1
|
Dmytriw AA, Hadjinicolaou A, Ntolkeras G, Tamilia E, Pesce M, Berto LF, Grant PE, Pang E, Ahtam B. Magnetoencephalography for the pediatric population, indications, acquisition and interpretation for the clinician. Neuroradiol J 2025; 38:7-20. [PMID: 38864180 PMCID: PMC11571317 DOI: 10.1177/19714009241260801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Magnetoencephalography (MEG) is an imaging technique that enables the assessment of cortical activity via direct measures of neurophysiology. It is a non-invasive and passive technique that is completely painless. MEG has gained increasing prominence in the field of pediatric neuroimaging. This dedicated review article for the pediatric population summarizes the fundamental technical and clinical aspects of MEG for the clinician. We discuss methods tailored for children to improve data quality, including child-friendly MEG facility environments and strategies to mitigate motion artifacts. We provide an in-depth overview on accurate localization of neural sources and different analysis methods, as well as data interpretation. The contemporary platforms and approaches of two quaternary pediatric referral centers are illustrated, shedding light on practical implementations in clinical settings. Finally, we describe the expanding clinical applications of MEG, including its pivotal role in presurgical evaluation of epilepsy patients, presurgical mapping of eloquent cortices (somatosensory and motor cortices, visual and auditory cortices, lateralization of language), its emerging relevance in autism spectrum disorder research and potential future clinical applications, and its utility in assessing mild traumatic brain injury. In conclusion, this review serves as a comprehensive resource of clinicians as well as researchers, offering insights into the evolving landscape of pediatric MEG. It discusses the importance of technical advancements, data acquisition strategies, and expanding clinical applications in harnessing the full potential of MEG to study neurological conditions in the pediatric population.
Collapse
Affiliation(s)
- Adam A. Dmytriw
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Boston, MA, USA
| | - Georgios Ntolkeras
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Eleonora Tamilia
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Matthew Pesce
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Laura F. Berto
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - P. Ellen Grant
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Elizabeth Pang
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Banu Ahtam
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Edgar JC, Blaskey L, Chen Y, Podolak OE, Murray DL, McNamee M, Konka K, Berman JI, Roberts TPL, Huang M, Arbogast KB, Master CL. Regionally specific resting-state beta neural power predicts brain injury and symptom recovery in adolescents with concussion: a longitudinal study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633765. [PMID: 39896500 PMCID: PMC11785127 DOI: 10.1101/2025.01.22.633765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mild traumatic brain injury (mTBI) is common in adolescents. Magnetoencephalography (MEG) studies (primarily reporting on adult males) have demonstrated abnormal resting-state (RS) brain activity in mTBI. The present study sought to identify RS abnormalities in male and female adolescents with mTBI (no previous mTBI and no previous DSM-5 diagnosis) identified from an outpatient specialty care concussion program setting as a basis for evaluating potential clinical utility. Visit 1 MEG RS data were obtained from 46 adolescents with mTBI (mean age: 15.4 years, 25 females) within 4 months of a mTBI (mTBI acute to sub-acute period) as well as from 34 typically developing (TD) controls (mean age: 14.8 years; 17 females) identified from the local community. Visit 2 RS data (follow-up ∼4.3 months after Visit 1; mTBI sub-chronic period) were obtained from 36 mTBI (19 females) and 29 TD (14 females) of those participants. Source-space RS neural activity was examined from 4 to 56 Hz. Visit 1 t-tests showed that group differences were largest in the beta range (16-30 Hz; mTBI < TD), with Visit 2 whole-brain linear mixed model (LMM) analyses examining beta-band group differences as a function of Visit. A main effect of Group indicated Visit 1 and 2 beta-band group differences in midline superior frontal gyrus, right temporal pole, and right central sulcus (all mTBI < TD). The group effects were large (Cohen's d values 0.75 to 1.31). Of clinical significance in the mTBI group, a decrease in mTBI symptoms from Visit 1 to 2 was associated with an increase in beta power in 4 other brain regions. Present findings suggest that RS beta power has potential as a measure and perhaps as a mechanism of clinical recovery in adolescents with mTBI.
Collapse
|
3
|
Mavroudis I, Petridis F, Ciobica A, Kamal FZ, Padurariu M, Kazis D. Advancements in diagnosing Post-concussion Syndrome: insights into epidemiology, pathophysiology, neuropathology, neuroimaging, and salivary biomarkers. Acta Neurol Belg 2025:10.1007/s13760-024-02695-7. [PMID: 39776059 DOI: 10.1007/s13760-024-02695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Post-Concussion Syndrome (PCS) represents a complex constellation of symptoms that persist following a concussion or mild traumatic brain injury (mTBI), with significant implications for patient care and outcomes. Despite its prevalence, diagnosing PCS presents considerable challenges due to the subjective nature of symptoms, the absence of specific diagnostic tests, and the overlap with other neurological and psychiatric conditions. This review explores the multifaceted diagnostic challenges associated with PCS, including the heterogeneity of symptom presentation, the limitations of current neuroimaging techniques, and the overlap of PCS symptoms with other disorders. We also discuss the potential of emerging biomarkers and advanced imaging modalities to enhance diagnostic accuracy and provide a more objective basis for PCS identification. Additionally, the review highlights the importance of a multidisciplinary approach in the diagnosis and management of PCS, integrating clinical evaluation with innovative diagnostic tools to improve patient outcomes. Through a comprehensive analysis of current practices and future directions, this review aims to shed light on the complexities of PCS diagnosis and pave the way for improved strategies in the identification and treatment of this condition.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
- Leeds University, Leeds, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 20A, Iasi, 700505, Romania
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, Iasi, 700506, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, Bucharest, 050094, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, Iasi, 700511, Romania
| | - Fatima Zahra Kamal
- Laboratory of Physical Chemistry of Processes, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat, 26000, Morocco.
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco.
| | - Manuela Padurariu
- Socola Institute of Psychiatry, Șoseaua Bucium 36, Iași, 700282, Romania
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Pomponio MK, Roehm PC. Auditory Dysfunction After Head Trauma: Causes, Evaluation, and Treatment. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2024; 12:353-358. [DOI: 10.1007/s40141-024-00460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 01/06/2025]
Abstract
Abstract
Purpose of Review
Hearing loss after traumatic brain injury is common but often overlooked. This article reviews the etiology, pathophysiology, treatment methods, and outcomes for patients with hearing loss after traumatic brain injury.
Recent Findings
Common symptoms after TBI include hearing loss, tinnitus, hyperacusis, and dizziness. Recent literature has shown that debilitating auditory dysfunction can manifest even after mild head trauma.
Summary
There is a wide range of otologic pathologies that can occur after head trauma. All etiologies can lead to auditory dysfunction which in some cases may be permanent.
Collapse
|
5
|
Arabshahi S, Chung S, Alivar A, Amorapanth PX, Flanagan SR, Foo FYA, Laine AF, Lui YW. A Comprehensive and Broad Approach to Resting-State Functional Connectivity in Adult Patients with Mild Traumatic Brain Injury. AJNR Am J Neuroradiol 2024; 45:637-646. [PMID: 38604737 PMCID: PMC11288538 DOI: 10.3174/ajnr.a8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Several recent works using resting-state fMRI suggest possible alterations of resting-state functional connectivity after mild traumatic brain injury. However, the literature is plagued by various analysis approaches and small study cohorts, resulting in an inconsistent array of reported findings. In this study, we aimed to investigate differences in whole-brain resting-state functional connectivity between adult patients with mild traumatic brain injury within 1 month of injury and healthy control subjects using several comprehensive resting-state functional connectivity measurement methods and analyses. MATERIALS AND METHODS A total of 123 subjects (72 patients with mild traumatic brain injury and 51 healthy controls) were included. A standard fMRI preprocessing pipeline was used. ROI/seed-based analyses were conducted using 4 standard brain parcellation methods, and the independent component analysis method was applied to measure resting-state functional connectivity. The fractional amplitude of low-frequency fluctuations was also measured. Group comparisons were performed on all measurements with appropriate whole-brain multilevel statistical analysis and correction. RESULTS There were no significant differences in age, sex, education, and hand preference between groups as well as no significant correlation between all measurements and these potential confounders. We found that each resting-state functional connectivity measurement revealed various regions or connections that were different between groups. However, after we corrected for multiple comparisons, the results showed no statistically significant differences between groups in terms of resting-state functional connectivity across methods and analyses. CONCLUSIONS Although previous studies point to multiple regions and networks as possible mild traumatic brain injury biomarkers, this study shows that the effect of mild injury on brain resting-state functional connectivity has not survived after rigorous statistical correction. A further study using subject-level connectivity analyses may be necessary due to both subtle and variable effects of mild traumatic brain injury on brain functional connectivity across individuals.
