1
|
Hahn RG, Dull RO. A Slow-Exchange Interstitial Fluid Compartment in Volunteers and Anesthetized Patients: Kinetic Analysis and Physiology. Anesth Analg 2024; 139:339-348. [PMID: 38153873 DOI: 10.1213/ane.0000000000006767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
BACKGROUND Physiological studies suggest that the interstitial space contains 2 fluid compartments, but no analysis has been performed to quantify their sizes and turnover rates. METHODS Retrospective data were retrieved from 270 experiments where Ringer's solution of between 238 and 2750 mL (mean, 1487 mL) had been administered by intravenous infusion to awake and anesthetized humans (mean age 39 years, 47% females). Urinary excretion and hemoglobin-derived plasma dilution served as input variables in a volume kinetic analysis using mixed-models software. RESULTS The kinetic analysis successfully separated 2 interstitial fluid compartments. One equilibrated rapidly with the plasma and the other equilibrated slowly. General anesthesia doubled the rate constants for fluid entering these 2 compartments (from 0.072 to 0.155 and from 0.026 to 0.080 min -1 , respectively). The return flows to the plasma were impeded by intensive fluid therapy; the rate constant for the fast-exchange compartment decreased from 0.251 to 0.050 when the infusion time increased from 15 to 60 minutes, and the rate constant for the slow-exchange compartment decreased from 0.019 to 0.005 when the infused volume increased from 500 to 1500 mL. The slow-exchange compartment became disproportionately expanded when larger fluid volumes were infused and even attained an unphysiologically large size when general anesthesia was added, suggesting that the flow of fluid was restrained and not solely determined by hydrostatic and oncotic forces. The dependence of the slow-exchange compartment on general anesthesia, crystalloid infusion rate, and infusion volume all suggest a causal physiological process. CONCLUSIONS Kinetic analysis supported that Ringer's solution distributes in 2 interstitial compartments with different turnover times. The slow compartment became dominant when large amounts of fluid were infused and during general anesthesia. These findings may explain why fluid accumulates in peripheral tissues during surgery and why infused fluid can remain in the body for several days after general anesthesia.
Collapse
Affiliation(s)
- Robert G Hahn
- From the Department of Clinical Sciences, Karolinska Institute at Danderyds Hospital (KIDS), Stockholm, Sweden
| | - Randal O Dull
- Departments of Anesthesiology
- Pathology
- Surgery, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
2
|
Zheng J, Liang H, Wang R, Zhong R, Jiang S, Wang W, Zhao Y, Chen Z, Liang W, Liu J, He J. Perioperative and long-term outcomes of spontaneous ventilation video-assisted thoracoscopic surgery for non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:3875-3887. [PMID: 34858778 PMCID: PMC8577985 DOI: 10.21037/tlcr-21-629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Background Spontaneous ventilation video-assisted thoracoscopic surgery (SV-VATS) exhibits dual intraoperative and postoperative advantages for patients with non-small cell lung cancer (NSCLC). However, there is a lack of data regarding its long-term survival superiority over the double-lumen intubated mechanical ventilation video-assisted thoracoscopic surgery (MV-VATS) or thoracotomy. Methods A retrospective study was conducted from 2011 to 2018 in the First Affiliated Hospital of Guangzhou Medical University among patients with NSCLC who underwent the SV-VATS or the MV-VATS. Patients receiving the SV-VATS were the study group, and patients receiving the MV-VATS were the control group. Propensity score matching (PSM) was performed to establish 1:1 SV-VATS versus MV-VATS group matching to balance potential baseline confounding factors. Primary endpoints were overall survival (OS) and disease-free survival (DFS). Secondary endpoints were perioperative outcomes. The baseline information of these patients was recorded. The perioperative data and survival data were collected using a combination of electronic data record system and telephone interview. A 1:1:1 SPM was also used to compare the OS in the SV-VATS, the MV-VATS and thoracotomy group by using another database, including patients undergoing thoracotomy and the MV-VATS. Results For the two-group comparison, after 1:1 PSM, a matched cohort with 400 (200:200) patients was generated. The median follow-up time in this cohort was 4.78 years (IQR, 3.78–6.62 years). The OS (HR =0.567, 95% CI, 0.330 to 0.974, P=0.0498) and the DFS (HR =0.546, 95% CI, 0.346 to 0.863, P=0.013) of the SV-VATS group were significantly better than the MV-VATS group. There were no statistically differences between the SV-VATS and the MV-VATS group on the operative time (158.56±40.09 vs. 172.06±61.75, P=0.200) anesthesia time (247.4±62.49 vs. 256.7±58.52, P=0.528), and intraoperative bleeding volume (78.88±80.25 vs. 109.932±180.86, P=0.092). For the three-group comparison, after 1:1:1 PSM, 582 (194:194:194) patients were included for the comparison of SV-VATS, MV-VATS and thoracotomy. The OS of the SV-VATS group was significantly better than the thoracotomy group (HR =0.379, 95% CI, 0.233 to 0.617, P<0.001). Conclusions Invasive NSCLC patients undergoing SV-VATS lobectomy demonstrated better long-term outcomes compared with MV-VATS.
