1
|
Carmona-Hidalgo B, Quintero J, Rodríguez-López R, Blasco-Amaro JA, Boesch S, Reinhard C. Efficacy of deep brain stimulation in treating monogenic dystonia symptoms: protocol for a systematic review. BMJ Open 2025; 15:e083127. [PMID: 40204321 PMCID: PMC11987142 DOI: 10.1136/bmjopen-2023-083127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
INTRODUCTION Complexity leads to some dystonias being considered as rare diseases with scarce synthesised evidence. Despite the deficit of scientific evidence, deep brain stimulation (DBS) is currently an effective treatment for dystonias using different brain targets, providing significant improvement of dystonic symptoms regardless of their cause. However, there is considerable variability and non-response rate due to factors such as classification, semiology, duration, aetiology and genetic cause of the disease. This protocol presents the methodology of a planned systematic review to assess the efficacy of DBS as a treatment for monogenic dystonia symptoms, a broad spectrum of pathogenic dystonias due to variants in single genes not yet explored. METHODS AND ANALYSIS This protocol follows the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols guidelines. With the aim to test the efficacy of DBS in monogenic dystonias, the research question in population, intervention, comparator and outcomes format will cover patients with monogenic dystonia treated with DBS with a minimum of 3 months' follow-up after surgery. The outcomes will be assessed using generic and specific scales to measure the efficacy and safety of the intervention. The search will be performed in generic and specific databases and bibliographic resources from 2000. We will include systematic reviews, randomised controlled trials and primary studies in English. In this protocol, the initial search strategy in MEDLINE is presented. Additionally, the protocol provides a description of the prospective assessment of the risk of bias in the selected studies. If studies appear homogeneous and the sample of patients is sufficiently large, a meta-analysis and a subgroup analysis are planned. ETHICS AND DISSEMINATION Ethics committee approval is not required. The results of the review will be published through an open access journal. PROSPERO REGISTRATION NUMBER CRD42023448145.
Collapse
Affiliation(s)
- Beatriz Carmona-Hidalgo
- Health Technology Assessment Area (AETSA), Andalusian Public Foundation Progress and Health (FPS), Seville, Spain
| | - Javier Quintero
- Health Technology Assessment Area (AETSA), Andalusian Public Foundation Progress and Health (FPS), Seville, Spain
| | - Rocío Rodríguez-López
- Health Technology Assessment Area (AETSA), Andalusian Public Foundation Progress and Health (FPS), Seville, Spain
| | - Juan Antonio Blasco-Amaro
- Health Technology Assessment Area (AETSA), Andalusian Public Foundation Progress and Health (FPS), Seville, Spain
| | - Sylvia Boesch
- Center for Rare Movement Disorders, Department of Neurology and Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Carola Reinhard
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Lee EJ, Oh JS, Moon H, Kim MJ, Kim MS, Chung SJ, Kim JS, Jeon SR. Parkinson Disease-Related Pattern of Glucose Metabolism Associated With the Potential for Motor Improvement After Deep Brain Stimulation. Neurosurgery 2020; 86:492-499. [PMID: 31215629 DOI: 10.1093/neuros/nyz206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Motor dysfunctions in Parkinson disease (PD) patients are not completely normalized by deep brain stimulation (DBS), and there is an obvious difference in the degree of symptom improvement after DBS for each patient. OBJECTIVE To test our hypothesis that each patient has their own restoration capacity for motor improvement after DBS, and to investigate whether regional cerebral glucose metabolism in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) scans is associated with the capacity for off-medication motor improvement (MIoff) after DBS. METHODS The MIoff (%) was calculated using the Unified Parkinson's Disease Rating Scale part III in 27 PD patients undergoing DBS in the globus pallidus interna. The standardized uptake value ratios (SUVRs) on FDG-PET were quantitatively measured, and the areas where the SUVR correlated with the MIoff (%) were identified. Also, the areas where the SUVR was significantly different between the 2 MIoff groups (≥60% vs <60%) were determined. RESULTS Ten patients achieved MIoff > 60% at 12 mo after DBS. In general, the MIoff (%) was positively correlated with preoperative SUVR in the temporo-parieto-occipital lobes, while it was inversely correlated with the metabolism in the primary motor cortex. The patients in the MIoff < 60% group showed a significant decrease in SUVR in the parieto-occipital lobes, while parieto-occipital metabolism in those with MIoff ≥ 60% was relatively preserved (Mann-Whitney U test, P = .03). CONCLUSION Our findings suggest that the parieto-occipital lobes may be implicated more generally in the prognosis of motor improvement after DBS in advanced PD than other regions.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyojeong Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,System Medical Device Team, Advanced Technology Department, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Min-Ju Kim
