Kent DE, Savechenkov PY, Bruzik KS, Miller KW. Binding site location on GABA
A receptors determines whether mixtures of intravenous general anaesthetics interact synergistically or additively in vivo.
Br J Pharmacol 2019;
176:4760-4772. [PMID:
31454409 DOI:
10.1111/bph.14843]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE
General anaesthetics can act on synaptic GABAA receptors by binding to one of three classes of general anaesthetic sites. Canonical drugs that bind selectively to only one class of site are etomidate, alphaxalone, and the mephobarbital derivative, R-mTFD-MPAB. We tested the hypothesis that the general anaesthetic potencies of mixtures of such site-selective agents binding to the same or to different sites would combine additively or synergistically respectively.
EXPERIMENTAL APPROACH
The potency of general anaesthetics individually or in combinations to cause loss of righting reflexes in tadpoles was determined, and the results were analysed using isobolographic methods.
KEY RESULTS
The potencies of combinations of two or three site-selective anaesthetics that all acted on a single class of site were strictly additive, regardless of which single site was involved. Combinations of two or three site-selective anaesthetics that all bound selectively to different sites always interacted synergistically. The strength of the synergy increased with the number of separate sites involved such that the percentage of each agent's EC50 required to cause anaesthesia was just 35% and 14% for two or three sites respectively. Propofol, which binds non-selectively to the etomidate and R-mTFD-MPAB sites, interacted synergistically with each of these agents.
CONCLUSIONS AND IMPLICATIONS
The established pharmacology of the three anaesthetic binding sites on synaptic GABAA receptors was sufficient to predict whether a mixture of anaesthetics interacted additively or synergistically to cause loss of righting reflexes in vivo. The principles established here have implications for clinical practice.
Collapse