Collapse
Affiliation(s)
- Jianqi Zheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Runchen Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Shunjun Jiang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yi Zhao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhuxing Chen
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
The Role of General Anesthetic Drug Selection in Cancer Outcome. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2563093. [PMID: 34660784 PMCID: PMC8516539 DOI: 10.1155/2021/2563093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
Cancer remains to be the leading cause of death globally. Surgery is a mainstay treatment for solid tumors. Thus, it is critical to optimize perioperative care. Anesthesia is a requisite component for surgical tumor resection, and general anesthesia is given in the vast majority of tumor resection cases. Because anesthetics are growingly recognized as immunomodulators, it is critical to optimize anesthetic regimens for cancer surgery if the selection can affect outcomes. Here, we reviewed the role of volatile and intravenous anesthesia used for cancer surgery in cancer recurrence.
Collapse
|
4
|
The Role of Anesthetic Selection in Perioperative Bleeding. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5510634. [PMID: 34036098 PMCID: PMC8123995 DOI: 10.1155/2021/5510634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Perioperative bleeding is one of the major comorbidities associated with surgery. While anesthesia is a critical component to perform surgery, a number of clinical studies supported the contribution of anesthetic drugs to perioperative bleeding. Here, we reviewed the literature on this topic including the underlying mechanism and discussed the future direction on coagulation research in anesthesia.
Collapse
|
5
|
Koutsogiannaki S, Huang SX, Lukovits K, Kim S, Bernier R, Odegard KC, Yuki K. The Characterization of Postoperative Mechanical Respiratory Requirement in Neonates and Infants Undergoing Cardiac Surgery on Cardiopulmonary Bypass in a Single Tertiary Institution. J Cardiothorac Vasc Anesth 2021; 36:215-221. [PMID: 34023203 DOI: 10.1053/j.jvca.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Although neonates and infants undergoing cardiac surgery on cardiopulmonary bypass (CPB) are at high risk of developing perioperative morbidity and mortality, including lung injury, the intraoperative profile of lung injury in this cohort is not well-described. Given that the postoperative course of patients in the pediatric cardiac surgical arena has become increasingly expedited, the objective of this study was to characterize the profiles of postoperative mechanical ventilatory support in neonates and infants undergoing cardiac surgery on CPB and to examine the characteristics of lung mechanics and lung injury in this patient population who are potentially amendable to early postoperative recovery in a single tertiary pediatric institution. DESIGN A retrospective data analysis of neonates and infants who underwent cardiac surgery on cardiopulmonary bypass. SETTING A single-center, university teaching hospital. PARTICIPANTS The study included 328 neonates and infants who underwent cardiac surgery on cardiopulmonary bypass. INTERVENTIONS A subset of 128 patients were studied: 58 patients undergoing ventricular septal defect (VSD) repair, 36 patients undergoing complete atrioventricular canal (CAVC) repair, and 34 patients undergoing bidirectional Glenn (BDG) shunt surgery. MEASUREMENTS AND MAIN RESULTS Of the entire cohort, 3.7% experienced in-hospital mortality. Among all surgical procedures, VSD repair (17.7%) was the most common, followed by CAVC repair (11.0%) and BDG shunt surgery (10.4%). Of patients who underwent VSD repair, CAVC repair, and BDG shunt surgery, 65.5%, 41.7%, and 67.6% were off mechanical ventilatory support within 24 hours postoperatively, respectively. In all three of the surgical repairs, lung compliance decreased after CPB compared to pre-CPB phase. Sixty point three percent of patients with VSD repair and 77.8% of patients with CAVC repair showed a PaO2/FIO2 (P/F) ratio of <300 after CPB. Post- CPB P/F ratios of 120 for VSD patients and 100 for CAVC patients were considered as optimal cutoff values to highly predict prolonged (>24 hours) postoperative mechanical ventilatory support. A higher volume of transfused platelets also was associated with postoperative ventilatory support ≥24 hours in patients undergoing VSD repair, CAVC repair, and BDG shunt surgery. CONCLUSIONS There was a high incidence of lung injury after CPB in neonates and infants, even in surgeries amendable for early recovery. Given that CPB-related factors (CPB duration, crossclamp time) and volume of transfused platelet were significantly associated with prolonged postoperative ventilatory support, the underlying cause of cardiac surgery-related lung injury can be multi-factorial.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Immunology, Harvard Medical School, Boston, MA
| | - Sheng Xiang Huang
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Karina Lukovits
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Samuel Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rachel Bernier
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Kirsten C Odegard
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Immunology, Harvard Medical School, Boston, MA.