- Department of Clinical Epidemiology and Biostatics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Sun Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zittel S, Hidding U, Trumpfheller M, Baltzer VL, Gulberti A, Schaper M, Biermann M, Buhmann C, Engel AK, Gerloff C, Westphal M, Stadler J, Köppen JA, Pötter-Nerger M, Moll CKE, Hamel W. Pallidal lead placement in dystonia: leads of non-responders are contained within an anatomical range defined by responders. J Neurol 2020; 267:1663-1671. [PMID: 32067124 PMCID: PMC7293687 DOI: 10.1007/s00415-020-09753-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/10/2023]
Abstract
Background Deep brain stimulation (DBS) within the pallidum represents an effective and well-established treatment for isolated dystonia. However, clinical outcome after surgery may be variable with limited response in 10–25% of patients. The effect of lead location on clinical improvement is still under debate. Objective To identify stimulated brain regions associated with the most beneficial clinical outcome in dystonia patients. Methods 18 patients with cervical and generalized dystonia with chronic DBS of the internal pallidum were investigated. Patients were grouped according to their clinical improvement into responders, intermediate responders and non-responders. Magnetic resonance and computed tomography images were co-registered, and the volume of tissue activated (VTA) with respect to the pallidum of individual patients was analysed. Results VTAs in responders (n = 11), intermediate responders (n = 3) and non-responders (n = 4) intersected with the posterior internal (GPi) and external (GPe) pallidum and the subpallidal area. VTA heat maps showed an almost complete overlap of VTAs of responders, intermediate and non-responders. VTA coverage of the GPi was not higher in responders. In contrast, VTAs of intermediate and non-responders covered the GPi to a significantly larger extent in the left hemisphere (p < 0.01). Conclusions DBS of ventral parts of the posterior GPi, GPe and the adjacent subpallidal area containing pallidothalamic output projections resulted in favourable clinical effects. Of note, non-responders were also stimulated within the same area. This suggests that factors other than mere lead location (e.g., clinical phenotype, genetic background) have determined clinical outcome in the present cohort. Electronic supplementary material The online version of this article (10.1007/s00415-020-09753-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maxine Biermann
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Johannes A Köppen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Tsuboi T, Wong JK, Almeida L, Hess CW, Wagle Shukla A, Foote KD, Okun MS, Ramirez-Zamora A. A pooled meta-analysis of GPi and STN deep brain stimulation outcomes for cervical dystonia. J Neurol 2020; 267:1278-1290. [DOI: 10.1007/s00415-020-09703-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
|
5
|
Using MDEFT MRI Sequences to Target the GPi in DBS Surgery. PLoS One 2015; 10:e0137868. [PMID: 26366574 PMCID: PMC4569189 DOI: 10.1371/journal.pone.0137868] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/23/2015] [Indexed: 11/19/2022] Open
Abstract
Objective Recent advances in different MRI sequences have enabled direct visualization and targeting of the Globus pallidus internus (GPi) for DBS surgery. Modified Driven Equilibrium Fourier Transform (MDEFT) MRI sequences provide high spatial resolution and an excellent contrast of the basal ganglia with low distortion. In this study, we investigate if MDEFT sequences yield accurate and reliable targeting of the GPi and compare direct targeting based on MDEFT sequences with atlas-based targeting. Methods 13 consecutive patients considered for bilateral GPi-DBS for dystonia or PD were included in this study. Preoperative targeting of the GPi was performed visually based on MDEFT sequences as well as by using standard atlas coordinates. Postoperative CT imaging was performed to calculate the location of the implanted leads as well as the active electrode(s). The coordinates of both visual and atlas based targets were compared. The stereotactic coordinates of the lead and active electrode(s) were calculated and projected on the segmented GPi. Results On MDEFT sequences the GPi was well demarcated in most patients. Compared to atlas-based planning the mean target coordinates were located significantly more posterior. Subgroup analysis showed a significant difference in the lateral coordinate between dystonia (LAT = 19.33 ± 0.90) and PD patients (LAT = 20.67 ± 1.69). Projected on the segmented preoperative GPi the active contacts of the DBS electrode in both dystonia and PD patients were located in the inferior and posterior part of the structure corresponding to the motor part of the GPi. Conclusions MDEFT MRI sequences provide high spatial resolution and an excellent contrast enabling precise identification and direct visual targeting of the GPi. Compared to atlas-based targeting, it resulted in a significantly different mean location of our target. Furthermore, we observed a significant variability of the target among the PD and dystonia subpopulation suggesting accurate targeting for each individual patient.