Collapse
Affiliation(s)
- Soroush Arabshahi
- From Biomedical Engineering Department (S.A., A.F.L.), Columbia University, New York, New York
| | - Sohae Chung
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| | - Alaleh Alivar
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| | - Prin X Amorapanth
- Rehabilitation Medicine (P.X.A., S.R.F.), NYU Grossman School of Medicine, New York, New York
| | - Steven R Flanagan
- Rehabilitation Medicine (P.X.A., S.R.F.), NYU Grossman School of Medicine, New York, New York
| | - Farng-Yang A Foo
- Department of Neurology (F.-Y.A.F.), NYU Grossman School of Medicine, New York, New York
| | - Andrew F Laine
- From Biomedical Engineering Department (S.A., A.F.L.), Columbia University, New York, New York
| | - Yvonne W Lui
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
6
|
Sanclemente D, Belair JA, Talekar KS, Roedl JB, Stache S. Return to Play Following Concussion: Role for Imaging? Semin Musculoskelet Radiol 2024; 28:193-202. [PMID: 38484771 DOI: 10.1055/s-0043-1778031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This review surveys concussion management, focusing on the use of neuroimaging techniques in return to play (RTP) decisions. Clinical assessments traditionally were the foundation of concussion diagnoses. However, their subjective nature prompted an exploration of neuroimaging modalities to enhance diagnosis and management. Magnetic resonance spectroscopy provides information about metabolic changes and alterations in the absence of structural abnormalities. Diffusion tensor imaging uncovers microstructural changes in white matter. Functional magnetic resonance imaging assesses neuronal activity to reveal changes in cognitive and sensorimotor functions. Positron emission tomography can assess metabolic disturbances using radiotracers, offering insight into the long-term effects of concussions. Vestibulo-ocular dysfunction screening and eye tracking assess vestibular and oculomotor function. Although these neuroimaging techniques demonstrate promise, continued research and standardization are needed before they can be integrated into the clinical setting. This review emphasizes the potential for neuroimaging in enhancing the accuracy of concussion diagnosis and guiding RTP decisions.
Collapse
Affiliation(s)
- Drew Sanclemente
- Medical Student, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey A Belair
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kiran S Talekar
- Department of Radiology, Brain Mapping (fMRI and DTI) in Neuroradiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Johannes B Roedl
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen Stache
- Division of Non-Operative Sports Medicine, Department of Orthopaedics and Family and Community Medicine, Rothman Orthopaedic Institute, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, Pennsylvania
- Department of Orthopaedics and Pediatrics, University Athletics, Drexel University and Drexel College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Hadi Z, Mahmud M, Seemungal BM. Brain Mechanisms Explaining Postural Imbalance in Traumatic Brain Injury: A Systematic Review. Brain Connect 2024; 14:144-177. [PMID: 38343363 DOI: 10.1089/brain.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Introduction: Persisting imbalance and falls in community-dwelling traumatic brain injury (TBI) survivors are linked to reduced long-term survival. However, a detailed understanding of the impact of TBI upon the brain mechanisms mediating imbalance is lacking. To understand the state of the art concerning the brain mechanisms mediating imbalance in TBI, we performed a systematic review of the literature. Methods: PubMed, Web of Science, and Scopus were searched and peer-reviewed research articles in humans, with any severity of TBI (mild, moderate, severe, or concussion), which linked a postural balance assessment (objective or subjective) with brain imaging (through computed tomography, T1-weighted imaging, functional magnetic resonance imaging [fMRI], resting-state fMRI, diffusion tensor imaging, magnetic resonance spectroscopy, single-photon emission computed tomography, electroencephalography, magnetoencephalography, near-infrared spectroscopy, and evoked potentials) were included. Out of 1940 articles, 60 were retrieved and screened, and 25 articles fulfilling inclusion criteria were included. Results: The most consistent finding was the link between imbalance and the cerebellum; however, the regions within the cerebellum were inconsistent. Discussion: The lack of consistent findings could reflect that imbalance in TBI is due to a widespread brain network dysfunction, as opposed to focal cortical damage. The inconsistency in the reported findings may also be attributed to heterogeneity of methodology, including data analytical techniques, small sample sizes, and choice of control groups. Future studies should include a detailed clinical phenotyping of vestibular function in TBI patients to account for the confounding effect of peripheral vestibular disorders on imbalance and brain imaging.
Collapse
Affiliation(s)
- Zaeem Hadi
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Mohammad Mahmud
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Barry M Seemungal
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Everson CA, Szabo A, Plyer C, Hammeke TA, Stemper BD, Budde MD. Sleep loss, caffeine, sleep aids and sedation modify brain abnormalities of mild traumatic brain injury. Exp Neurol 2024; 372:114620. [PMID: 38029810 DOI: 10.1016/j.expneurol.2023.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Little evidence exists about how mild traumatic brain injury (mTBI) is affected by commonly encountered exposures of sleep loss, sleep aids, and caffeine that might be potential therapeutic opportunities. In addition, while propofol sedation is administered in severe TBI, its potential utility in mild TBI is unclear. Each of these exposures is known to have pronounced effects on cerebral metabolism and blood flow and neurochemistry. We hypothesized that they each interact with cerebral metabolic dynamics post-injury and change the subclinical characteristics of mTBI. MTBI in rats was produced by head rotational acceleration injury that mimics the biomechanics of human mTBI. Three mTBIs spaced 48 h apart were used to increase the likelihood that vulnerabilities induced by repeated mTBI would be manifested without clinically relevant structural damage. After the third mTBI, rats were immediately sleep deprived or administered caffeine or suvorexant (an orexin antagonist and sleep aid) for the next 24 h or administered propofol for 5 h. Resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were performed 24 h after the third mTBI and again after 30 days to determine changes to the brain mTBI phenotype. Multi-modal analyses on brain regions of interest included measures of functional connectivity and regional homogeneity from rs-fMRI, and mean diffusivity (MD) and fractional anisotropy (FA) from DTI. Each intervention changed the mTBI profile of subclinical effects that presumably underlie healing, compensation, damage, and plasticity. Sleep loss during the acute post-injury period resulted in dramatic changes to functional connectivity. Caffeine, propofol sedation and suvorexant were especially noteworthy for differential effects on microstructure in gray and white matter regions after mTBI. The present results indicate that commonplace exposures and short-term sedation alter the subclinical manifestations of repeated mTBI and therefore likely play roles in symptomatology and vulnerability to damage by repeated mTBI.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Cade Plyer
- Neurology Residency Program, Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| | - Thomas A Hammeke
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| | - Mathew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Itälinna V, Kaltiainen H, Forss N, Liljeström M, Parkkonen L. Using normative modeling and machine learning for detecting mild traumatic brain injury from magnetoencephalography data. PLoS Comput Biol 2023; 19:e1011613. [PMID: 37943963 PMCID: PMC10662745 DOI: 10.1371/journal.pcbi.1011613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/21/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
New biomarkers are urgently needed for many brain disorders; for example, the diagnosis of mild traumatic brain injury (mTBI) is challenging as the clinical symptoms are diverse and nonspecific. EEG and MEG studies have demonstrated several population-level indicators of mTBI that could serve as objective markers of brain injury. However, deriving clinically useful biomarkers for mTBI and other brain disorders from EEG/MEG signals is hampered by the large inter-individual variability even across healthy people. Here, we used a multivariate machine-learning approach to detect mTBI from resting-state MEG measurements. To address the heterogeneity of the condition, we employed a normative modeling approach and modeled MEG signal features of individual mTBI patients as deviations with respect to the normal variation. To this end, a normative dataset comprising 621 healthy participants was used to determine the variation in power spectra across the cortex. In addition, we constructed normative datasets based on age-matched subsets of the full normative data. To discriminate patients from healthy control subjects, we trained support-vector-machine classifiers on the quantitative deviation maps for 25 mTBI patients and 20 controls not included in the normative dataset. The best performing classifier made use of the full normative data across the entire age and frequency ranges. This classifier was able to distinguish patients from controls with an accuracy of 79%. Inspection of the trained model revealed that low-frequency activity in the theta frequency band (4-8 Hz) is a significant indicator of mTBI, consistent with earlier studies. The results demonstrate the feasibility of using normative modeling of MEG data combined with machine learning to advance diagnosis of mTBI and identify patients that would benefit from treatment and rehabilitation. The current approach could be applied to a wide range of brain disorders, thus providing a basis for deriving MEG/EEG-based biomarkers.