| |
Collapse
|
6
|
Shibamura-Fujiogi M, Ormsby J, Breibart M, Warf B, Priebe GP, Soriano SG, Sandora TJ, Yuki K. Risk factors for pediatric surgical site infection following neurosurgical procedures for hydrocephalus: a retrospective single-center cohort study. BMC Anesthesiol 2021; 21:124. [PMID: 33882858 PMCID: PMC8059169 DOI: 10.1186/s12871-021-01342-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Background Infection is a major complication following cerebral spinal fluid (CSF) diversion procedures for hydrocephalus. However, pediatric risk factors for surgical site infection (SSI) are currently not well defined. Because a SSI prevention bundle is increasingly introduced, the purpose of this study was to evaluate risk factors associated with SSIs following CSF diversion surgeries following a SSI bundle at a single quaternary care pediatric hospital. Methods We performed a retrospective cohort study of patients undergoing CSF diversion procedures from 2017 to 2019. SSIs were identified prospectively through continuous surveillance. We performed unadjusted logistic regression analyses and univariate analyses to determine an association between SSIs and patient demographics, comorbidities and perioperative factors to identify independent risk factors for SSI. Results We identified a total of 558 CSF diversion procedures with an overall SSI rate of 3.4%. The SSI rates for shunt, external ventricular drain (EVD) placement, and endoscopic third ventriculostomy (ETV) were 4.3, 6.9 and 0%, respectively. Among 323 shunt operations, receipt of clindamycin as perioperative prophylaxis and presence of cardiac disease were significantly associated with SSI (O.R. 4.99, 95% C.I. 1.27–19.70, p = 0.02 for the former, and O.R. 7.19, 95% C.I. 1.35–38.35, p = 0.02 for the latter). No risk factors for SSI were identified among 72 EVD procedures. Conclusion We identified receipt of clindamycin as perioperative prophylaxis and the presence of cardiac disease as risk factors for SSI in shunt procedures. Cefazolin is recommended as a standard antibiotic for perioperative prophylaxis. Knowing that unsubstantiated beta-lactam allergy label is a significant medical problem, efforts should be made to clarify beta-lactam allergy status to maximize the number of patients who can receive cefazolin for prophylaxis before shunt placement. Further research is needed to elucidate the mechanism by which cardiac disease may increase SSI risk after shunt procedures.
Collapse
Affiliation(s)
- Miho Shibamura-Fujiogi
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Anaesthesia, Harvard Medical School, Boston, USA.,Department of Immunology, Harvard Medical School, Boston, USA
| | - Jennifer Ormsby
- Department of Pediatrics, Division of Infectious Diseases, Boston Children's Hospital, Boston, USA
| | - Mark Breibart
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Benjamin Warf
- Department of Neurosurgery, Boston Children's Hospital, Boston, USA
| | - Gregory P Priebe
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Anaesthesia, Harvard Medical School, Boston, USA.,Department of Pediatrics, Division of Infectious Diseases, Boston Children's Hospital, Boston, USA
| | - Sulpicio G Soriano
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Anaesthesia, Harvard Medical School, Boston, USA
| | - Thomas J Sandora
- Department of Pediatrics, Division of Infectious Diseases, Boston Children's Hospital, Boston, USA.,Department of Pediatrics, Harvard Medical School, Boston, USA
| | - Koichi Yuki
- Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Anaesthesia, Harvard Medical School, Boston, USA. .,Department of Immunology, Harvard Medical School, Boston, USA.
| |
Collapse
|
7
|
Nieuwenhuijs-Moeke GJ, Bosch DJ, Leuvenink HG. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. Int J Mol Sci 2021; 22:ijms22052727. [PMID: 33800423 PMCID: PMC7962839 DOI: 10.3390/ijms22052727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Dirk J. Bosch
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Henri G.D. Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
8
|
Yuki K, Hou L, Shibamura-Fujiogi M, Koutsogiannaki S, Soriano SG. Mechanistic consideration of the effect of perioperative volatile anesthetics on phagocytes. Clin Immunol 2021; 222:108635. [PMID: 33217544 PMCID: PMC7856197 DOI: 10.1016/j.clim.2020.108635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
Abstract
A growing literature has shown that volatile anesthetics are promiscuous molecules targeting multiple molecules, some of which are critical for immunological functions. We focused on studies that delineated target molecules of volatile anesthetics on immune cells and summarized the effects of volatile anesthetics on immune functions. We also presented the perspectives of studying volatile anesthetics-mediated immunomodulation.