Collapse
|
6
|
Schönecker T, Gruber D, Kivi A, Müller B, Lobsien E, Schneider GH, Kühn AA, Hoffmann KT, Kupsch AR. Postoperative MRI localisation of electrodes and clinical efficacy of pallidal deep brain stimulation in cervical dystonia. J Neurol Neurosurg Psychiatry 2015; 86:833-9. [PMID: 25253870 DOI: 10.1136/jnnp-2014-308159] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/28/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Pallidal deep brain stimulation (DBS) has been shown to be effective in cervical dystonia (CD) with an improvement of about 50-60% in the Toronto Western Spasmodic Torticollis Rating (TWSTR) Scale. However, predictive factors for the efficacy of DBS in CD are missing with the anatomical location of the electrodes being one of the most important potential predictive factors. METHODS In the present blinded observational study we correlated the anatomical localisation of DBS contacts with the relative clinical improvement (CI %) in the TWSTR as achieved by DBS at different pallidal contacts in 20 patients with CD. Localisations of DBS contacts were derived from postoperative MRI-data following anatomical normalisation into the standard Montreal Neurological Institute stereotactic space. The CIs following 76 bilateral test stimulations of 24 h were mapped to stereotactic coordinates of the corresponding bilateral 152 active contacts and were allocated to low CI (<30%; n=74), intermediate CI (≥30%; <60%; n=52) or high CI (≥60%; n=26). RESULTS Euclidean distances between contacts and the centroid differed between the three clusters (p<0.001) indicating different anatomical variances between clusters. The Euclidean distances between contacts and the centroid of the cluster with high CIs correlated with the individual level of CIs (r=-0.61; p<0.0001). This relationship was best fitted with an exponential regression curve (r(2)=0.41). DISCUSSION Our data show that the clinical effect of pallidal DBS on CD displays an exponential decay over anatomical distance from an optimised target localisation within a subregion of the internal pallidum. The results will allow a comparison of future DBS studies with postoperative MRI by verifying optimised (for instance pallidal) targeting in DBS-treated patients.