Collapse
Affiliation(s)
- Veera Itälinna
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Finland
| | - Hanna Kaltiainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Finland
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Finland
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Mia Liljeström
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Finland
- BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Finland
- Aalto NeuroImaging, Aalto University School of Science, Aalto, Finland
| |
Collapse
|
10
|
Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol Rev 2023; 33:5-41. [PMID: 33656702 DOI: 10.1007/s11065-020-09474-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Region of interest (ROI) volumetric assessment has become a standard technique in quantitative neuroimaging. ROI volume is thought to represent a coarse proxy for making inferences about the structural integrity of a brain region when compared to normative values representative of a healthy sample, adjusted for age and various demographic factors. This review focuses on structural volumetric analyses that have been performed in the study of neuropathological effects from mild traumatic brain injury (mTBI) in relation to neuropsychological outcome. From a ROI perspective, the probable candidate structures that are most likely affected in mTBI represent the target regions covered in this review. These include the corpus callosum, cingulate, thalamus, pituitary-hypothalamic area, basal ganglia, amygdala, and hippocampus and associated structures including the fornix and mammillary bodies, as well as whole brain and cerebral cortex along with the cerebellum. Ventricular volumetrics are also reviewed as an indirect assessment of parenchymal change in response to injury. This review demonstrates the potential role and limitations of examining structural changes in the ROIs mentioned above in relation to neuropsychological outcome. There is also discussion and review of the role that post-traumatic stress disorder (PTSD) may play in structural outcome in mTBI. As emphasized in the conclusions, structural volumetric findings in mTBI are likely just a single facet of what should be a multimodality approach to image analysis in mTBI, with an emphasis on how the injury damages or disrupts neural network integrity. The review provides an historical context to quantitative neuroimaging in neuropsychology along with commentary about future directions for volumetric neuroimaging research in mTBI.
Collapse
|
11
|
Rizk B, Brat H, Pirrello T. Injuries in Skating and Sledding Winter Sports: Patterns and Imaging Findings. Semin Musculoskelet Radiol 2022; 26:82-90. [PMID: 35139561 DOI: 10.1055/s-0041-1731421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
While skiing and snowboarding are amongst the most common winter sports, skating and sledding activities are also popular for competition or recreation. Related injuries following an acute trauma mainly involve head, spine, upper and lower limbs. For elite athletes, overuse injuries represent a significant burden. In skating, lesions can be related to boot structure and design. This article reviews epidemiology, patterns, and imaging findings of common injuries in ice skating, short track speed skating, curling, luge, bobsleigh, and skeleton.
Collapse
Affiliation(s)
- Benoît Rizk
- Centre d'Imagerie de Fribourg, Groupe 3R, Villars-sur-Glâne, Switzerland
| | - Hugues Brat
- Institut de Radiologie de Sion, Groupe 3R, Sion, Switzerland
| | | |
Collapse
|
12
|
Rizkalla J, Botros D, Alqahtani N, Patnala M, Salama P, Perez FP, Rizkalla M. Eletromagnetic Detection of Mild Brain Injury: A Novel Imaging Approach to Post Concussive Syndrome. JOURNAL OF BIOMEDICAL SCIENCE AND ENGINEERING 2021; 14:347-360. [PMID: 34868450 PMCID: PMC8641976 DOI: 10.4236/jbise.2021.1411030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Mild traumatic brain injury (mTBI) is a common injury, with nearly 3 - 4 million cases annually in the United States alone. Neuroimaging in patients with mTBI provides little benefit, and is usually not indicated as the diagnosis is primarily clinical. It is theorized that microvascular trauma to the brain may be present in mTBI, that may not be captured by routine MRI and CT scans. Electromagnetic (EM) waves may provide a more sensitive medical imaging modality to provide objective data in the diagnosis of mTBI. METHODS COMSOL simulation software was utilized to mimic the anatomy of the human skull including skin, cranium, cerebrospinal fluid (CSF), gray-matter tissue of the brain, and microvasculature within the neural tissue. The effects of penetrating EM waves were simulated using the finite element analysis software and results were generated to identify feasibility and efficacy. Frequency ranges from 7 GHz to 15 GHz were considered, with 0.6 and 1 W power applied. RESULTS Variations between the differing frequency levels generated different energy levels within the neural tissue-particularly when comparing normal microvasculature versus hemorrhage from microvasculature. This difference within the neural tissue was subsequently identified, via simulation, serving as a potential imaging modality for future work. CONCLUSION The use of electromagnetic imaging of the brain after concussive events may play a role in future mTBI diagnosis. Utilizing the proper depth frequency and wavelength, neural tissue and microvascular trauma may be identified utilizing finite element analysis.
Collapse
Affiliation(s)
| | - David Botros
- John Hopkins Medicine, Department of Neurology, Baltimore, MD, USA
| | - Nasser Alqahtani
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Mounica Patnala
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Paul Salama
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Felipe Pablo Perez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| |
Collapse
|
13
|
Lunkova E, Guberman GI, Ptito A, Saluja RS. Noninvasive magnetic resonance imaging techniques in mild traumatic brain injury research and diagnosis. Hum Brain Mapp 2021; 42:5477-5494. [PMID: 34427960 PMCID: PMC8519871 DOI: 10.1002/hbm.25630] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the most common neurological disorders. The underlying neural mechanisms of functional disturbances in the brains of concussed individuals remain elusive. Novel forms of brain imaging have been developed to assess patients postconcussion, including functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI), diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have been mixed with a more common utilization in the research environment and a slower integration into the clinical setting. In this review, the benefits and drawbacks of the methods are described: fMRI is an effective method in the diagnosis of concussion but it is expensive and time-consuming making it difficult for regular use in everyday practice; SWI allows detection of microhemorrhages in acute and chronic phases of concussion; dMRI is primarily used for the detection of white matter abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to the BOLD method with its ability to track cerebral blood flow alterations. Thus, the absence of a universal diagnostic neuroimaging method suggests a need for the adoption of a multimodal approach to the neuroimaging of mTBI. Taken together, these methods, with their underlying functional and structural features, can contribute from different angles to a deeper understanding of mTBI mechanisms such that a comprehensive diagnosis of mTBI becomes feasible for the clinician.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Guido I. Guberman
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Alain Ptito
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Montreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill University Health CentreMontrealQuebecCanada
| | - Rajeet Singh Saluja
- Department of Neurology & NeurosurgeryMcGill UniversityMontrealQuebecCanada
- McGill University Health Centre Research InstituteMontrealQuebecCanada
| |
Collapse
|
14
|
Lima Santos JP, Kontos AP, Mailliard S, Eagle SR, Holland CL, Suss SJ, Abdul-Waalee H, Stiffler RS, Bitzer HB, Blaney NA, Colorito AT, Santucci CG, Brown A, Kim T, Iyengar S, Skeba A, Diler RS, Ladouceur CD, Phillips ML, Brent D, Collins MW, Versace A. White Matter Abnormalities Associated With Prolonged Recovery in Adolescents Following Concussion. Front Neurol 2021; 12:681467. [PMID: 34248824 PMCID: PMC8264142 DOI: 10.3389/fneur.2021.681467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Concussion symptoms in adolescents typically resolve within 4 weeks. However, 20 - 30% of adolescents experience a prolonged recovery. Abnormalities in tracts implicated in visuospatial attention and emotional regulation (i.e., inferior longitudinal fasciculus, ILF; inferior fronto-occipital fasciculus, IFOF; uncinate fasciculus; UF) have been consistently reported in concussion; yet, to date, there are no objective markers of prolonged recovery in adolescents. Here, we evaluated the utility of diffusion MRI in outcome prediction. Forty-two adolescents (12.1 - 17.9 years; female: 44.0%) underwent a diffusion Magnetic Resonance Imaging (dMRI) protocol within the first 10 days of concussion. Based on days of injury until medical clearance, adolescents were then categorized into SHORT (<28 days; N = 21) or LONG (>28 days; N = 21) recovery time. Fractional anisotropy (FA) in the ILF, IFOF, UF, and/or concussion symptoms were used as predictors of recovery time (SHORT, LONG). Forty-two age- and sex-matched healthy controls served as reference. Higher FA in the ILF (left: adjusted odds ratio; AOR = 0.36, 95% CI = 0.15 - 0.91, P = 0.030; right: AOR = 0.28, 95% CI = 0.10 - 0.83, P = 0.021), IFOF (left: AOR = 0.21, 95% CI = 0.07 - 0.66, P = 0.008; right: AOR = 0.30, 95% CI = 0.11 - 0.83, P = 0.020), and UF (left: AOR = 0.26, 95% CI = 0.09 - 0.74, P = 0.011; right: AOR = 0.28, 95% CI = 0.10 - 0.73, P = 0.010) was associated with SHORT recovery. In additional analyses, while adolescents with SHORT recovery did not differ from HC, those with LONG recovery showed lower FA in the ILF and IFOF (P < 0.014). Notably, inclusion of dMRI findings increased the sensitivity and specificity (AUC = 0.93) of a prediction model including clinical variables only (AUC = 0.75). Our findings indicate that higher FA in long associative tracts (especially ILF) might inform a more objective and accurate prognosis for recovery time in adolescents following concussion.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony P Kontos
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center (UPMC) Sports Concussion Program-University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarrah Mailliard
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shawn R Eagle
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center (UPMC) Sports Concussion Program-University of Pittsburgh, Pittsburgh, PA, United States