Collapse
Affiliation(s)
- Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| | - Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Bi D, Yang J, Hong JY, Parikh P, Hinds N, Infanti J, Lin H, Weiser BP. Substrate-Dependent Modulation of SIRT2 by a Fluorescent Probe, 1-Aminoanthracene. Biochemistry 2020; 59:3869-3878. [PMID: 32941003 PMCID: PMC7880049 DOI: 10.1021/acs.biochem.0c00564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sirtuin isoform 2 (SIRT2) is an enzyme that catalyzes the removal of acyl groups from lysine residues. SIRT2's catalytic domain has a hydrophobic tunnel where its substrate acyl groups bind. Here, we report that the fluorescent probe 1-aminoanthracene (AMA) binds within SIRT2's hydrophobic tunnel in a substrate-dependent manner. AMA's interaction with SIRT2 was characterized by its enhanced fluorescence upon protein binding (>10-fold). AMA interacted weakly with SIRT2 alone in solution (Kd = 37 μM). However, when SIRT2 was equilibrated with a decanoylated peptide substrate, AMA's affinity for SIRT2 was enhanced ∼10-fold (Kd = 4 μM). The peptide's decanoyl chain and AMA co-occupied SIRT2's hydrophobic tunnel when bound to the protein. In contrast, binding of AMA to SIRT2 was competitive with a myristoylated substrate whose longer acyl chain occluded the entire tunnel. AMA competitively inhibited SIRT2 demyristoylase activity with an IC50 of 21 μM, which was significantly more potent than its inhibition of other deacylase activities. Finally, binding and structural analysis suggests that the AMA binding site in SIRT2's hydrophobic tunnel was structurally stabilized when SIRT2 interacted with a decanoylated or 4-oxononanoylated substrate, but AMA's binding site was less stable when SIRT2 was bound to an acetylated substrate. Our use of AMA to explore changes in SIRT2's hydrophobic tunnel that are induced by interactions with specific acylated substrates has implications for developing ligands that modulate SIRT2's substrate specificity.
Collapse
Affiliation(s)
- David Bi
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Jie Yang
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Prashit Parikh
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Nicole Hinds
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Joseph Infanti
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Howard Hughes Medical Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084, United States
| |
Collapse
|
10
|
Koutsogiannaki S, Bu W, Hou L, Shibamura-Fujiogi M, Ishida H, Ohto U, Eckenhoff RG, Yuki K. The effect of anesthetics on toll like receptor 9. FASEB J 2020; 34:14645-14654. [PMID: 32901993 DOI: 10.1096/fj.202000791rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Abstract
Toll like receptors (TLRs) are critical receptors to respond to danger signals, and their functions are relevant in the perioperative period. We previously reported that volatile anesthetics directly bound to TLR2 and TLR4 and attenuated their functions. Given that TLR9 can respond to mitochondrial DNA, a danger signal that is released upon tissue injury, we examined the role of anesthetics on TLR9 function. Our reporter assay showed that volatile anesthetics isoflurane and sevoflurane increased the activation of TLR9, while propofol attenuated it. TLR9 activation occurs via its dimerization. The dimerization is facilitated by unmethylated cytosine-phosphate-guanine (CpG) DNA as well as DNA containing cytosine at the second position from 5'-end (5'-xCx DNA). Our structural analysis using photoactivable anesthetics and rigid docking simulation showed that isoflurane and sevoflurane bound to both TLR9 dimer interface and 5'-xCx DNA binding site. Propofol bound to the TLR9 antagonist binding site. This is the first illustration that anesthetics can affect the binding of nucleic acids to their receptor. This study sets the foundation for the effect of anesthetics on TLR9 and will pave the way for future studies to determine the significance of such interactions in the clinical setting.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Weiming Bu
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Hanako Ishida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Roderic G Eckenhoff
