1
|
DiMaria S, Mangano N, Bruzzese A, Bartula B, Parikh S, Costa A. Genetic Variation and Sex-Based Differences: Current Considerations for Anesthetic Management. Curr Issues Mol Biol 2025; 47:202. [PMID: 40136457 PMCID: PMC11941548 DOI: 10.3390/cimb47030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Biomedical sciences have made immense progress and numerous discoveries aimed at improving the quality of life and life expectancy in modern times. Anesthesiology is typically tailored to individual patients as its clinical effects depend on multiple factors, including a patient's physiological and pathological states, age, environmental exposures, and genetic variations. Sex differences are also paramount for a complete understanding of the effects of specific anesthetic medications on men and women. However, women-specific research and the inclusion of women in clinical trials, specifically during child-bearing years, remain disproportionately low compared to the general population at large. This review describes and summarizes genetic variations, including sex differences, that affect responses to common anesthetic medications such as volatile anesthetics, induction agents, neuromuscular blocking drugs, opioids, and local anesthetics. It also discusses the influence of genetic variations on anesthesia outcomes, such as postoperative nausea and vomiting, allergic reactions, pain, depth of anesthesia, awareness under anesthesia and recall, and postoperative delirium.
Collapse
Affiliation(s)
- Stephen DiMaria
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Nicholas Mangano
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Adam Bruzzese
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.B.); (B.B.)
| | - Benjamin Bartula
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (A.B.); (B.B.)
| | - Shruti Parikh
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| | - Ana Costa
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (S.D.); (N.M.); (S.P.)
| |
Collapse
|
2
|
Rodriguez E, Peng B, Lane N. Anaesthetics disrupt complex I-linked respiration and reverse the ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149511. [PMID: 39326543 DOI: 10.1016/j.bbabio.2024.149511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The mechanism of volatile general anaesthetics has long been a mystery. Anaesthetics have no structural motifs in common, beyond lipid solubility, yet all exert a similar effect. The fact that the inert gas xenon is an anaesthetic suggests their common mechanism might relate to physical rather than chemical properties. Electron transfer through chiral proteins can induce spin polarization. Recent work suggests that anaesthetics dissipate spin polarization during electron transfer to oxygen, slowing respiration. Here we show that the volatile anaesthetics isoflurane and sevoflurane specifically disrupt complex I-linked respiration in the thoraces of Drosophila melanogaster, with less effect on maximal respiration. Suppression of complex I-linked respiration was greatest with isoflurane. Using high-resolution tissue fluorespirometry, we show that these anaesthetics simultaneously increase mitochondrial membrane potential, implying reversal of the ATP synthase. Inhibition of ATP synthase with oligomycin prevented respiration and increased membrane potential back to the maximal (LEAK state) potential. Magnesium-green fluorescence predicted a collapse in ATP availability following a single anaesthetic dose, consistent with ATP hydrolysis through reversal of the ATP synthase. Raised membrane potential corresponded to a rise in ROS flux, especially with isoflurane. Anaesthetic doses causing respiratory suppression were in the same range as those that induce anaesthesia, although we could not establish tissue concentrations. Our findings show that anaesthetics suppress complex I-linked respiration with concerted downstream effects. But we cannot explain why only mutations in complex I, and not elsewhere in the electron-transfer system, confer hypersensitivity to anaesthetics.
Collapse
Affiliation(s)
- Enrique Rodriguez
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland
| | - Bella Peng
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
3
|
Ahmed N. Anaesthetic management of an infant with MEGD(H)EL syndrome undergoing cochlear implant. BMC Anesthesiol 2024; 24:428. [PMID: 39592976 PMCID: PMC11590200 DOI: 10.1186/s12871-024-02812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The syndrome has these features: 3-methylglutaconic aciduria (MEG), deafness(D), encephalopathy (E), Leigh-like syndrome (L). This disorder is caused by biallelic mutations in serine active site-containing protein 1 (SERAC1) gene. When these patients experience hepatopathy (H) in addition to the above manifestations, the syndrome is referred to as MEGD(H)EL. The pathology of this syndrome shares features with diverse types of inborn errors of metabolism. CASE PRESENTATION We discussed the anaesthetic management of an infant 2-year-old suffering from MEGD(H)EL syndrome undergoing cochlear implant. We discuss the pathology, genetics and significant aspects of this sporadic disease which is important for anaesthesiologist. CONCLUSIONS The usage of dexmedetomidine as the main anaesthetic drug might have the benefit of a non-triggering anaesthetic agent in patients with a mitochondrial disease. Mixture of dexmedetomidine and ketamine provide an effective combination for procedural sedation, predominantly in select populations who are at a high risk of perioperative complications due to underlying co-morbid conditions.