| | - Cynthia L Holland
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center (UPMC) Sports Concussion Program-University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen J Suss
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Halimah Abdul-Waalee
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hannah B Bitzer
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center (UPMC) Sports Concussion Program-University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas A Blaney
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center (UPMC) Sports Concussion Program-University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam T Colorito
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center (UPMC) Sports Concussion Program-University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher G Santucci
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center (UPMC) Sports Concussion Program-University of Pittsburgh, Pittsburgh, PA, United States
| | - Allison Brown
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tae Kim
- Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexander Skeba
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rasim S Diler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - David Brent
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael W Collins
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center (UPMC) Sports Concussion Program-University of Pittsburgh, Pittsburgh, PA, United States
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Wu E, Marthi S, Asaad WF. Predictors of Mortality in Traumatic Intracranial Hemorrhage: A National Trauma Data Bank Study. Front Neurol 2020; 11:587587. [PMID: 33281725 PMCID: PMC7705094 DOI: 10.3389/fneur.2020.587587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background/Objective: Traumatic intracranial hemorrhage (tICH) accounts for significant trauma morbidity and mortality. Several studies have developed prognostic models for tICH outcomes, but previous models face limitations, including poor generalizability and limited accuracy. The objective was to develop a prognostic model and determine predictors of mortality using the largest trauma database in the U.S., applying rigorous analytical methodology with true hold-out-set model validation. Methods: We identified 248,536 patients in the National Trauma Data Bank (NTDB) from 2012 to 2016 with a diagnosis code associated with tICH. For each admission, we collected demographic information, systolic blood pressure, blood alcohol level (BAL), Glasgow Coma Score (GCS), Injury Severity Score (ISS), presence of epidural/subdural/subarachnoid/intraparenchymal hemorrhage, comorbidities, complications, trauma center level, and trauma center region. Our final study population was 212,666 patients following exclusion of records with missing data. The dependent variable was patient death. Linear support vector machine (SVM) classification was carried out with recursive feature selection. Model performance was assessed using holdout 10-fold cross-validation. Results: Cross-validation demonstrated a mean accuracy of 0.792 (95% CI 0.783–0.799). Accuracy, precision, recall, and AUC were 0.827, 0.309, 0.750, and 0.791, respectively. In the final model, high ISS, advanced age, subdural hemorrhage, and subarachnoid hemorrhage were associated with increased mortality, while high GCS verbal and motor subscores, current smoker, BAL beyond the legal limit, and level 1 trauma center were associated with decreased mortality. Conclusions: A linear SVM model was developed for tICH, with nine features selected as predictors of mortality. These findings are applicable to multiple hemorrhage subtypes and may benefit the triage of high risk patients upon admission. While many studies have attempted to create models to predict mortality in TBI, we sought to confirm those predictors using modern modeling approaches, machine learning, and true hold-out test sets, using the largest available TBI database in the U.S. We find that while the predictors we identify are consistent with prior reports, overall prediction accuracy is somewhat lower than prior reports when assessed more rigorously.
Collapse
Affiliation(s)
- Esther Wu
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Siddharth Marthi
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Wael F Asaad
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Department of Neuroscience, Brown University, Providence, RI, United States.,Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, United States.,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
16
|
Vanier C, Pandey T, Parikh S, Rodriguez A, Knoblauch T, Peralta J, Hertzler A, Ma L, Nam R, Musallam S, Taylor H, Vickery T, Zhang Y, Ranzenberger L, Nguyen A, Kapostasy M, Asturias A, Fazzini E, Snyder T. Interval-censored survival analysis of mild traumatic brain injury with outcome based neuroimaging clinical applications. JOURNAL OF CONCUSSION 2020. [DOI: 10.1177/2059700220947194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objective The purpose of this study was to assess the relationship between MRI findings and clinical presentation and outcomes in patients following mild traumatic brain injury (mTBI). We hypothesize that imaging findings other than hemorrhages and contusions may be used to predict symptom presentation and longevity following mTBI. Methods Patients (n = 250) diagnosed with mTBI and in litigation for brain injury underwent 3T magnetic resonance imaging (MRI). A retrospective chart review was performed to assess symptom presentation and improvement/resolution. To account for variable times of clinical presentation, nonuniform follow-up, and uncertainty in the dates of symptom resolution, a right censored, interval censored statistical analysis was performed. Incidence and resolution of headache, balance, cognitive deficit, fatigue, anxiety, depression, and emotional lability were compared among patients. Image findings analyzed included white matter hyperintensities (WMH), Diffusion Tensor Imaging (DTI) fractional anisotropy (FA) values, MR perfusion, auditory functional MRI (fMRI) activation, hippocampal atrophy (HA) and hippocampal asymmetry as defined by NeuroQuant ® volumetric software. Results Patients who reported LOC were significantly more likely to present with balance problems (p < 0.001), cognitive deficits (p = 0.010), fatigue (p = 0.025), depression (p = 0.002), and emotional lability (p = 0.002). Patients with LOC also demonstrated significantly slower recovery of cognitive function than those who did not lose consciousness (p = 0.044). Patients over the age of 40 had significantly higher odds of presenting with balance problems (p = 0.006). Additionally, these older patients were slower to recover cognitive function (p = 0.001) and less likely to experience improvement of headaches (p = 0.007). Abnormal MRI did not correlate significantly with symptom presentation, but was a strong indicator of symptom progression, with slower recovery of balance (p = 0.009) and cognitive deficits (p < 0.001). Conclusion This analysis demonstrates the utility of clinical data analysis using interval-censored survival statistical technique in head trauma patients. Strong statistical associations between neuroimaging findings and aggregate clinical outcomes were identified in patients with mTBI.
Collapse
Affiliation(s)
- Cheryl Vanier
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Trisha Pandey
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Shaunaq Parikh
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
- IMGEN LLC., Las Vegas, NV, USA
- Department of Family Medicine, University of Pittsburgh Medical Center Pinnacle, Harrisburg, PA, USA
| | | | | | - John Peralta
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Amanda Hertzler
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Leon Ma
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Ruslan Nam
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Sami Musallam
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Hallie Taylor
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Taylor Vickery
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Yolanda Zhang
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Logan Ranzenberger
- Department of Radiology, Michigan State University, East Lansing, MI, USA
- Department of Radiology, McClaren Health Care, Flint, MI, USA
| | - Andrew Nguyen
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Mike Kapostasy
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
- IMGEN LLC., Las Vegas, NV, USA
| | - Alex Asturias
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Enrico Fazzini
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
| | - Travis Snyder
- Department of Research, Touro University Nevada, Las Vegas, NV, USA
- IMGEN LLC., Las Vegas, NV, USA
- SimonMed Imaging, Las Vegas, NV, USA
| |
Collapse
|
17
|
Bartnik-Olson B, Holshouser B, Ghosh N, Oyoyo UE, Nichols JG, Pivonka-Jones J, Tong K, Ashwal S. Evolving White Matter Injury following Pediatric Traumatic Brain Injury. J Neurotrauma 2020; 38:111-121. [PMID: 32515269 DOI: 10.1089/neu.2019.6574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study is unique in that it examines the evolution of white matter injury very early and at 12 months post-injury in pediatric patients following traumatic brain injury (TBI). Diffusion tensor imaging (DTI) was acquired at two time-points: acutely at 6-17 days and 12 months following a complicated mild (cMild)/moderate (mod) or severe TBI. Regional measures of anisotropy and diffusivity were compared between TBI groups and against a group of age-matched healthy controls and used to predict performance on measures of attention, memory, and intellectual functioning at 12-months post-injury. Analysis of the acute DTI data using tract based spatial statistics revealed a small number of regional decreases in fractional anisotropy (FA) in both the cMild/mod and severe TBI groups compared with controls. These changes were observed in the occipital white matter, anterior limb of the internal capsule (ALIC)/basal ganglia, and corpus callosum. The severe TBI group showed regional differences in axial diffusivity (AD) in the brainstem and corpus callosum that were not seen in the cMild/mod TBI group. By 12-months, widespread decreases in FA and increases in apparent diffusion coefficient (ADC) and radial diffusivity (RD) were observed in both TBI groups compared with controls, with the overall number of regions with abnormal DTI metrics increasing over time. The early changes in regional DTI metrics were associated with 12-month performance IQ scores. These findings suggest that there may be regional differences in the brain's reparative processes or that mechanisms associated with the brain's plasticity to recover may also be region based.