Collapse
Affiliation(s)
- Thomas Schönecker
- Department of Neurology, Charité, University Medicine Berlin, Germany Klinikum Bremeraven, Germany
| | - Doreen Gruber
- Department of Neurology, Charité, University Medicine Berlin, Germany Movement Disorder Clinic Beelitz Heilstätten, Germany
| | - Anatol Kivi
- Department of Neurology, Charité, University Medicine Berlin, Germany Department of Neurology, Vivantes Clinic Berlin Spandau, Germany
| | - Bianca Müller
- Department of Neurology, Charité, University Medicine Berlin, Germany Department of Neurology, Vivantes Clinic Berlin Spandau, Germany
| | - Elmar Lobsien
- Department of Neurology, Charité, University Medicine Berlin, Germany Department of Neurology, Helios Clinic, Erfurt, Germany
| | | | - Andrea A Kühn
- Department of Neurology, Charité, University Medicine Berlin, Germany
| | - Karl-Titus Hoffmann
- Department of Neuroradiology, University of Leipzig, Germany Department of Neuroradiology, Charité, University Medicine, Berlin, Germany
| | - Andreas R Kupsch
- Department of Neurology, Charité, University Medicine Berlin, Germany Departments of Neurology and Stereotactic Neurosurgery, Magdeburg, Germany
| |
Collapse
|
7
|
Chung M, Han I, Chung SS, Jang DK, Huh R. Effectiveness of selective peripheral denervation in combination with pallidal deep brain stimulation for the treatment of cervical dystonia. Acta Neurochir (Wien) 2015; 157:435-42. [PMID: 25471274 DOI: 10.1007/s00701-014-2291-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Selective peripheral denervation (SPD) and deep brain stimulation of the globus pallidus (GPi-DBS) are available surgical options for patients with medically refractory cervical dystonia (CD). There are few data available concerning whether patients who have unsatisfactory treatment effects after primary surgery benefit from a different type of subsequent surgery. The aim of this study was to assess whether combining these surgical procedures (SPD plus GPi-DBS) was effective in patients with unsatisfactory treatment effects after their initial surgery. METHODS Forty-one patients with medically refractory idiopathic CD underwent SPD and/or GPi-DBS. Patients who were dissatisfied with their primary surgery (SPD or GPi DBS) elected to subsequently undergo a different type of surgery. These patients were assessed with the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). RESULTS SPD alone and GPi-DBS alone were performed in 16 and 21 patients, respectively. Four patients had unsatisfactory treatment effects after the initial surgery and subsequently underwent another type of surgery. Among them, two patients with persistent dystonia after SPD subsequently underwent GPi-DBS, and two other patients who had insufficient treatment effects following GPi-DBS were subsequently treated with SPD. All of these patients experienced sustained improvement from the combined surgical procedures according to the TWSTRS score during a long-term follow-up of 12-90 months. CONCLUSIONS Patients with unsatisfactory treatment effects after an SPD or GPi-DBS experienced improvement from subsequently undergoing other types of surgery. Therefore, combined surgical procedures are additional surgical options with good outcomes in the treatment of patients with residual symptoms after their initial surgery.
Collapse
|
8
|
Abstract
OPINION STATEMENT Dystonia is a movement disorder caused by diverse etiologies. Its treatment in children is particularly challenging due to the complexity of the development of the nervous system from birth to young adulthood. The treatment options of childhood dystonia include several oral pharmaceutical agents, botulinum toxin injections, and deep brain stimulation (DBS) therapy. The choice of drug therapy relies on the suspected etiology of the dystonia and the adverse effect profile of the drugs. Dystonic syndromes with known etiologies may require specific interventions, but most dystonias are treated by trying serially a handful of medications starting with those with the best risk/benefit profile. In conjunction to drug therapy, botulinum toxin injections may be used to target a problematic group dystonic muscles. The maximal botulinum toxin dose is limited by the weight of the child, therefore limiting the number of the muscles amenable to such treatment. When drugs and botulinum toxin injections fail to control the child's disabling dystonia, DBS therapy may be offered as a last remedy. Delivering optimal DBS therapy to children with dystonia requires a multidisciplinary team of experienced pediatric neurosurgeons, neurologists, and nurses to select adequate candidates, perform this delicate stereotactic procedure, and optimize DBS delivery. Even in the best hands, the response of childhood dystonia to DBS therapy varies greatly. Future therapy of childhood dystonia will parallel the advancement of knowledge of the pathophysiology of dystonic syndromes and the development of clinical and research tools for their study.