Collapse
Affiliation(s)
- Nashwa Ahmed
- Lecturer of Anaesthesia and Surgical Intensive Care, Faculty of Medicine, Port Said University, Port Fuad, Egypt.
| |
Collapse
|
4
|
Crowder CM, Forman SA. Systematized Serendipity: Fishing Expeditions for Anesthetic Drugs and Targets. Anesthesiology 2024; 141:997-1006. [PMID: 39240535 PMCID: PMC11461116 DOI: 10.1097/aln.0000000000005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Most of science involves making observations, forming hypotheses, and testing those hypotheses, to form valid conclusions. However, a distinct, longstanding, and very productive scientific approach does not follow this paradigm; rather, it begins with a screen through a random collection of drugs or genetic variations for a particular effect or phenotype. Subsequently, the identity of the drug or gene is determined, and only then are hypotheses formed and the more standard scientific method employed. This alternative approach is called forward screening and includes methods such as genetic mutant screens, small molecule screens, metabolomics, proteomics, and transcriptomics. This review explains the rational for forward screening approaches and uses examples of screens for mutants with altered anesthetic sensitivities and for novel anesthetics to illustrate the methods and impact of the approach. Forward screening approaches are becoming even more powerful with advances in bioinformatics aided by artificial intelligence.
Collapse
Affiliation(s)
- C. Michael Crowder
- Department of Anesthesiology and Pain Medicine, Department of Genome Sciences, Mitochondrial and Metabolism Center, University of Washington, Seattle, WA 98109
| | - Stuart A. Forman
- Department of Anesthesia Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts and Harvard Medical School, Boston Massachusetts
| |
Collapse
|
5
|
Morgan PG, Sedensky MM. You Don't Always Get What You Want! Anesthesiology 2024; 141:745-749. [PMID: 39254540 DOI: 10.1097/aln.0000000000005143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Mutations in several genes of Caenorhabditis elegans confer altered sensitivities to volatile anesthetics. A mutation in one gene, gas-1(fc21), causes animals to be immobilized at lower concentrations of all volatile anesthetics than in the wild type, and it does not depend on mutations in other genes to control anesthetic sensitivity. gas-1 confers different sensitivities to stereoisomers of isoflurane, and thus may be a direct target for volatile anesthetics. The authors have cloned and characterized the gas gene and the mutant allele fc21. METHODS Genetic techniques for nematodes were as previously described. Polymerase chain reaction, sequencing, and other molecular biology techniques were performed by standard methods. Mutant rescue was done by injecting DNA fragments into the gonad of mutant animals and scoring the offspring for loss of the mutant phenotype. RESULTS The gas-1 gene was cloned and identified. The protein GAS-1 is a homologue of the 49-kd (IP) subunit of the mitochondrial NADH-ubiquinone-oxidoreductase (complex I of the respiratory chain). gas-1(fc21) is a missense mutation replacing a strictly conserved arginine with lysine. CONCLUSIONS The function of the 49-kd (IP) subunit of complex I is unknown. The finding that mutations in complex I increase sensitivity of C. elegans to volatile anesthetics may implicate this physiologic process in the determination of anesthetic sensitivity. The hypersensitivity of animals with a mutation in the gas-1 gene may be caused by a direct anesthetic effect on a mitochondrial protein or secondary effects at other sites caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Philip G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington and Seattle Children's Research Institute, Seattle, Washington
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington and Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
6