Collapse
Affiliation(s)
- Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Health, Loma Linda, California, USA
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Health, Loma Linda, California, USA
| | - Nirmalya Ghosh
- Department of Pediatrics, Loma Linda University Health, Loma Linda, California, USA
| | - Udochukwu E Oyoyo
- Department of Radiology, Loma Linda University Health, Loma Linda, California, USA
| | - Joy G Nichols
- Department of Pediatrics, Loma Linda University Health, Loma Linda, California, USA
| | - Jamie Pivonka-Jones
- Department of Pediatrics, Loma Linda University Health, Loma Linda, California, USA
| | - Karen Tong
- Department of Radiology, Loma Linda University Health, Loma Linda, California, USA
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University Health, Loma Linda, California, USA
| |
Collapse
|
18
|
Huang MX, Robb Swan A, Angeles Quinto A, Huang JW, De-la-Garza BG, Huang CW, Hesselink JR, Bigler ED, Wilde EA, Max JE. Resting-State Magnetoencephalography Source Imaging Pilot Study in Children with Mild Traumatic Brain Injury. J Neurotrauma 2019; 37:994-1001. [PMID: 31724480 DOI: 10.1089/neu.2019.6417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for the vast majority of all pediatric TBI. An important minority of children who have suffered an mTBI have enduring cognitive and emotional symptoms. However, the mechanisms of chronic symptoms in children with pediatric mTBI are not fully understood. This is in part due to the limited sensitivity of conventional neuroimaging technologies. The present study examined resting-state magnetoencephalography (rs-MEG) source images in 12 children who had mTBI and 12 age-matched control children. The rs-MEG exams were performed in children with mTBI 6 months after injury when they reported no clinically significant post-injury psychiatric changes and few if any somatic sensorimotor symptoms but did report cognitive symptoms. MEG source magnitude images were obtained for different frequency bands in alpha (8-12 Hz), beta (15-30 Hz), gamma (30-90 Hz), and low-frequency (1-7 Hz) bands. In contrast to the control participants, rs-MEG source imaging in the children with mTBI showed: 1) hyperactivity from the bilateral insular cortices in alpha, beta, and low-frequency bands, from the left amygdala in alpha band, and from the left precuneus in beta band; 2) hypoactivity from the bilateral dorsolateral prefrontal cortices (dlPFC) in alpha and beta bands, from the ventromedial prefrontal cortex (vmPFC) in beta band, from the ventrolateral prefrontal cortex (vlPFC) in gamma band, from the anterior cingulate cortex (ACC) in alpha band, and from the right precuneus in alpha band. The present study showed that MEG source imaging technique revealed abnormalities in the resting-state electromagnetic signals from the children with mTBI.
Collapse
Affiliation(s)
- Ming-Xiong Huang
- Department of Radiology, University of California, San Diego, California.,Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California
| | - Ashley Robb Swan
- Department of Radiology, University of California, San Diego, California.,Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California
| | - Annemarie Angeles Quinto
- Department of Radiology, University of California, San Diego, California.,Radiology, Research, and Psychiatry Services, VA San Diego Healthcare System, San Diego, California
| | - Jeffrey W Huang
- Department of Computer Sciences, Columbia University, New York, New York
| | | | - Charles W Huang
- Department of Bioengineering, Stanford University, Stanford, California
| | - John R Hesselink
- Department of Radiology, University of California, San Diego, California
| | - Erin D Bigler
- Department of Neurology, University of Utah, Salt Lake City, Utah
| | | | - Jeffrey E Max
- Department of Psychiatry, University of California, San Diego, California.,Department of Psychiatry, Rady Children's Hospital, San Diego, California
| |
Collapse
|
19
|
Plass AM, Van Praag D, Covic A, Gorbunova A, Real R, von Steinbuechel N. The psychometric validation of the Dutch version of the Rivermead Post-Concussion Symptoms Questionnaire (RPQ) after traumatic brain injury (TBI). PLoS One 2019; 14:e0210138. [PMID: 31647814 PMCID: PMC6812802 DOI: 10.1371/journal.pone.0210138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/14/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the most common neurological conditions. It can have wide-ranging physical, cognitive and psychosocial effects. Most people recover within weeks to months after the injury, but a substantial proportion are at risk of developing lasting post-concussion symptoms. The Rivermead Post-Concussion Syndrome Questionnaire (RPQ) is a short validated 16-items self-report instrument to evaluate post-concussive symptoms. The aim of this study was to test psychometrics characteristics of the current Dutch translation of the RPQ. METHODS To determine the psychometric characteristics of the Dutch RPQ, 472 consecutive patients six months after they presented with a traumatic brain injury in seven medical centers in the Netherlands (N = 397), and in two in Belgium (Flanders) (N = 75) took part in the study which is part of the large prospective longitudinal observational CENTER-TBI-EU-study. Psychometric properties at six months post TBI, were assessed using exploratory and confirmatory factor analyses. Sensitivity was analyzed by comparing RPQ scores and self-reported recovery status of patients with mild vs. moderate and severe TBI. FINDINGS The Dutch version of RPQ proved good, showing excellent psychometric characteristics: high internal consistency (Cronbach's α .93), and good construct validity, being sensitive to self-reported recovery status at six months post TBI. Moreover, data showed a good fit to the three dimensional structure of separate cognitive, emotional and somatic factors (Chi2 = 119; df = 117; p = .4; CFI = .99; RMSEA = .006), reported earlier in the literature. DISCUSSION Psychometric characteristics of the Dutch version of RPQ proved excellent to good, and can the instrument therefore be applied for research purposes and in daily clinical practice.
Collapse
Affiliation(s)
- Anne Marie Plass
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen (UMG)/ Georg-August-University, Göttingen, Germany
- * E-mail:
| | - Dominique Van Praag
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Amra Covic
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen (UMG)/ Georg-August-University, Göttingen, Germany
| | - Anastasia Gorbunova
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen (UMG)/ Georg-August-University, Göttingen, Germany
| | - Ruben Real
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen (UMG)/ Georg-August-University, Göttingen, Germany
| | - Nicole von Steinbuechel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Göttingen (UMG)/ Georg-August-University, Göttingen, Germany
| | | |
Collapse
|
20
|
Management of Head Trauma in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Reynolds BB, Stanton AN, Soldozy S, Goodkin HP, Wintermark M, Druzgal TJ. Investigating the effects of subconcussion on functional connectivity using mass-univariate and multivariate approaches. Brain Imaging Behav 2018; 12:1332-1345. [PMID: 29188492 PMCID: PMC6141348 DOI: 10.1007/s11682-017-9790-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There are concerns about the effects of subconcussive head impacts in sport, but the effects of subconcussion on brain connectivity are not well understood. We hypothesized that college football players experience changes in brain functional connectivity not found in athletes competing in lower impact sports or healthy controls. These changes may be spatially heterogeneous across participants, requiring analysis methods that go beyond mass-univariate approaches commonly used in functional MRI (fMRI). To test this hypothesis, we analyzed resting-state fMRI data from college football (n = 15), soccer (n = 12), and lacrosse players (n = 16), and controls (n = 29) collected at preseason and postseason time points. Regional homogeneity (ReHo) and degree centrality (DC) were calculated as measures of local and long-range functional connectivity, respectively. Standard voxel-wise analysis and paired support vector machine (SVM) classification studied subconcussion's effects on local and global functional connectivity. Voxel-wise analyses yielded minimal findings, but SVM classification had high accuracy for college football's ReHo (87%, p = 0.009) and no other group. The findings suggest subconcussion results in spatially heterogeneous changes in local functional connectivity that may only be detectible with multivariate analyses. To determine if voxel-wise and SVM analyses had similar spatial patterns, region-average t-statistic and SVM weight values were compared using a measure of ranking distance. T-statistic and SVM weight rankings exhibited significantly low ranking distance values for all groups and metrics, demonstrating that the analyses converged on a similar underlying effect. Overall, this research suggests that subconcussion in football may produce local functional connectivity changes similar to concussion.