Collapse
Affiliation(s)
- Samer D Tabbal
- Department of Neurology, American University of Beirut, Riad El-Solh, PO Box 11-0236, Beirut, 1107 2020, Lebanon,
| |
Collapse
|
9
|
Tolleson C, Pallavaram S, Li C, Fang J, Phibbs F, Konrad P, Hedera P, Francois-D'Haese P, Dawant BM, Davis TL. The optimal pallidal target in deep brain stimulation for dystonia: a study using a functional atlas based on nonlinear image registration. Stereotact Funct Neurosurg 2014; 93:17-24. [PMID: 25502118 PMCID: PMC4348210 DOI: 10.1159/000368441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus internus is established as efficacious for dystonia, yet the optimal target within this structure is not well defined. Published evidence suggests that spatial normalization provides a better estimate of DBS lead location than traditional methods based on standard stereotactic coordinates. METHODS We retrospectively reviewed our pallidal implanted dystonia population. Patient imaging scans were morphed into an MRI atlas using a nonlinear image registration algorithm. Active contact locations were projected onto the atlas and clusters analyzed for the degree of variance in two groups: (1) good and poor responders and (2) cervical (CD) and generalized dystonia (GD). RESULTS The average active contact location between CD and GD good responders was distinct but not significantly different. The mean active contact for CD poor responders was significantly different from CD responders and GD poor responders in the dorsoventral direction. CONCLUSIONS A normalized imaging space is arguably more accurate in visualizing postoperative leads. Despite some separation between groups, this data suggests there was not an optimal pallidal target for common dystonia patients. Degrees of variance overlapped due to a large degree of individual target variation. Patient selection may ultimately be the key to maximizing patient outcomes.
Collapse
Affiliation(s)
| | | | - Chen Li
- Study conducted at Vanderbilt University
| | - John Fang
- Study conducted at Vanderbilt University
| | | | | | | | | | | | | |
Collapse
|
10
|
Rozanski VE, Vollmar C, Cunha JP, Tafula SMN, Ahmadi SA, Patzig M, Mehrkens JH, Bötzel K. Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. Neuroimage 2013; 84:435-42. [PMID: 24045076 DOI: 10.1016/j.neuroimage.2013.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022] Open
Abstract
Deep brain stimulation (DBS) of the internal pallidal segment (GPi: globus pallidus internus) is gold standard treatment for medically intractable dystonia, but detailed knowledge of mechanisms of action is still not available. There is evidence that stimulation of ventral and dorsal GPi produces opposite motor effects. The aim of this study was to analyse connectivity profiles of ventral and dorsal GPi. Probabilistic tractography was initiated from DBS electrode contacts in 8 patients with focal dystonia and connectivity patterns compared. We found a considerable difference in anterior-posterior distribution of fibres along the mesial cortical sensorimotor areas between the ventral and dorsal GPi connectivity. This finding of distinct GPi connectivity profiles further confirms the clinical evidence that the ventral and dorsal GPi belong to different functional and anatomic motor subsystems. Their involvement could play an important role in promoting clinical DBS effects in dystonia.
Collapse
Affiliation(s)
- Verena E Rozanski
- Department of Neurology, University of Munich at Marchioninistrasse 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The few controlled studies that have been carried out have shown that bilateral internal globus pallidum stimulation is a safe and long-term effective treatment for hyperkinetic disorders. However, most recent published data on deep brain stimulation (DBS) for dystonia, applied to different targets and patients, are still mainly from uncontrolled case reports (especially for secondary dystonia). This precludes clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient. We performed a literature analysis on DBS for dystonia according to the expected outcome. We separated those with good evidence of favourable outcome from those with less predictable outcome. In the former group, we review the main results for primary dystonia (generalised/focal) and highlight recent data on myoclonus-dystonia and tardive dystonia (as they share, with primary dystonia, a marked beneficial effect from pallidal stimulation with good risk/benefit ratio). In the latter group, poor or variable results have been obtained for secondary dystonia (with a focus on heredodegenerative and metabolic disorders). From this overview, the main results and limits for each subgroup of patients that may help in the selection of dystonic patients who will benefit from DBS are discussed.