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Spencer KA, Howe MN, Mulholland MT, Truong V, Liao RW, Chen Y, Setha M, Snell JC, Hanaford A, James K, Morgan PG, Sedensky MM, Johnson SC. Impact of dietary ketosis on volatile anesthesia toxicity in a model of Leigh syndrome. Paediatr Anaesth 2024; 34:467-476. [PMID: 38358320 DOI: 10.1111/pan.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Genetic mitochondrial diseases impact over 1 in 4000 individuals, most often presenting in infancy or early childhood. Seizures are major clinical sequelae in some mitochondrial diseases including Leigh syndrome, the most common pediatric presentation of mitochondrial disease. Dietary ketosis has been used to manage seizures in mitochondrial disease patients. Mitochondrial disease patients often require surgical interventions, leading to anesthetic exposures. Anesthetics have been shown to be toxic in the setting of mitochondrial disease, but the impact of a ketogenic diet on anesthetic toxicities in this setting has not been studied. AIMS Our aim in this study was to determine whether dietary ketosis impacts volatile anesthetic toxicities in the setting of genetic mitochondrial disease. METHODS The impact of dietary ketosis on toxicities of volatile anesthetic exposure in mitochondrial disease was studied by exposing young Ndufs4(-/-) mice fed ketogenic or control diet to isoflurane anesthesia. Blood metabolites were measured before and at the end of exposures, and survival and weight were monitored. RESULTS Compared to a regular diet, the ketogenic diet exacerbated hyperlactatemia resulting from isoflurane exposure (control vs. ketogenic diet in anesthesia mean difference 1.96 mM, Tukey's multiple comparison adjusted p = .0271) and was associated with a significant increase in mortality during and immediately after exposures (27% vs. 87.5% mortality in the control and ketogenic diet groups, respectively, during the exposure period, Fisher's exact test p = .0121). Our data indicate that dietary ketosis and volatile anesthesia interact negatively in the setting of mitochondrial disease. CONCLUSIONS Our findings suggest that extra caution should be taken in the anesthetic management of mitochondrial disease patients in dietary ketosis.
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Miranda N Howe
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Michael T Mulholland
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Vivian Truong
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Ryan W Liao
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Yihan Chen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Monyreak Setha
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - John C Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Allison Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Woods CB, Predoi B, Howe M, Reczek CR, Kayser EB, Ramirez JM, Morgan PG, Sedensky MM. Potassium Leak Channels and Mitochondrial Complex I Interact in Glutamatergic Interneurons of the Mouse Spinal Cord. Anesthesiology 2024; 140:715-728. [PMID: 38147628 PMCID: PMC10939847 DOI: 10.1097/aln.0000000000004891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
BACKGROUND Volatile anesthetics induce hyperpolarizing potassium currents in spinal cord neurons that may contribute to their mechanism of action. They are induced at lower concentrations of isoflurane in noncholinergic neurons from mice carrying a loss-of-function mutation of the Ndufs4 gene, required for mitochondrial complex I function. The yeast NADH dehydrogenase enzyme, NDi1, can restore mitochondrial function in the absence of normal complex I activity, and gain-of-function Ndi1 transgenic mice are resistant to volatile anesthetics. The authors tested whether NDi1 would reduce the hyperpolarization caused by isoflurane in neurons from Ndufs4 and wild-type mice. Since volatile anesthetic behavioral hypersensitivity in Ndufs4 is transduced uniquely by glutamatergic neurons, it was also tested whether these currents were also unique to glutamatergic neurons in the Ndufs4 spinal cord. METHODS Spinal cord neurons from wild-type, NDi1, and Ndufs4 mice were patch clamped to characterize isoflurane sensitive currents. Neuron types were marked using fluorescent markers for cholinergic, glutamatergic, and γ-aminobutyric acid-mediated (GABAergic) neurons. Norfluoxetine was used to identify potassium channel type. Neuron type-specific Ndufs4 knockout animals were generated using type-specific Cre-recombinase with floxed Ndufs4. RESULTS Resting membrane potentials (RMPs) of neurons from NDi1;Ndufs4, unlike those from Ndufs4, were not hyperpolarized by 0.6% isoflurane (Ndufs4, ΔRMP -8.2 mV [-10 to -6.6]; P = 1.3e-07; Ndi1;Ndufs4, ΔRMP -2.1 mV [-7.6 to +1.4]; P = 1). Neurons from NDi1 animals in a wild-type background were not hyperpolarized by 1.8% isoflurane (wild-type, ΔRMP, -5.2 mV [-7.3 to -3.2]; P = 0.00057; Ndi1, ΔRMP, 0.6 mV [-1.7 to 3.2]; P = 0.68). In spinal cord slices from global Ndufs4 animals, holding currents (HC) were induced by 0.6% isoflurane in both GABAergic (ΔHC, 81.3 pA [61.7 to 101.4]; P = 2.6e-05) and glutamatergic (ΔHC, 101.2 pA [63.0 to 146.2]; P = 0.0076) neurons. In neuron type-specific Ndufs4 knockouts, HCs were increased in cholinergic (ΔHC, 119.5 pA [82.3 to 156.7]; P = 0.00019) and trended toward increase in glutamatergic (ΔHC, 85.5 pA [49 to 126.9]; P = 0.064) neurons but not in GABAergic neurons. CONCLUSIONS Bypassing complex I by overexpression of NDi1 eliminates increases in potassium currents induced by isoflurane in the spinal cord. The isoflurane-induced potassium currents in glutamatergic neurons represent a potential downstream mechanism of complex I inhibition in determining minimum alveolar concentration. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Christian B Woods
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Beatrice Predoi
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Miranda Howe
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Colleen R Reczek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98105, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, 98105, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, 98105, USA
| |
Collapse
|
9
|
Spencer KA, Mulholland M, Snell J, Howe M, James K, Hanaford AR, Morgan PG, Sedensky M, Johnson SC. Volatile anaesthetic toxicity in the genetic mitochondrial disease Leigh syndrome. Br J Anaesth 2023; 131:832-846. [PMID: 37770252 PMCID: PMC10636522 DOI: 10.1016/j.bja.2023.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Volatile anaesthetics are widely used in human medicine. Although generally safe, hypersensitivity and toxicity can occur in rare cases, such as in certain genetic disorders. Anaesthesia hypersensitivity is well-documented in a subset of mitochondrial diseases, but whether volatile anaesthetics are toxic in this setting has not been explored. METHODS We exposed Ndufs4(-/-) mice, a model of Leigh syndrome, to isoflurane (0.2-0.6%), oxygen 100%, or air. Cardiorespiratory function, weight, blood metabolites, and survival were assessed. We exposed post-symptom onset and pre-symptom onset animals and animals treated with the macrophage depleting drug PLX3397/pexidartinib to define the role of overt neuroinflammation in volatile anaesthetic toxicities. RESULTS Isoflurane induced hyperlactataemia, weight loss, and mortality in a concentration- and duration-dependent manner from 0.2% to 0.6% compared with carrier gas (O2 100%) or mock (air) exposures (lifespan after 30-min exposures ∗P<0.05 for isoflurane 0.4% vs air or vs O2, ∗∗P<0.005 for isoflurane 0.6% vs air or O2; 60-min exposures ∗∗P<0.005 for isoflurane 0.2% vs air, ∗P<0.05 for isoflurane 0.2% vs O2). Isoflurane toxicity was significantly reduced in Ndufs4(-/-) exposed before CNS disease onset, and the macrophage depleting drug pexidartinib attenuated sequelae of isoflurane toxicity (survival ∗∗∗P=0.0008 isoflurane 0.4% vs pexidartinib plus isoflurane 0.4%). Finally, the laboratory animal standard of care of 100% O2 as a carrier gas contributed significantly to weight loss and reduced survival, but not to metabolic changes, and increased acute mortality. CONCLUSIONS Isoflurane is toxic in the Ndufs4(-/-) model of Leigh syndrome. Toxic effects are dependent on the status of underlying neurologic disease, largely prevented by the CSF1R inhibitor pexidartinib, and influenced by oxygen concentration in the carrier gas.