Collapse
Affiliation(s)
- Bryson B Reynolds
- Department of Radiology and Medical Imaging, Division of Neuroradiology, University of Virginia, Charlottesville, VA, 22908, USA
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amanda N Stanton
- Department of Radiology and Medical Imaging, Division of Neuroradiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sauson Soldozy
- Department of Radiology and Medical Imaging, Division of Neuroradiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Howard P Goodkin
- Department of Neurology, University of Virginia, Charlottesville, VA, 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - T Jason Druzgal
- Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- UVA Brain Institute, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
22
|
Longitudinal Changes in Resting State Connectivity and White Matter Integrity in Adolescents With Sports-Related Concussion. J Int Neuropsychol Soc 2018; 24:781-792. [PMID: 30139405 DOI: 10.1017/s1355617718000413] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The aim of this study was to investigate alterations in functional connectivity, white matter integrity, and cognitive abilities due to sports-related concussion (SRC) in adolescents using a prospective longitudinal design. METHODS We assessed male high school football players (ages 14-18) with (n=16) and without (n=12) SRC using complementary resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) along with cognitive performance using the Immediate Post-Concussive Assessment and Cognitive Testing (ImPACT). We assessed both changes at the acute phase (<7 days post-SRC) and at 21 days later, as well as, differences between athletes with SRC and age- and team-matched control athletes. RESULTS The results revealed rs-fMRI hyperconnectivity within posterior brain regions (e.g., precuneus and cerebellum), and hypoconnectivity in more anterior areas (e.g., inferior and middle frontal gyri) when comparing SRC group to control group acutely. Performance on the ImPACT (visual/verbal memory composites) was correlated with resting state network connectivity at both time points. DTI results revealed altered diffusion in the SRC group along a segment of the corticospinal tract and the superior longitudinal fasciculus in the acute phase of SRC. No differences between the SRC group and control group were seen at follow-up imaging. CONCLUSIONS Acute effects of SRC are associated with both hyperconnectivity and hypoconnectivity, with disruption of white matter integrity. In addition, acute memory performance was most sensitive to these changes. After 21 days, adolescents with SRC returned to baseline performance, although chronic hyperconnectivity of these regions could place these adolescents at greater risk for secondary neuropathological changes, necessitating future follow-up. (JINS, 2018, 24, 781-792).
Collapse
|
23
|
Cerebral Hemodynamic Influences in Task-Related Functional Magnetic Resonance Imaging and Near-Infrared Spectroscopy in Acute Sport-Related Concussion: A Review. J Imaging 2018. [DOI: 10.3390/jimaging4040059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Chamard E, Lichtenstein JD. A systematic review of neuroimaging findings in children and adolescents with sports-related concussion. Brain Inj 2018; 32:816-831. [PMID: 29648462 DOI: 10.1080/02699052.2018.1463106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Sport-related concussion (SRC) generally does not result in structural anomalies revealed through clinical imaging techniques such as MRI and CT. While advanced neuroimaging techniques offer another avenue to investigate the subtle alterations following SRC, the current pediatric literature in this area has yet to be reviewed. The aim of this review is to systematically explore the literature on magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and cortical thickness following SRC in children and adolescents. METHODS A systematic Pubmed search using the preferred reporting items for systematic reviews and meta-analysis guidelines was conducted independently for each neuroimaging method. Studies were screened for inclusion based on pre-determined criteria. RESULTS A total of 26 studies were included (MRS = 4, DTI = 10, fMRI = 11, cortical thickness = 1). A total of 16 studies were conducted solely with male athletes, while 10 studies recruited an unequal number of male and female athletes. CONCLUSIONS While MRI and CT are generally unrevealing, advanced neuroimaging techniques demonstrated neurometabolic, microstructural, and functional alterations following SRC in athletes younger than 19 years of age in the acute, subacute, and chronic phases of recovery. However, more studies are needed to fully understand the impact of SRC on the developing brain in children and adolescents.
Collapse
Affiliation(s)
- Emilie Chamard
- a Department of Psychiatry, Geisel School of Medicine at Dartmouth , Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| | - Jonathan D Lichtenstein
- a Department of Psychiatry, Geisel School of Medicine at Dartmouth , Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| |
Collapse
|
25
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI. NEUROIMAGE-CLINICAL 2018; 18:518-526. [PMID: 29560308 PMCID: PMC5857899 DOI: 10.1016/j.nicl.2018.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/15/2022]
Abstract
Concussion is associated with significant adverse effects within the first week post-injury, including physical complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about the relationship between functional connectivity and symptom assessments after a sport concussion. In this study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70) university-level athletes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and insular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach also extracted two components that showed reliable covariation with symptom severity: (1) a network of frontal, temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating the univariate findings); and (2) a network with anti-correlated elements of the default-mode network and sensorimotor system, where connectivity was positively correlated with symptom severity. These findings support the presence of connectomic signatures of symptom complaints following a sport-related concussion, including both increased and decreased functional connectivity within distinct functional brain networks. Analyzed relationship between resting brain function and symptoms of concussion Whole-brain analysis, using both univariate and multivariate methods Symptoms associated with lower connectivity for frontal/temporal/insular network Symptoms associated with higher connectivity for default-mode/sensorimotor network
Collapse
Affiliation(s)
- Nathan W Churchill
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada.
| | - Michael G Hutchison
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael's Hospital, Neuroscience Research Program, St. Michael's Hospital, Toronto, ON, Canada; Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, ON, Canada; The Institute of Biomaterials & Biomedical Engineering (IBBME) at the University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Mutch WAC, Ellis MJ, Ryner LN, McDonald PJ, Morissette MP, Pries P, Essig M, Mikulis DJ, Duffin J, Fisher JA. Patient-Specific Alterations in CO 2 Cerebrovascular Responsiveness in Acute and Sub-Acute Sports-Related Concussion. Front Neurol 2018; 9:23. [PMID: 29416525 PMCID: PMC5787575 DOI: 10.3389/fneur.2018.00023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/11/2018] [Indexed: 01/06/2023] Open
Abstract
Background Preliminary studies suggest that sports-related concussion (SRC) is associated with alterations in cerebral blood flow (CBF) regulation. Here, we use advanced magnetic resonance imaging (MRI) techniques to measure CBF and cerebrovascular responsiveness (CVR) in individual SRC patients and healthy control subjects. Methods 15 SRC patients (mean age = 16.3, range 14–20 years) and 27 healthy control subjects (mean age = 17.6, range 13–21 years) underwent anatomical MRI, pseudo-continuous arterial spin labeling (pCASL) MRI and model-based prospective end-tidal targeting (MPET) of CO2 during blood oxygenation level-dependent (BOLD) MRI. Group differences in global mean resting CBF were examined. Voxel-by-voxel group and individual differences in regional CVR were examined using statistical parametric mapping (SPM). Leave-one-out receiver operating characteristic curve analysis was used to evaluate the utility of brain MRI CO2 stress testing biomarkers to correctly discriminate between SRC patients and healthy control subjects. Results All studies were tolerated with no complications. Traumatic structural findings were identified in one SRC patient. No significant group differences in global mean resting CBF were observed. There were no significant differences in the CO2 stimulus and O2 targeting during BOLD MRI. Significant group and patient-specific differences in CVR were observed with SRC patients demonstrating a predominant pattern of increased CVR. Leave-one-out ROC analysis for voxels demonstrating a significant increase in CVR was found to reliably discriminate between SRC patients and healthy control subjects (AUC of 0.879, p = 0.0001). The optimal cutoff for increased CVR declarative for SRC was 1,899 voxels resulting in a sensitivity of 0.867 and a specificity of 0.778 for this specific ROC analysis. There was no correlation between abnormal voxel counts and Postconcussion Symptom Scale scores among SRC patients. Conclusion Acute and subacute SRCs are associated with alterations in CVR that can be reliably detected by brain MRI CO2 stress testing in individual patients.