- Department of Anesthesia and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.,Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.,Department of Immunology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Mitsui Y, Hou L, Huang X, Odegard KC, Pereira LM, Yuki K. Volatile Anesthetic Sevoflurane Attenuates Toll-Like Receptor 1/2 Activation. Anesth Analg 2020; 131:631-639. [PMID: 32149756 DOI: 10.1213/ane.0000000000004741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although immunomodulatory effects of anesthetics have been increasingly recognized, their underlying molecular mechanisms are not completely understood. Toll-like receptors (TLRs) are one of the major receptors to recognize invading pathogens and danger signals from damaged host tissues to initiate immune responses. Among the TLR family, TLR2 and TLR4 recognize a wide range of ligands and are considered to be important players in perioperative pathophysiology. Based on our recent finding that volatile anesthetics modulate TLR4 function, we tested our hypothesis that they would also modulate TLR2 function. METHODS The effect of anesthetics isoflurane, sevoflurane, propofol, and dexmedetomidine on TLR2 activation was examined by reporter assays. An anesthetic that affected the activation was subjected to in silico rigid docking simulation on TLR2. To test our prediction that sevoflurane and a TLR1/TLR2 ligand Pam3CSK4 would compete for the same pocket of TLR2, we performed Pam3CSK4 competitive binding assay to TLR2 using HEK cells stably transfected with TLR2 (HEK-TLR2) with or without sevoflurane. We examined the effect of different anesthetics on the functions of human neutrophils stimulated with TLR2 ligands. Kruskal-Wallis test and Mann-Whitney U test were used for statistical analysis. RESULTS We observed that the attenuation of TLR1/TLR2 activation was seen on sevoflurane exposure but not on isoflurane, propofol, or dexmedetomidine exposure. The attenuation of TLR2/TLR6 activation was not seen in any of the anesthetics tested. The rigid docking simulation predicted that sevoflurane and Pam3CSK4 bound to the same pocket of TLR1/TLR2 complex. The binding of Pam3CSK4 to HEK-TLR2 cells was impaired in the presence of sevoflurane, indicating that sevoflurane and Pam3CSK4 competed for the pocket, as predicted in silico. The stimulation of neutrophils with Pam3CSK4 induced L-selection shedding but did not affect phagocytosis and reactive oxygen species production. L-selectin shedding from neutrophils was attenuated only by sevoflurane, consistent with the result of our reporter assays. CONCLUSIONS We found that TLR1/TLR2 activation was attenuated by sevoflurane, but we found no evidence for attenuation by isoflurane, propofol, or dexmedetomidine at clinically relevant concentrations. Our structural analysis and competition assay supported that sevoflurane directly bound to TLR2 at the interphase of the TLR1/TLR2 complex. Sevoflurane attenuated neutrophil L-selectin shedding, an important step for neutrophil migration.
Collapse
Affiliation(s)
- Yusuke Mitsui
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesiology and Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lifei Hou
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Xiayi Huang
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kirsten C Odegard
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Luis M Pereira
- From the Department of Anesthesia, Harvard Medical School.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Koichi Yuki
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
12
|
Mitsui Y, Koutsogiannaki S, Fujiogi M, Yuki K. In Vitro Model of Stretch-Induced Lung Injury to Study Different Lung Ventilation Regimens and the Role of Sedatives. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2020; 7:258-264. [PMID: 32542183 PMCID: PMC7295159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Currently lung injury is managed conservatively through supportive care including mechanical ventilation. However, mechanical ventilation can also cause additional lung injury due to over-stretch along with atelectasis and cytokine release. Here we developed an in vitro mechanical ventilation model using cyclic stretch of lung epithelial cells to mimic high and low tidal volume (TV) ventilation strategy, so that we could use this platform for pathophysiology analysis and screening for therapeutic drugs. METHOD We subjected MLE-15 cells to the following treatments. 1) No treatment, 2) lipopolysaccharide (100 ng/mL) stimulation for 24 hours, 3) mechanical stretch initiated at 6-hour time point for 18 hours, 4) LPS stimulation at time point 0 hour, and mechanical stretch was added at 6-hour time point for 18 hours. Biaxial cyclic stretch with a triangular wave was given via the Flexcell FX-6000 tension system to mimic low and high TV. Anesthetics dexmedetomidine and propofol were also tested. RESULT Our high TV mimic stretch increased cell death, while low TV mimic stretch did not affect the degree of cell death. Using this system, we examined the effect of sedatives commonly used in intensive care units on cell death and found that dexmedetomidine attenuated necrosis associated with stretch. CONCLUSION We described the in vitro cyclic stretch system mimicking high and low TV ventilation. High TV mimetic was associated with increased cell death. Dexmedetomidine attenuated the degree of cell death.