Collapse
Affiliation(s)
- Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Michael Mulholland
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - John Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Miranda Howe
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK; Department of Laboratory Medicine and Pathology, Seattle, WA, USA; Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Perouansky M, Johnson-Schlitz D, Sedensky MM, Morgan PG. A primordial target: Mitochondria mediate both primary and collateral anesthetic effects of volatile anesthetics. Exp Biol Med (Maywood) 2023; 248:545-552. [PMID: 37208922 PMCID: PMC10350799 DOI: 10.1177/15353702231165025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
One of the unsolved mysteries of medicine is how do volatile anesthetics (VAs) cause a patient to reversibly lose consciousness. In addition, identifying mechanisms for the collateral effects of VAs, including anesthetic-induced neurotoxicity (AiN) and anesthetic preconditioning (AP), has proven challenging. Multiple classes of molecules (lipids, proteins, and water) have been considered as potential VA targets, but recently proteins have received the most attention. Studies targeting neuronal receptors or ion channels had limited success in identifying the critical targets of VAs mediating either the phenotype of "anesthesia" or their collateral effects. Recent studies in both nematodes and fruit flies may provide a paradigm shift by suggesting that mitochondria may harbor the upstream molecular switch activating both primary and collateral effects. The disruption of a specific step of electron transfer within the mitochondrion causes hypersensitivity to VAs, from nematodes to Drosophila and to humans, while also modulating the sensitivity to collateral effects. The downstream effects from mitochondrial inhibition are potentially legion, but inhibition of presynaptic neurotransmitter cycling appears to be specifically sensitive to the mitochondrial effects. These findings are perhaps of even broader interest since two recent reports indicate that mitochondrial damage may well underlie neurotoxic and neuroprotective effects of VAs in the central nervous system (CNS). It is, therefore, important to understand how anesthetics interact with mitochondria to affect CNS function, not just for the desired facets of general anesthesia but also for significant collateral effects, both harmful and beneficial. A tantalizing possibility exists that both the primary (anesthesia) and secondary (AiN, AP) mechanisms may at least partially overlap in the mitochondrial electron transport chain (ETC).
Collapse
Affiliation(s)
- Misha Perouansky
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Laboratory of Genetics, School of Medicine and Public Health and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dena Johnson-Schlitz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Philip G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
11
|
Jung S, Zimin PI, Woods CB, Kayser EB, Haddad D, Reczek CR, Nakamura K, Ramirez JM, Sedensky MM, Morgan PG. Isoflurane inhibition of endocytosis is an anesthetic mechanism of action. Curr Biol 2022; 32:3016-3032.e3. [PMID: 35688155 PMCID: PMC9329204 DOI: 10.1016/j.cub.2022.05.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
The mechanisms of volatile anesthetic action remain among the most perplexing mysteries of medicine. Across phylogeny, volatile anesthetics selectively inhibit mitochondrial complex I, and they also depress presynaptic excitatory signaling. To explore how these effects are linked, we studied isoflurane effects on presynaptic vesicle cycling and ATP levels in hippocampal cultured neurons from wild-type and complex I mutant (Ndufs4(KO)) mice. To bypass complex I, we measured isoflurane effects on anesthetic sensitivity in mice expressing NADH dehydrogenase (NDi1). Endocytosis in physiologic concentrations of glucose was delayed by effective behavioral concentrations of isoflurane in both wild-type (τ [unexposed] 44.8 ± 24.2 s; τ [exposed] 116.1 ± 28.1 s; p < 0.01) and Ndufs4(KO) cultures (τ [unexposed] 67.6 ± 16.0 s; τ [exposed] 128.4 ± 42.9 s; p = 0.028). Increasing glucose, to enhance glycolysis and increase ATP production, led to maintenance of both ATP levels and endocytosis (τ [unexposed] 28.0 ± 14.4; τ [exposed] 38.2 ± 5.7; reducing glucose worsened ATP levels and depressed endocytosis (τ [unexposed] 85.4 ± 69.3; τ [exposed] > 1,000; p < 0.001). The block in recycling occurred at the level of reuptake of synaptic vesicles into the presynaptic cell. Expression of NDi1 in wild-type mice caused behavioral resistance to isoflurane for tail clamp response (EC50 Ndi1(-) 1.27% ± 0.14%; Ndi1(+) 1.55% ± 0.13%) and halothane (EC50 Ndi1(-) 1.20% ± 0.11%; Ndi1(+) 1.46% ± 0.10%); expression of NDi1 in neurons improved hippocampal function, alleviated inhibition of presynaptic recycling, and increased ATP levels during isoflurane exposure. The clear alignment of cell culture data to in vivo phenotypes of both isoflurane-sensitive and -resistant mice indicates that inhibition of mitochondrial complex I is a primary mechanism of action of volatile anesthetics.
