1
|
Nardone R, Golaszewski S, Schwenker K, Brigo F, Maccarrone M, Versace V, Sebastianelli L, Saltuari L, Höller Y. Cholinergic transmission is impaired in patients with idiopathic normal-pressure hydrocephalus: a TMS study. J Neural Transm (Vienna) 2019; 126:1073-1080. [PMID: 31227893 PMCID: PMC6647526 DOI: 10.1007/s00702-019-02036-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/17/2019] [Indexed: 11/26/2022]
Abstract
The pathophysiological mechanisms of cognitive and gait disturbances in subjects with normal-pressure hydrocephalus (NPH) are still unclear. Cholinergic and other neurotransmitter abnormalities have been reported in animal models of NPH. The objective of this study was to evaluate the short latency afferent inhibition (SAI), a transcranial magnetic stimulation protocol which gives the possibility to test an inhibitory cholinergic circuit in the human brain, in subjects with idiopathic NPH (iNPH). We applied SAI technique in twenty iNPH patients before ventricular shunt surgery. Besides SAI, also the resting motor threshold and the short intracortical inhibition to paired stimulation were assessed. A significant reduction of the SAI (p = 0.016), associated with a less pronounced decrease of the resting motor threshold and the short latency intracortical inhibition to paired stimulation, were observed in patients with iNPH at baseline evaluation. We also found significant (p < 0.001) correlations between SAI values and the gait function tests, as well as between SAI and the neuropsychological tests. These findings suggest that the impairment of cholinergic neurons markedly contributes to cognitive decline and gait impairment in subjects with iNPH.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, 39012, Merano, BZ, Italy.
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.
- Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Kerstin Schwenker
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, 39012, Merano, BZ, Italy
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Miriam Maccarrone
- Department of Neurology, Franz Tappeiner Hospital, Via Rossini 5, 39012, Merano, BZ, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy
- Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy
- Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno, Vipiteno, Italy
- Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Yvonne Höller
- Department of Psychology, University of Akureyri, Akureyri, Iceland
| |
Collapse
|
2
|
Del Bigio MR, Di Curzio DL. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 2016; 13:3. [PMID: 26846184 PMCID: PMC4743412 DOI: 10.1186/s12987-016-0025-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
Pharmacological interventions have been tested experimentally and clinically to prevent hydrocephalus and avoid the need for shunting beginning in the 1950s. Clinical trials of varied quality have not demonstrated lasting and convincing protective effects through manipulation of cerebrospinal fluid production, diuresis, blood clot fibrinolysis, or manipulation of fibrosis in the subarachnoid compartment, although there remains some promise in the latter areas. Acetazolamide bolus seems to be useful for predicting shunt response in adults with hydrocephalus. Neuroprotection in the situation of established hydrocephalus has been tested experimentally beginning more recently. Therapies designed to modify blood flow or pulsation, reduce inflammation, reduce oxidative damage, or protect neurons are so far of limited success; more experimental work is needed in these areas. As has been recommended for preclinical studies in stroke and brain trauma, stringent conditions should be met for preclinical studies in hydrocephalus.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba; Children's Hospital Research Institute of Manitoba, Diagnostic Services Manitoba, 401 Brodie Centre, 715 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| | - Domenico L Di Curzio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
3
|
Camellia sinensis neuroprotective role in experimentally induced hydrocephalus in Wistar rats. Childs Nerv Syst 2014; 30:591-7. [PMID: 24005799 DOI: 10.1007/s00381-013-2262-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022]
Abstract
PURPOSE This study tested possible neuroprotective effects of Camellia sinensis-extracted polyphenols in experimental hydrocephalus in young rats. METHODS Seven-day-old Wistar rats were used in this study. Pups were subjected to hydrocephalus induction by 20 % kaolin intracisternal injection. The polyphenol was administered intraperitoneally for 9 or 20 days from the induction of hydrocephalus. Clinical observations and behavioral tests were performed once a day. The animals, deeply anesthetized, were sacrificed by cardiac perfusion with saline 10 or 21 days after induction of hydrocephalus and their brains were removed. Preparations were made for histological analysis by hematoxylin and eosin, solochrome-cyanine, and immunohistochemistry for GFAP. RESULTS Histopathological analysis showed that animals treated with the polyphenol for 9 consecutive days displayed reduction on astrocyte activity on the corpus callosum and external capsule, shown by GFAP immunostaining. They also displayed thicker and myelinated corpus callosum, exhibiting a more intense solochrome-cyanine blue staining. CONCLUSION Although these results demonstrate a possible neuroprotective effect at the initial onset of the disease, additional studies should be performed to obtain an effective and safe therapy for deeper studies in clinical trials.
Collapse
|
4
|
McMullen AB, Baidwan GS, McCarthy KD. Morphological and behavioral changes in the pathogenesis of a novel mouse model of communicating hydrocephalus. PLoS One 2012; 7:e30159. [PMID: 22291910 PMCID: PMC3265463 DOI: 10.1371/journal.pone.0030159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Brain/pathology
- Brain/physiopathology
- Brain/ultrastructure
- Cardiomegaly/pathology
- Cerebral Aqueduct/pathology
- Cerebral Aqueduct/ultrastructure
- Cerebral Ventricles/pathology
- Cerebral Ventricles/ultrastructure
- Disease Models, Animal
- Hydrocephalus/complications
- Hydrocephalus/genetics
- Hydrocephalus/pathology
- Hydrocephalus/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/physiology
Collapse
Affiliation(s)
- Allison B. McMullen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gurlal S. Baidwan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ken D. McCarthy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|