Collapse
Affiliation(s)
- Yusuke Mitsui
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Miho Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, 02115, USA
| |
Collapse
|
13
|
Anesthetic technique and cancer outcomes: a meta-analysis of total intravenous versus volatile anesthesia. Can J Anaesth 2019; 66:546-561. [DOI: 10.1007/s12630-019-01330-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
|
14
|
Nieuwenhuijs-Moeke GJ, Nieuwenhuijs VB, Seelen MAJ, Berger SP, van den Heuvel MC, Burgerhof JGM, Ottens PJ, Ploeg RJ, Leuvenink HGD, Struys MMRF. Propofol-based anaesthesia versus sevoflurane-based anaesthesia for living donor kidney transplantation: results of the VAPOR-1 randomized controlled trial. Br J Anaesth 2018; 118:720-732. [PMID: 28510740 DOI: 10.1093/bja/aex057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Background Kidney transplantation is associated with harmful processes affecting the viability of the graft. One of these processes is associated with the phenomenon of ischaemia-reperfusion injury. Anaesthetic conditioning is a widely described strategy to attenuate ischaemia-reperfusion injury. We therefore conducted the Volatile Anaesthetic Protection of Renal Transplants-1 trial, a pilot project evaluating the influence of two anaesthetic regimens, propofol- vs sevoflurane-based anaesthesia, on biochemical and clinical outcomes in living donor kidney transplantation. Methods Sixty couples were randomly assigned to the following three groups: PROP (donor and recipient propofol), SEVO (donor and recipient sevoflurane), and PROSE (donor propofol and recipient sevoflurane). The primary outcome was renal injury reflected by urinary biomarkers. The follow-up period was 2 yr. Results Three couples were excluded, leaving 57 couples for analysis. Concentrations of kidney injury molecule-1 (KIM-1), N -acetyl-β- d -glucosaminidase (NAG), and heart-type fatty acid binding protein (H-FABP) in the first urine upon reperfusion showed no differences. On day 2, KIM-1 concentrations were higher in SEVO [952.8 (interquartile range 311.8-1893.0) pg mmol -1 ] compared with PROP [301.2 (202.0-504.7) pg mmol -1 ]. This was the same for NAG: SEVO, 1.835 (1.162-2.457) IU mmol -1 vs PROP, 1.078 (0.819-1.713) IU mmol -1 . Concentrations of H-FABP showed no differences. Measured glomerular filtration rate at 3, 6, and 12 months showed no difference. After 2 yr, there was a difference in the acute rejection rate ( P =0.039). Post hoc testing revealed a difference between PROP (35%) and PROSE (5%; P =0.020). The difference between PROP and SEVO (11%) was not significant ( P =0.110). Conclusions The SEVO group showed higher urinary KIM-1 and NAG concentrations in living donor kidney transplantation on the second day after transplantation. This was not reflected in inferior graft outcome. Clinical trial registration NCT01248871.
Collapse
Affiliation(s)
| | - V B Nieuwenhuijs
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Surgery, Isala, Zwolle, The Netherlands
| | | | | | | | - J G M Burgerhof
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - P J Ottens
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - R J Ploeg
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - H G D Leuvenink
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - M M R F Struys
- Department of Anaesthesiology.,Department of Anaesthesia, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Jorgensen C, Domene C. Location and Character of Volatile General Anesthetics Binding Sites in the Transmembrane Domain of TRPV1. Mol Pharm 2018; 15:3920-3930. [PMID: 30067911 DOI: 10.1021/acs.molpharmaceut.8b00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been proposed that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. An understanding of the mechanisms by which general anesthetics modulate ion channels is essential to clarify their underlying behavior and their role in reversible immobilization and amnesia. Despite the fact that volatile general anesthetics are drugs that primarily induce insensitivity to pain, they have been reported to sensitize and active the vanilloid-1 receptor, TRPV1, which is known to mediate the response of the nervous system to certain harmful stimuli and which plays a crucial role in the pain pathway. Currently, the mechanism of action of anesthetics is unknown and the precise molecular sites of interaction have not been identified. Here, using ∼2.5 μs of classical molecular dynamics simulations and metadynamics, we explore these enigmas. Binding sites are identified and the strength of the association is further characterized using alchemical free-energy calculations. Anesthetic binding/unbinding proceeds primarily through a membrane-embedded pathway, and subsequently, a complex scenario is established involving multiple binding sites featuring single or multiple occupancy states of two small volatile drugs. One of the five anesthetic binding sites reported was previously identified experimentally, and another one, importantly, is identical to that of capsaicin, one of the chemical stimuli that activate TRPV1. However, in contrast to capsaicin, isoflurane and chloroform binding free-energies render modest to no association compared to capsaicin, suggesting a different activation mechanism. Uncovering chloroform and isoflurane modulatory sites will further our understanding of the TRPV1 molecular machinery and open the possibility of developing site-specific drugs.