Collapse
Affiliation(s)
- Marie Vidailhet
- AP-HP, Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
12
|
Modulation of Beta oscillations in the subthalamic nucleus with prosaccades and antisaccades in Parkinson's disease. J Neurosci 2013; 33:6895-904. [PMID: 23595748 DOI: 10.1523/jneurosci.2564-12.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increased oscillations in the beta band are thought to be related to motor symptoms of Parkinson's disease (PD). Previous studies have shown that beta-band desynchronization in the subthalamic nucleus (STN) is reduced just before and during limb movements. While the STN is part of the basal ganglia (BG)-thalamocortical circuit controlling limb movements, it is also part of the BG-brainstem projection controlling saccadic eye movements. Late-stage PD patients have deficits in saccades in addition to difficulties with limb movements arising from impaired functions of the BG. We investigated saccade-related changes in beta-band (15-30 Hz) oscillatory activities in the human STN while PD patients performed visually guided prosaccades and antisaccades, the latter requiring suppression of reflexive responses and volitional initiation of saccades. We recorded local field potentials from deep brain stimulation electrodes implanted in the STN in human PD patients 1-5 d after surgery and compared prosaccades and antisaccades with these and with limb movements. Saccade-related beta-band desynchronizations were observed just before and during saccades in all subjects, suggesting that reduction of beta-band oscillatory activity in the STN is related to preparation and execution of saccades. Furthermore, beta-band desynchronizations for antisaccades started earlier, were sustained for longer periods, were of greater magnitude, and were observed more often than prosaccades. Beta-band desynchronization in the STN may reflect the additional processes associated with suppression of reflexive responses and volitional execution of saccades in the opposite direction.
Collapse
|
13
|
Lumsden DE, Ashmore J, Charles-Edwards G, Lin JP, Ashkan K, Selway R. Accuracy of stimulating electrode placement in paediatric pallidal deep brain stimulation for primary and secondary dystonia. Acta Neurochir (Wien) 2013; 155:823-36. [PMID: 23430231 DOI: 10.1007/s00701-013-1629-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accuracy of electrode placement is an important determinant of outcome following deep brain stimulation (DBS) surgery. Data on accuracy of electrode placement into the globus pallidum interna (GPi) in paediatric patients is limited, particularly those with non-primary dystonia who often have smaller GPi. Pallidal DBS is known to be more effective in the treatment of primary dystonia compared with secondary dystonia. OBJECTIVES We aimed to determine if accuracy of pallidal electrode placement differed between primary, secondary and NBIA (neuronal degeneration and brain iron accumulation) associated dystonia and how this related to motor outcome following surgery. METHODS A retrospective review of a consecutive cohort of children and young people undergoing DBS surgery in a single centre. Fused in frame preoperative planning magnetic resonance imaging (MRI) and postoperative computed tomography (CT) brain scans were used to determine the accuracy of placement of DBS electrode tip in Leskell stereotactic system compared with the planned target. The differences along X, Y, and Z coordinates were calculated, as was the Euclidean distance of electrode tip from the target. The relationship between proximity to target and change in Burke-Fahn-Marsden Dystonia Rating Scale at 1 year was also measured. RESULTS Data were collected from 88 electrodes placed in 42 patients (14 primary dystonia, 18 secondary dystonia and 10 NBIA associated dystonia). Median differences between planned target and actual position were: left-side X-axis 1.05 mm, Y-axis 0.85 mm, Z-axis 0.94 mm and Euclidean difference 2.04 mm; right-side X-axis 1.28 mm, Y-axis 0.70 mm, Z-axis 0.70 mm and Euclidean difference 2.45 mm. Accuracy did not differ between left and right-sided electrodes. No difference in accuracy was seen between primary, secondary or NBIA associated dystonia. Dystonia reduction at 1 year post surgery did not appear to relate to proximity of implanted electrode to surgical target across the cohort. CONCLUSIONS Accuracy of surgical placement did not differ between primary, secondary or NBIA associated dystonia. Decreased efficacy of pallidal DBS in secondary and NBIA associated dystonia is unlikely to be related to difficulties in achieving the planned electrode placement.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorders Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, Lambeth Palace Road, London, SE1 7EH, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Kupsch A, Tagliati M, Vidailhet M, Aziz T, Krack P, Moro E, Krauss JK. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord 2011; 26 Suppl 1:S37-53. [PMID: 21692111 DOI: 10.1002/mds.23624] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Early postoperative management in deep brain stimulation-treated patients with dystonia differs from that of patients with essential tremor and Parkinson's disease, mainly due to the usually delayed effects of deep brain stimulation and the heterogenous clinical manifestation and etiologies of dystonia. The present chapter summarizes the available data about and concentrates on practical clinical aspects of early postoperative management in deep brain stimulation-treated patients with dystonia.