Collapse
Affiliation(s)
- W Alan C Mutch
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada
| | - Michael J Ellis
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Department of Surgery and Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada.,Pan Am Concussion Program, University of Manitoba, Winnipeg, MB, Canada.,Childrens Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Lawrence N Ryner
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Department of Radiology Diagnostic Imaging, University of Manitoba, Winnipeg, MB, Canada
| | - Patrick J McDonald
- Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurosurgery, BC Children's Hospital, National Core for Neuroethics, University of British Columbia, Vancouver, BC, Canada
| | | | - Philip Pries
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Marco Essig
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Pan Am Concussion Program, University of Manitoba, Winnipeg, MB, Canada.,Department of Radiology Diagnostic Imaging, University of Manitoba, Winnipeg, MB, Canada
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada
| | - James Duffin
- University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Neuroimaging of sport concussion: persistent alterations in brain structure and function at medical clearance. Sci Rep 2017; 7:8297. [PMID: 28839132 PMCID: PMC5571165 DOI: 10.1038/s41598-017-07742-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
The medical decision of return to play (RTP) after a sport concussion is largely based on symptom status following a graded exercise protocol. However, it is currently unknown how objective markers of brain structure and function relate to clinical recovery. The goal of this study was to determine whether differences in brain structure and function at acute injury remain present at RTP. In this longitudinal study, 54 active varsity athletes were scanned using magnetic resonance imaging (MRI), including 27 with recent concussion, imaged at both acute injury and medical clearance, along with 27 matched controls. Diffusion tensor imaging was used to measure fractional anisotropy (FA) and mean diffusivity (MD) of white matter and resting-state functional MRI was used to measure global functional connectivity (Gconn). At acute injury, concussed athletes had reduced FA and increased MD, along with elevated Gconn; these effects remained present at RTP. Athletes who took longer to reach RTP also showed elevated Gconn in dorsal brain regions, but no significant white matter effects. This study presents the first evidence of altered brain structure and function at the time of medical clearance to RTP, with greater changes in brain function for athletes with a longer recovery time.
Collapse
|
28
|
Abstract
Concussion has been recognized as a clinical entity for more than 1000 years. Throughout the 20th century it was studied extensively in boxers, but it did not pique the interest of the general population because it is the accepted goal of the boxer to inflict such an injury on their opponent. In 2002, however, the possibility that repetitive concussions could result in chronic brain damage and a progressive neurologic disorder was raised by a postmortem evaluation of a retired player in the most popular sports institution in the United States, the National Football League. Since that time concussion has been a frequent topic of conversation in homes, schools, and on television and has become a major focus of sports programs in communities and schools at all levels. Now all 50 states, the District of Columbia, and the National Collegiate Athletic Association have enacted laws and rules to protect the athlete.
Collapse
Affiliation(s)
- William J Mullally
- Department of Neurology, Brigham and Women's Faulkner Hospital, Boston, Mass.
| |
Collapse
|
29
|
Bonow RH, Friedman SD, Perez FA, Ellenbogen RG, Browd SR, Mac Donald CL, Vavilala MS, Rivara FP. Prevalence of Abnormal Magnetic Resonance Imaging Findings in Children with Persistent Symptoms after Pediatric Sports-Related Concussion. J Neurotrauma 2017; 34:2706-2712. [PMID: 28490224 DOI: 10.1089/neu.2017.4970] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A subset of patients experience persistent symptoms after pediatric concussion, and magnetic resonance imaging (MRI) is commonly used to evaluate for pathology. The utility of this practice is unclear. We conducted a retrospective cohort study to describe the MRI findings in children with concussion. A registry of all patients seen at our institution from January 2010 through March 2016 with pediatric sports-related concussion was cross-referenced with a database of radiographical studies. Radiology reports were reviewed for abnormal findings. Patients with abnormal computed tomographies or MRI scans ordered for reasons other than concussion were excluded. Among 3338 children identified with concussion, 427 underwent MRI. Only 2 (0.5%) had findings compatible with traumatic injury, consisting in both of microhemorrhage. Sixty-one patients (14.3%) had abnormal findings unrelated to trauma, including 24 nonspecific T2 changes, 15 pineal cysts, eight Chiari I malformations, and five arachnoid cysts. One child underwent craniotomy for a cerebellar hemangioblastoma after presenting with ataxia; another had cortical dysplasia resected after seizure. The 2 patients with microhemorrhage each had three previous concussions, significantly more than patients whose scans were normal (median, 1) or abnormal without injury (median, 1.5; p = 0.048). MRI rarely revealed intracranial injuries in children post-concussion, and the clinical relevance of these uncommon findings remains unclear. Abnormalities unrelated to trauma are usually benign. However, MRI should be thoughtfully considered in children who present with concerning or atypical symptoms.
Collapse
Affiliation(s)
- Robert H Bonow
- 1 Harborview Injury Prevention Research Center, Harborview Medical Center, University of Washington , Seattle, Washington.,2 Department of Neurological Surgery, University of Washington , and Seattle Children's Hospital, Seattle, Washington
| | - Seth D Friedman
- 3 Radiology Clinical Research Imaging Core, Center for Clinical and Translational Research , Seattle Children's Hospital, Seattle, Washington
| | - Francisco A Perez
- 4 Department of Radiology, Seattle Children's Hospital, University of Washington , and Seattle Children's Hospital, Seattle, Washington
| | - Richard G Ellenbogen
- 2 Department of Neurological Surgery, University of Washington , and Seattle Children's Hospital, Seattle, Washington
| | - Samuel R Browd
- 2 Department of Neurological Surgery, University of Washington , and Seattle Children's Hospital, Seattle, Washington
| | - Christine L Mac Donald
- 2 Department of Neurological Surgery, University of Washington , and Seattle Children's Hospital, Seattle, Washington
| | - Monica S Vavilala
- 1 Harborview Injury Prevention Research Center, Harborview Medical Center, University of Washington , Seattle, Washington.,5 Department of Anesthesia & Pain Medicine, Harborview Medical Center, University of Washington , Seattle, Washington
| | - Frederick P Rivara
- 1 Harborview Injury Prevention Research Center, Harborview Medical Center, University of Washington , Seattle, Washington.,6 Department of Pediatrics, Seattle Children's Hospital, University of Washington , and Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
30
|
Affiliation(s)
- Pete Roy
- From the Department of Neurology, Penn State University School of Medicine, Mount Nittany Physician Group, State College, PA.
| |
Collapse
|
31
|
Womack KB, Paliotta C, Strain JF, Ho JS, Skolnick Y, Lytton WW, Turtzo LC, McColl R, Diaz-Arrastia R, Bergold PJ. Measurement of Peripheral Vision Reaction Time Identifies White Matter Disruption in Patients with Mild Traumatic Brain Injury. J Neurotrauma 2017; 34:1539-1545. [PMID: 27927083 DOI: 10.1089/neu.2016.4670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study examined whether peripheral vision reaction time (PVRT) in patients with mild traumatic brain injury (mTBI) correlated with white matter abnormalities in centroaxial structures and impairments in neuropsychological testing. Within 24 h after mTBI, crossed reaction times (CRT), uncrossed reaction times (URT), and crossed-uncrossed difference (CUD) were measured in 23 patients using a laptop computer that displayed visual stimuli predominantly to either the left or the right visual field of the retina. The CUD is a surrogate marker of the interhemispheric transfer time (ITT). Within 7 days after the injury, patients received a diffusion tensor-MRI (DTI) scan and a battery of neuropsychological tests. Nine uninjured control subjects received similar testing. Patients 18-50 years of age were included if they had a post-resuscitation Glasgow Coma Scale >13 and an injury mechanism compatible with mTBI. Healthy controls were either age- and gender-matched family members of the TBI patients or healthy volunteers. CUD deficits >2 standard deviations (SD) were seen in 40.9% of patients. The CUD of injured patients correlated with mean diffusivity (MD) (p < 0.001, ρ = -0.811) in the posterior corpus callosum. Patients could be stratified on the basis of CUD on the Stroop 1, Controlled Oral Word Association Test (COWAT), and the obsessive-compulsive component of the Basic Symptom Inventory tests. These studies suggest that the PVRT indirectly measures white matter integrity in the posterior corpus callosum, a brain region frequently damaged by mTBI.