Collapse
Affiliation(s)
- Christian Jorgensen
- Department of Chemistry , King's College London , Britannia House, 7 Trinity Street , London SE1 1DB , U.K
| | - Carmen Domene
- Department of Chemistry , King's College London , Britannia House, 7 Trinity Street , London SE1 1DB , U.K.,Department of Chemistry , University of Bath , 1 South Building, Claverton Down , Bath BA2 7AY , U.K.,Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| |
Collapse
|
16
|
Koutsogiannaki S, Schaefers MM, Okuno T, Ohba M, Yokomizo T, Priebe GP, DiNardo JA, Sulpicio SG, Yuki K. From the Cover: Prolonged Exposure to Volatile Anesthetic Isoflurane Worsens the Outcome of Polymicrobial Abdominal Sepsis. Toxicol Sci 2018; 156:402-411. [PMID: 28003439 DOI: 10.1093/toxsci/kfw261] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis continues to result in high morbidity and mortality. General anesthesia is often administered to septic patients, but the impacts of general anesthesia on host defense are not well understood. General anesthesia can be given by volatile and intravenous anesthetics. Our previous in vitro study showed that volatile anesthetic isoflurane directly inhibits leukocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1), critical adhesion molecules on leukocytes. Thus, the role of isoflurane exposure on in vivo LFA-1 and Mac-1 function was examined using polymicrobial abdominal sepsis model in mice. As a comparison, intravenous anesthetic propofol was given to a group of mice. Wild type, LFA-1, Mac-1, and adhesion molecule-1 knockout mice were used. Following the induction of polymicrobial abdominal sepsis by cecal ligation and puncture, groups of mice were exposed to isoflurane for either 2 or 6 h, or to propofol for 6 h, and their outcomes were examined. Bacterial loads in tissues and blood, neutrophil recruitment to the peritoneal cavity and phagocytosis were studied. Six hours of isoflurane exposure worsened the outcome of abdominal sepsis (P < .0001) with higher bacterial loads in tissues, but 2 h of isoflurane or 6 h of propofol exposure did not. Isoflurane impaired neutrophil recruitment to the abdominal cavity by inhibiting LFA-1 function. Isoflurane also impaired bacterial phagocytosis via complement receptors including Mac-1. In conclusion, prolonged isoflurane exposure worsened the outcome of experimental polymicrobial abdominal sepsis and was associated with impaired neutrophil recruitment and bacterial phagocytosis via reduced LFA-1 and Mac-1 function.
Collapse
Affiliation(s)
- Sophia Koutsogiannaki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Matthew M Schaefers
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mai Ohba
- Department of Biochemistry, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Gregory P Priebe
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - James A DiNardo
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Soriano G Sulpicio
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
17
|
Woll KA, Dailey WP, Brannigan G, Eckenhoff RG. Shedding Light on Anesthetic Mechanisms: Application of Photoaffinity Ligands. Anesth Analg 2017; 123:1253-1262. [PMID: 27464974 DOI: 10.1213/ane.0000000000001365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anesthetic photoaffinity ligands have had an increasing presence within anesthesiology research. These ligands mimic parent general anesthetics and allow investigators to study anesthetic interactions with receptors and enzymes; identify novel targets; and determine distribution within biological systems. To date, nearly all general anesthetics used in medicine have a corresponding photoaffinity ligand represented in the literature. In this review, we examine all aspects of the current methodologies, including ligand design, characterization, and deployment. Finally we offer points of consideration and highlight the future outlook as more photoaffinity ligands emerge within the field.
Collapse
Affiliation(s)
- Kellie A Woll
- From the Departments of *Anesthesiology and Critical Care and †Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; ‡Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania; and §Department of Physics, Rutgers University, Camden, New Jersey
| | | | | | | |
Collapse
|
18
|
Okuno T, Koutsogiannaki S, Ohba M, Chamberlain M, Bu W, Lin FY, Eckenhoff RG, Yokomizo T, Yuki K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B 4 production. FASEB J 2017; 31:1584-1594. [PMID: 28069825 DOI: 10.1096/fj.201601095r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 11/11/2022]
Abstract
Propofol is an intravenous anesthetic that produces its anesthetic effect, largely via the GABAA receptor in the CNS, and also reduces the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced neutrophil respiratory burst. Because fMLP-stimulated neutrophils produce leukotriene (LT)B4, we examined the effect of propofol on LTB4 production in vivo and in vitro Cecal ligation and puncture surgery was performed in mice, with or without exposure to propofol. Propofol attenuated the production of 5-lipoxygenase (5-LOX)-related arachidonic acid (AA) derivatives in the peritoneal fluid. Also, in the in vitro experiments on fMLP-stimulated neutrophils and 5-LOX-transfected human embryonic kidney cells, propofol attenuated the production of 5-LOX-related AA derivatives. Based on these results, we hypothesized that propofol would directly affect 5-LOX function. Using meta-azi-propofol (AziPm), we photolabeled stable 5-LOX protein, which had been used to solve the X-ray crystallographic structure of 5-LOX, and examined the binding site(s) of propofol on 5-LOX. Two propofol binding pockets were identified near the active site of 5-LOX. Alanine scanning mutagenesis was performed for the residues of 5-LOX in the vicinity of propofol, and we evaluated the functional role of these pockets in LTB4 production. We demonstrated that these pockets were functionally important for 5-LOX activity. These two pockets can be used to explore a novel 5-LOX inhibitor in the future.-Okuno, T., Koutsogiannaki, S., Ohba, M., Chamberlain, M., Bu, W., Lin, F.-Y., Eckenhoff, R. G., Yokomizo T., Yuki, K. Intravenous anesthetic propofol binds to 5-lipoxygenase and attenuates leukotriene B4 production.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Sophia Koutsogiannaki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Ohba
