD) is the most common neurodegenerative disease closely related to the immune system, among whose prodromes constipation is a representative symptom. Recent Randomized Controlled Trials (RCTs) have proved that probiotics can be used to effectively treat PD constipation, but the results are inconsistent. We performed a meta-analysis to assess the efficacy and safety of probiotic therapy on Parkinson's constipation. Methods: Questions about the research focus were constructed based on the Participants, Intervention, Comparison and Outcomes (PICO) Criteria. We searched electronic databases such as PubMed, Web of Science, EMBASE, Scopus, EBSCO, Cochrane and Google Scholar until March 2022 for eligible literatures. Our primary endpoints were stool frequency, stool consistency, the number of laxatives uses, UPDRS-III scores and adverse events. Results: 12 eligible studies (n = 818 patients) met the inclusion and endpoint criteria. Meta-analysis results showed that constipation symptoms were improved after probiotic treatment, including an increased stool frequency (WMD = 0.94, 95% CI:0.53 to 1.34; OR = 3.22, 95% CI:1.97-5.29), an improved stool consistency (WMD = 1.46, 95% CI:0.54-2.37), a reduced use of laxatives (WMD = -0.72, 95%CI: -1.04 to-0.41), and also a reduced Parkinson's UPDRS-III score (WMD = -6.58, 95%CI: -12.02 to -1.14); there was no significant difference in total adverse events (OR = 0.82, 95%CI:0.39-1.72). Conclusion: Our analysis suggests that probiotics can be used to improve the constipation and motor symptoms for patients with Parkinson's constipation, possibly by reducing the inflammatory response and improving gut-brain axis neuron function, whose safety also proved to be good.
Collapse
|
46
|
Moin K, Funk C, Josephs M, Coombes K, Yeakle M, Gala D, Ahmed-Khan M. Gut-brain axis: Review on the association between Parkinson's disease and plant lectins. Arch Clin Cases 2022; 9:177-183. [PMID: 36628158 PMCID: PMC9769076 DOI: 10.22551/2022.37.0904.10228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) involvement in the pathogenesis of Parkinson's Disease (PD) has been widely recognized and supported in recent literature. Prospective and retrospective studies found non-motor symptoms within the GI, specifically constipation, precede cardinal signs and cognitive decline by almost 20 years. In 2002, Braak et al. were the first to propose that PD is a six-stage propagating neuropathological process originating from the GI tract (GIT). Aggregated α-synuclein (α-syn) protein from the GIT is pathognomonic for the development of PD. This article reviews the current literature from the past 10 years as well as original research found in PubMed on the combined effects of enteric glial cells and lectins on the development of Parkinson's Disease. Studies have found that these aggregated and phosphorylated proteins gain access to the brain via retrograde transport through fast and slow fibers of intestinal neurons. Plant lectins, commonly found within plant-based diets, have been found to induce Leaky Gut Syndrome and can activate enteric glial cells, causing the release of pro-inflammatory cytokines. Oxidative stress on the enteric neurons, caused by a chronic neuro-inflammatory state, can cause a-syn aggregation and lead to Lewy Body formation, a hallmark finding in PD. Although the current literature provides a connection between the consumption of plant lectins and the pathophysiology of PD, further research is required to evaluate confounding variables such as food antigen mimicry and other harmful substances found in our diets.
Collapse
Affiliation(s)
- Kayvon Moin
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles,Correspondence: Kayvon Moin, American University of the Caribbean, School of Medicine, 1 University Drive at, Jordan Dr, Cupecoy, Sint Maarten, Netherlands Antilles.
| | - Carly Funk
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Meagan Josephs
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Kyle Coombes
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Madeleine Yeakle
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Dhir Gala
- American University of the Caribbean, School of Medicine, Cupecoy, Sint Maarten, Netherlands Antilles
| | - Mohammad Ahmed-Khan
- Danbury Hospital-Yale University, School of Medicine, Danbury, Netherlands Antilles
| |
Collapse
|
47
|
Yin S, Zhu F. Probiotics for constipation in Parkinson's: A systematic review and meta-analysis of randomized controlled trials. Front Cell Infect Microbiol 2022; 12:1038928. [PMID: 36439217 PMCID: PMC9684193 DOI: 10.3389/fcimb.2022.1038928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD)-related constipation may affects both disease occurrence and disease progression. Probiotics, as a potential therapeutic intervention, have attracted the attention of researchers, but the evidence of their efficacy and safety has not been systematically reviewed. AIM A systematic review and meta-analysis of randomized controlled trials of probiotics in the treatment of PD constipation was conducted to determine the efficacy and safety of probiotics in the treatment of PD constipation. METHODS Four databases (The Cochrane Central Register of Controlled Trials, Embase, PubMed, and Web of Science) were searched from their establishment to June 1, 2022. We included randomized controlled trials of probiotics for the treatment of constipation in patients with PD, with probiotics in the experimental group and a placebo, another treatment, or no treatment in the control group. The primary outcome was the number of bowel movements per week. Secondary outcomes included nonmotor symptoms (NMS), gut transit time (GTT), abdominal pain, abdominal distention, constipation, and quality of life scores. Stata15.1 was used to generate a summary of the data and perform a descriptive analysis if necessary. The GRADE tool was used to assess the quality of the evidence and the Cochrane guidelines to assess the risk of bias for each study. RESULTS Finally, four qualified RCTs were included, comprising 287 participants. Compared with the control group, probiotics could effectively increase the frequency of defecation per week in PD patients (WMD = 1.02. 95%CI: 0.56-1.48, and P < 0.00001), but the heterogeneity was high, and the quality of the evidence was low. There was no significant difference in average stool consistency between patients with PD treated with probiotics and those given a placebo in (WMD = -0.08. 95%CI: -1.42-1.26, and P = 0.908). In addition, the results suggested that probiotics have no obvious effect on additional indicators of gastrointestinal dysfunction, such as GTT, abdominal pain, and abdominal distension, and there is insufficient evidence on their ability to improve NMS and Parkinson's disease Questionnaire 39 summary indices (PDQ39-SI). Safety issues should be carefully explained. CONCLUSION There is insufficient evidence supporting the use of probiotics to treat constipation in patients with PD. Taking all the results together, probiotics have potential value in the treatment of PD-related constipation. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42022331325.