Collapse
Affiliation(s)
- Andreas Kupsch
- Division of Neurology, Charité, Campus Virchow, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Isaias IU, Volkmann J, Kupsch A, Burgunder JM, Ostrem JL, Alterman RL, Mehdorn HM, Schönecker T, Krauss JK, Starr P, Reese R, Kühn AA, Schüpbach WMM, Tagliati M. Factors predicting protracted improvement after pallidal DBS for primary dystonia: the role of age and disease duration. J Neurol 2011; 258:1469-76. [DOI: 10.1007/s00415-011-5961-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 11/30/2022]
|
16
|
Tsang EW, Hamani C, Moro E, Mazzella F, Poon YY, Lozano AM, Chen R. Involvement of the human pedunculopontine nucleus region in voluntary movements. Neurology 2010; 75:950-9. [PMID: 20702790 DOI: 10.1212/wnl.0b013e3181f25b35] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies. METHODS We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements. RESULTS Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state. CONCLUSIONS Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.
Collapse
Affiliation(s)
- E W Tsang
- Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Hospital, McLaughlin Pavilion, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Jabre MG, Nohra G, Bejjani BPW. Deep brain stimulation in the management of pantothenate kinase-associated neurodegeneration: a missed or a new target? Eur J Paediatr Neurol 2010; 14:290-1. [PMID: 19709916 DOI: 10.1016/j.ejpn.2009.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
|
18
|
Ballanger B, Lozano AM, Moro E, van Eimeren T, Hamani C, Chen R, Cilia R, Houle S, Poon YY, Lang AE, Strafella AP. Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: a [(15)O] H2O PET study. Hum Brain Mapp 2010; 30:3901-9. [PMID: 19479730 DOI: 10.1002/hbm.20815] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Patients with advanced Parkinson's disease (PD) develop disabling axial symptoms, including gait disturbances, freezing and postural instability poorly responsive to levodopa replacement therapy. The pedunculopontine nucleus (PPN) is involved in locomotion, control of posture, and behavioral states [i.e. wakefulness, rapid eye movement sleep]. Recent reports suggested that PPN modulation with deep brain stimulation (DBS) may be beneficial in the treatment of axial symptoms. However, the mechanisms underlying these effects are still unknown. We used [(15)O] H(2)O PET to investigate regional cerebral blood flow in three patients with advanced PD who underwent a new experimental surgical procedure with implantation of unilateral PPN-DBS. Patients were studied Off-medication with stimulator Off and On, both at rest and during a self-paced alternating motor task of the lower limbs. We used SPM2 for imaging data analysis, threshold P < 0.05 corrected at the cluster level. Stimulation induced significant regional cerebral blood flow increment in subcortical regions such as the thalamus (P < 0.006), cerebellum (P < 0.001), and midbrain region (P < 0.001) as well as different cortical areas involving medial sensorimotor cortex extending into caudal supplementary motor area (BA 4/6; P < 0.001). PPN-DBS in advanced PD resulted in blood flow and presumably neuronal activity changes in subcortical and cortical areas involved in balance and motor control, including the mesencephalic locomotor region (e.g. PPN) and closely interconnected structures within the cerebello-(rubro)-thalamo-cortical circuit. Whether these findings are associated with the DBS-PPN clinical effect remains to be proven. However, they suggest that PPN modulation may induce functional changes in neural networks associated with the control of lower limb movements.
Collapse
Affiliation(s)
- Benedicte Ballanger
- Toronto Western Research Institute (Division of Brain, Imaging and Behaviour-Systems Neuroscience), UHN, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ballanger B, van Eimeren T, Moro E, Lozano AM, Hamani C, Boulinguez P, Pellecchia G, Houle S, Poon YY, Lang AE, Strafella AP. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol 2010; 66:817-24. [PMID: 20035509 DOI: 10.1002/ana.21795] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE In Parkinson disease (PD) patients, deep brain stimulation (DBS) of the subthalamic nucleus (STN) may contribute to certain impulsive behavior during high-conflict decisions. A neurocomputational model of the basal ganglia has recently been proposed that suggests this behavioral aspect may be related to the role played by the STN in relaying a "hold your horses" signal intended to allow more time to settle on the best option. The aim of the present study was 2-fold: 1) to extend these observations by providing evidence that the STN may influence and prevent the execution of any response even during low-conflict decisions; and 2) to identify the neural correlates of this effect. METHODS We measured regional cerebral blood flow during a Go/NoGo and a control (Go) task to study the motor improvement and response inhibition deficits associated with STN-DBS in patients with PD. RESULTS Although it improved Unified Parkinson Disease Rating Scale motor ratings and induced a global decrease in reaction time during task performance, STN-DBS impaired response inhibition, as revealed by an increase in commission errors in NoGo trials. These behavioral effects were accompanied by changes in synaptic activity consisting of a reduced activation in the cortical networks responsible for reactive and proactive response inhibition. INTERPRETATION The present results suggest that although it improves motor functions in PD patients, modulation of STN hyperactivity with DBS may tend at the same time to favor the appearance of impulsive behavior by acting on the gating mechanism involved in response initiation.