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Matthew Chamberlain
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Fu-Yan Lin
- Immune Disease Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo Japan
| | - Koichi Yuki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Massachusetts, USA; .,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Bu W, Pereira LM, Eckenhoff RG, Yuki K. Stereoselectivity of isoflurane in adhesion molecule leukocyte function-associated antigen-1. PLoS One 2014; 9:e96649. [PMID: 24801074 PMCID: PMC4011845 DOI: 10.1371/journal.pone.0096649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Isoflurane in clinical use is a racemate of S- and R-isoflurane. Previous studies have demonstrated that the effects of S-isoflurane on relevant anesthetic targets might be modestly stronger (less than 2-fold) than R-isoflurane. The X-ray crystallographic structure of the immunological target, leukocyte function-associated antigen-1 (LFA-1) with racemic isoflurane suggested that only S-isoflurane bound specifically to this protein. If so, the use of specific isoflurane enantiomers may have advantage in the surgical settings where a wide range of inflammatory responses is expected to occur. Here, we have further tested the hypothesis that isoflurane enantioselectivity is apparent in solution binding and functional studies. METHODS First, binding of isoflurane enantiomers to LFA-1 was studied using 1-aminoanthracene (1-AMA) displacement assays. The binding site of each enantiomer on LFA-1 was studied using the docking program GLIDE. Functional studies employed the flow-cytometry based ICAM binding assay. RESULTS Both enantiomers decreased 1-AMA fluorescence signal (at 520 nm), indicating that both competed with 1-AMA and bound to the αL I domain. The docking simulation demonstrated that both enantiomers bound to the LFA-1 "lovastatin site." ICAM binding assays showed that S-isoflurane inhibited more potently than R-isoflurane, consistent with the result of 1-AMA competition assay. CONCLUSIONS In contrast with the x-ray crystallography, both enantiomers bound to and inhibited LFA-1. S-isoflurane showed slight preference over R-isoflurane.
Collapse
Affiliation(s)
- Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Luis M. Pereira
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Brennan M, Cox D. The therapeutic potential of I-domain integrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:157-78. [PMID: 25023174 DOI: 10.1007/978-94-017-9153-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to their role in processes central to cancer and autoimmune disease I-domain integrins are an attractive drug target. Both antibodies and small molecule antagonists have been discovered and tested in the clinic. Much of the effort has focused on αLβ2 antagonists. Maybe the most successful was the monoclonal antibody efalizumab, which was approved for the treatment of psoriasis but subsequently withdrawn from the market due to the occurrence of a serious adverse effect (progressive multifocal leukoencephalopathy). Other monoclonal antibodies were tested for the treatment of reperfusion injury, post-myocardial infarction, but failed to progress due to lack of efficacy. New potent small molecule inhibitors of αv integrins are promising reagents for treating fibrotic disease. Small molecule inhibitors targeting collagen-binding integrins have been discovered and future work will focus on identifying molecules selectively targeting each of the collagen receptors and identifying appropriate target diseases for future clinical studies.
Collapse
Affiliation(s)
- Marian Brennan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
21
|
Weiser BP, Woll KA, Dailey WP, Eckenhoff RG. Mechanisms revealed through general anesthetic photolabeling. CURRENT ANESTHESIOLOGY REPORTS 2013; 4:57-66. [PMID: 24563623 DOI: 10.1007/s40140-013-0040-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
General anesthetic photolabels are used to reveal molecular targets and molecular binding sites of anesthetic ligands. After identification, the relevance of anesthetic substrates or binding sites can be tested in biological systems. Halothane and photoactive analogs of isoflurane, propofol, etomidate, neurosteroids, anthracene, and long chain alcohols have been used in anesthetic photolabeling experiments. Interrogated protein targets include the nicotinic acetylcholine receptor, GABAA receptor, tubulin, leukocyte function-associated antigen-1, and protein kinase C. In this review, we summarize insights revealed by photolabeling these targets, as well as general features of anesthetics, such as their propensity to partition to mitochondria and bind voltage-dependent anion channels. The theory of anesthetic photolabel design and the experimental application of photoactive ligands are also discussed.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 ; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - Kellie A Woll
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104 ; Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, 231 S. 34th Street, Philadelphia, PA 19104
| | - Roderic G Eckenhoff
- Department of Anesthesiology & Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|