Collapse
Affiliation(s)
- Sangwook Jung
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Pavel I Zimin
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Christian B Woods
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dominik Haddad
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Colleen R Reczek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Stokes JC, Bornstein RL, James K, Park KY, Spencer KA, Vo K, Snell JC, Johnson BM, Morgan PG, Sedensky MM, Baertsch NA, Johnson SC. Leukocytes mediate disease pathogenesis in the Ndufs4(KO) mouse model of Leigh syndrome. JCI Insight 2022; 7:156522. [PMID: 35050903 PMCID: PMC8983133 DOI: 10.1172/jci.insight.156522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
Symmetric, progressive, necrotizing lesions in the brainstem are a defining feature of Leigh syndrome (LS). A mechanistic understanding of the pathogenesis of these lesions has been elusive. Here, we report that leukocyte proliferation is causally involved in the pathogenesis of LS. Depleting leukocytes with a colony-stimulating factor 1 receptor inhibitor disrupted disease progression, including suppression of CNS lesion formation and a substantial extension of survival. Leukocyte depletion rescued diverse symptoms, including seizures, respiratory center function, hyperlactemia, and neurologic sequelae. These data reveal a mechanistic explanation for the beneficial effects of mTOR inhibition. More importantly, these findings dramatically alter our understanding of the pathogenesis of LS, demonstrating that immune involvement is causal in disease. This work has important implications for the mechanisms of mitochondrial disease and may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Julia C Stokes
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Rebecca L Bornstein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
| | - Katerina James
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Kyung Yeon Park
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Kira A Spencer
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Katie Vo
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - John C Snell
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Brittany M Johnson
- Department of Neurology, University of Washington, Seattle, United States of America
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States of America
| | - Nathan A Baertsch
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Simon C Johnson
- Department of Neurology, University of Washington, Seattle, United States of America
| |
Collapse
|
13
|
Horvath B, Pfister KM, Rupp A, Kloesel B. MEGDEL Syndrome and Its Anesthetic Implications. Cureus 2021; 13:e17761. [PMID: 34540505 PMCID: PMC8423315 DOI: 10.7759/cureus.17761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
MEGDEL syndrome gains its name for its following features: 3-methylglutaconic aciduria (MEG), deafness (D), encephalopathy (E), Leigh-like syndrome (L). This syndrome is caused by biallelic mutations in the serine active site-containing protein 1 (SERAC1 ) gene. When these patients present with hepatopathy (H) in addition to the above manifestations the syndrome is labeled as MEGD(H)EL. The pathology of the disease shares features with different types of inborn errors of metabolism. We present the anesthetic management of a neonate who was diagnosed with MEGD(H)EL syndrome and underwent diagnostic magnetic resonance imaging of the brain at 14 days of postnatal age. We describe the epidemiology and important features of this rare disease that are pertinent for the anesthesiologist.
Collapse
Affiliation(s)
- Balazs Horvath
- Anesthesiology, University of Minnesota School of Medicine, Minneapolis, USA
| | - Kathleen M Pfister
- Pediatrics and Neonatology, University of Minnesota School of Medicine, Minneapolis, USA
| | - Alexis Rupp
- Anesthesiology, M Health Fairview, Minneapolis, USA
| | - Benjamin Kloesel
- Anesthesiology, University of Minnesota School of Medicine, Minneapolis, USA
| |
Collapse
|