Collapse
Affiliation(s)
- Benedicte Ballanger
- Division of Brain, Imaging and Behaviour-Systems Neuroscience, Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pahapill PA, O'Connell B. Long-Term Follow-Up Study of Chronic Deep Brain Stimulation of the Subthalamic Nucleus for Cervical Dystonia. Neuromodulation 2009; 13:26-30. [DOI: 10.1111/j.1525-1403.2009.00231.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Vidailhet M, Yelnik J, Lagrange C, Fraix V, Grabli D, Thobois S, Burbaud P, Welter ML, Xie-Brustolin J, Braga MCC, Ardouin C, Czernecki V, Klinger H, Chabardes S, Seigneuret E, Mertens P, Cuny E, Navarro S, Cornu P, Benabid AL, Le Bas JF, Dormont D, Hermier M, Dujardin K, Blond S, Krystkowiak P, Destée A, Bardinet E, Agid Y, Krack P, Broussolle E, Pollak P. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol 2009; 8:709-17. [PMID: 19576854 DOI: 10.1016/s1474-4422(09)70151-6] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cerebral palsy (CP) with dystonia-choreoathetosis is a common cause of disability in children and in adults, and responds poorly to medical treatment. Bilateral pallidal deep brain stimulation (BP-DBS) of the globus pallidus internus (GPi) is an effective treatment for primary dystonia, but the effect of this reversible surgical procedure on dystonia-choreoathetosis CP, which is a subtype of secondary dystonia, is unknown. Our aim was to test the effectiveness of BP-DBS in adults with dystonia-choreoathetosis CP. METHODS We did a multicentre prospective pilot study of BP-DBS in 13 adults with dystonia-choreoathetosis CP who had no cognitive impairment, little spasticity, and only slight abnormalities of the basal ganglia on MRI. The primary endpoint was change in the severity of dystonia-choreoathetosis after 1 year of neurostimulation, as assessed with the Burke-Fahn-Marsden dystonia rating scale. The accuracy of surgical targeting to the GPi was assessed masked to the results of neurostimulation. Analysis was by intention to treat. FINDINGS The mean Burke-Fahn-Marsden dystonia rating scale movement score improved from 44.2 (SD 21.1) before surgery to 34.7 (21.9) at 1 year post-operatively (p=0.009; mean improvement 24.4 [21.1]%, 95% CI 11.6-37.1). Functional disability, pain, and mental health-related quality of life were significantly improved. There was no worsening of cognition or mood. Adverse events were related to stimulation (arrest of the stimulator in one patient, and an adjustment to the current intensity in four patients). The optimum therapeutic target was the posterolateroventral region of the GPi. Little improvement was seen when the neurostimulation diffused to adjacent structures (mainly to the globus pallidus externus [GPe]). INTERPRETATION Bilateral pallidal neurostimulation could be an effective treatment option for patients with dystonia-choreoathetosis CP. However, given the heterogeneity of motor outcomes and the small sample size, results should be interpreted with caution. The optimum placement of the leads seemed to be a crucial, but not exclusive, factor that could affect a good outcome. FUNDING National PHRC; Cerebral Palsy Foundation: Fondation Motrice/APETREIMC; French INSERM Dystonia National Network; Medtronic.
Collapse
Affiliation(s)
- Marie Vidailhet
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Fédération de Neurologie, Paris, F-75013, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|