Collapse
Affiliation(s)
- Shao Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengya Zhu
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, China
| |
Collapse
|
48
|
Wang W, Jiang S, Xu C, Tang L, Liang Y, Zhao Y, Zhu G. Interactions between gut microbiota and Parkinson's disease: The role of microbiota-derived amino acid metabolism. Front Aging Neurosci 2022; 14:976316. [PMID: 36408101 PMCID: PMC9667037 DOI: 10.3389/fnagi.2022.976316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Non-motor symptoms (NMS) of Parkinson's disease (PD), such as constipation, sleep disorders, and olfactory deficits, may emerge up to 20 years earlier than motor symptoms. A series of evidence indicates that the pathology of PD may occur from the gastrointestinal tract to the brain. Numerous studies support that the gut microbiota communicates with the brain through the immune system, special amino acid metabolism, and the nervous system in PD. Recently, there is growing recognition that the gut microbiota plays a vital role in the modulation of multiple neurochemical pathways via the “gut microbiota-brain axis” (GMBA). Many gut microbiota metabolites, such as fatty acids, amino acids, and bile acids, convey signaling functions as they mediate the crosstalk between gut microbiota and host physiology. Amino acids' abundance and species alteration, including glutamate and tryptophan, may disturb the signaling transmission between nerve cells and disrupt the normal basal ganglia function in PD. Specific amino acids and their receptors are considered new potential targets for ameliorating PD. The present study aimed to systematically summarize all available evidence on the gut microbiota-derived amino acid metabolism alterations associated with PD.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujun Jiang
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengcheng Xu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Tang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yang Zhao
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Guoxue Zhu
| |
Collapse
|
49
|
Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res 2022:S2090-1232(22)00242-9. [PMID: 36332796 PMCID: PMC10403695 DOI: 10.1016/j.jare.2022.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a disease of ⍺-synuclein aggregation-mediated dopaminergic neuronal loss in the substantia nigra pars compacta, which leads to motor and non-motor symptoms. Through the last two decades of research, there has been growing consensus that inflammation-mediated oxidative stress, mitochondrial dysfunction, and cytokine-induced toxicity are mainly involved in neuronal damage and loss associated with PD. However, it remains unclear how these mechanisms relate to sporadic PD, a more common form of PD. Both enteric and central nervous systems have been implicated in the pathogenesis of sporadic PD, thus highlighting the crosstalk between the gut and brain. AIM of Review: In this review, we summarize how alterations in the gut microbiome can affect PD pathogenesis. We highlight various mechanisms increasing/decreasing the risk of PD development. Based on the previous supporting evidence, we suggest how early interventions could protect against PD development and how controlling specific factors, including our diet, could modify our perspective on disease mechanisms and therapeutics. We explain the strong relationship between the gut microbiota and the brain in PD subjects, by delineating the multiple mechanisms involved inneuroinflammation and oxidative stress. We conclude that the neurodetrimental effects of western diet (WD) and the neuroprotective effects of Mediterranean diets should be further exploredin humans through clinical trials. Key Scientific Concepts of Review: Alterations in the gut microbiome and associated metabolites may contribute to pathogenesis in PD. In some studies, probiotics have been shown to exert anti-oxidative effects in PD via improved mitochondrial dynamics and homeostasis, thus reducing PD-related consequences. However, there is a significant unmet need for randomized clinical trials to investigate the effectiveness of microbial products, probiotic-based supplementation, and dietary intervention in reversing gut microbial dysbiosis in PD.
Collapse
|
50
|
Chahine LM. Prodromal α-Synucleinopathies. Continuum (Minneap Minn) 2022; 28:1268-1280. [DOI: 10.1212/con.0000000000001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|