Collapse
Affiliation(s)
- Kyle B Womack
- 1 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center , Dallas, Texas.,2 Department of Psychiatry, University of Texas Southwestern Medical Center , Dallas, Texas.,3 Berman Laboratory for Learning and Memory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas , Dallas, Texas
| | - Christopher Paliotta
- 1 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jeremy F Strain
- 3 Berman Laboratory for Learning and Memory, Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas , Dallas, Texas.,4 Department of Neurology, Washington University , St. Louis, Missouri
| | - Johnson S Ho
- 5 Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center , Brooklyn, New York
| | - Yosef Skolnick
- 5 Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center , Brooklyn, New York
| | - William W Lytton
- 5 Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center , Brooklyn, New York
| | - L Christine Turtzo
- 6 National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | - Roderick McColl
- 7 Department of Radiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ramon Diaz-Arrastia
- 6 National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland.,8 Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Peter J Bergold
- 5 Department of Physiology and Pharmacology, State University of New York-Downstate Medical Center , Brooklyn, New York
| |
Collapse
|
32
|
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it also helps predict patient outcomes. TBI consists of multiple pathoanatomic entities. This article reviews the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each of these pathoanatomic entities. Also briefly surveyed are advanced imaging techniques, which include several promising areas of TBI research.
Collapse
Affiliation(s)
- Christopher A Mutch
- Department of Radiology, University of California, San Francisco, 505 Parnassus Avenue, M391, San Francisco, CA 94143, USA
| | - Jason F Talbott
- Department of Radiology, San Francisco General Hospital, University of California, San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Alisa Gean
- Department of Radiology, San Francisco General Hospital, University of California, San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, USA
| |
Collapse
|
33
|
Positron Emission Tomography: Basic Principles, New Applications, and Studies Under Anesthesia. Int Anesthesiol Clin 2016; 54:109-28. [PMID: 26655512 DOI: 10.1097/aia.0000000000000090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Henning A, Koning W, Fuchs A, Raaijmakers A, Bluemink JJ, van den Berg CAT, Boer VO, Klomp DWJ. (1) H MRS in the human spinal cord at 7 T using a dielectric waveguide transmitter, RF shimming and a high density receive array. NMR IN BIOMEDICINE 2016; 29:1231-1239. [PMID: 27191947 DOI: 10.1002/nbm.3541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
Multimodal MRI is the state of the art method for clinical diagnostics and therapy monitoring of the spinal cord, with MRS being an emerging modality that has the potential to detect relevant changes of the spinal cord tissue at an earlier stage and to enhance specificity. Methodological challenges related to the small dimensions and deep location of the human spinal cord inside the human body, field fluctuations due to respiratory motion, susceptibility differences to adjacent tissue such as vertebras and pulsatile flow of the cerebrospinal fluid hinder the clinical application of (1) H MRS to the human spinal cord. Complementary to previous studies that partly addressed these problems, this work aims at enhancing the signal-to-noise ratio (SNR) of (1) H MRS in the human spinal cord. To this end a flexible tight fit high density receiver array and ultra-high field strength (7 T) were combined. A dielectric waveguide and dipole antenna transmission coil allowed for dual channel RF shimming, focusing the RF field in the spinal cord, and an inner-volume saturated semi-LASER sequence was used for robust localization in the presence of B1 (+) inhomogeneity. Herein we report the first 7 T spinal cord (1) H MR spectra, which were obtained in seven independent measurements of 128 averages each in three healthy volunteers. The spectra exhibit high quality (full width at half maximum 0.09 ppm, SNR 7.6) and absence of artifacts and allow for reliable quantification of N-acetyl aspartate (NAA) (NAA/Cr (creatine) 1.31 ± 0.20; Cramér-Rao lower bound (CRLB) 5), total choline containing compounds (Cho) (Cho/Cr 0.32 ± 0.07; CRLB 7), Cr (CRLB 5) and myo-inositol (mI) (mI/Cr 1.08 ± 0.22; CRLB 6) in 7.5 min in the human cervical spinal cord. Thus metabolic information from the spinal cord can be obtained in clinically feasible scan times at 7 T, and its benefit for clinical decision making in spinal cord disorders will be investigated in the future using the presented methodology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - W Koning
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - A Fuchs
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - A Raaijmakers
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - J J Bluemink
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - V O Boer
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - D W J Klomp
- University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
35
|
Mutch WAC, Ellis MJ, Ryner LN, Ruth Graham M, Dufault B, Gregson B, Hall T, Bunge M, Essig M. Brain magnetic resonance imaging CO2 stress testing in adolescent postconcussion syndrome. J Neurosurg 2016; 125:648-60. [DOI: 10.3171/2015.6.jns15972] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
A neuroimaging assessment tool to visualize global and regional impairments in cerebral blood flow (CBF) and cerebrovascular responsiveness in individual patients with concussion remains elusive. Here the authors summarize the safety, feasibility, and results of brain CO2 stress testing in adolescents with postconcussion syndrome (PCS) and healthy controls.
METHODS
This study was approved by the Biomedical Research Ethics Board at the University of Manitoba. Fifteen adolescents with PCS and 17 healthy control subjects underwent anatomical MRI, pseudo-continuous arterial spin labeling MRI, and brain stress testing using controlled CO2 challenge and blood oxygen level–dependent (BOLD) MRI. Post hoc processing was performed using statistical parametric mapping to determine voxel-by-voxel regional resting CBF and cerebrovascular responsiveness of the brain to the CO2 stimulus (increase in BOLD signal) or the inverse (decrease in BOLD signal). Receiver operating characteristic (ROC) curves were generated to compare voxel counts categorized by control (0) or PCS (1).
RESULTS
Studies were well tolerated without any serious adverse events. Anatomical MRI was normal in all study participants. No differences in CO2 stimuli were seen between the 2 participant groups. No group differences in global mean CBF were detected between PCS patients and healthy controls. Patient-specific differences in mean regional CBF and CO2 BOLD responsiveness were observed in all PCS patients. The ROC curve analysis for brain regions manifesting a voxel response greater than and less than the control atlas (that is, abnormal voxel counts) produced an area under the curve of 0.87 (p < 0.0001) and 0.80 (p = 0.0003), respectively, consistent with a clinically useful predictive model.
CONCLUSIONS
Adolescent PCS is associated with patient-specific abnormalities in regional mean CBF and BOLD cerebrovascular responsiveness that occur in the setting of normal global resting CBF. Future prospective studies are warranted to examine the utility of brain MRI CO2 stress testing in the longitudinal assessment of acute sports-related concussion and PCS.
Collapse
|
36
|
Ellis MJ, Leddy J, Willer B. Multi-Disciplinary Management of Athletes with Post-Concussion Syndrome: An Evolving Pathophysiological Approach. Front Neurol 2016; 7:136. [PMID: 27605923 PMCID: PMC4995355 DOI: 10.3389/fneur.2016.00136] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 01/03/2023] Open
Abstract
Historically, patients with sports-related concussion (SRC) have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS). Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review, we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further evaluate this evolving pathophysiological approach.
Collapse
Affiliation(s)
- Michael J Ellis
- Pan Am Concussion Program, Section of Neurosurgery, Department of Surgery, Pediatrics and Child Health, University of Manitoba, Children's Hospital Research Institute of Manitoba, Canada North Concussion Network , Winnipeg, MB , Canada
| | - John Leddy
- UBMD Department of Orthopaedics and Sports Medicine, State University of New York at Buffalo Jacobs School of Medicine and Biomedical Sciences , Buffalo, NY , USA
| | - Barry Willer
- Department of Psychiatry, State University of New York at Buffalo Jacobs School of Medicine and Biomedical Sciences , Buffalo, NY , USA
| |
Collapse
|
37
|
Di Battista AP, Rhind SG, Richards D, Churchill N, Baker AJ, Hutchison MG. Altered Blood Biomarker Profiles in Athletes with a History of Repetitive Head Impacts. PLoS One 2016; 11:e0159929. [PMID: 27458972 PMCID: PMC4961456 DOI: 10.1371/journal.pone.0159929] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023] Open
Abstract
The long-term health effects of concussion and sub-concussive impacts in sport are unknown. Growing evidence suggests both inflammation and neurodegeneration are pivotal to secondary injury processes and the etiology of neurodegenerative diseases. In the present study we characterized circulating brain injury and inflammatory mediators in healthy male and female athletes according to concussion history and collision sport participation. Eighty-seven university level athletes (male, n = 60; female, n = 27) were recruited before the start of the competitive season. Athletes were healthy at the time of the study (no medications, illness, concussion or musculoskeletal injuries). Dependent variables included 29 inflammatory and 10 neurological injury analytes assessed in the peripheral blood by immunoassay. Biomarkers were statistically evaluated using partial least squares multivariate analysis to identify possible relationships to self-reported previous concussion history, number of previous concussions and collision sport participation in male and female athletes. Multiple concussions were associated with increases in peripheral MCP-1 in females, and MCP-4 in males. Collision sport participation was associated with increases in tau levels in males. These results are consistent with previous experimental and clinical findings that suggest ongoing inflammatory and cerebral injury processes after repetitive mild head trauma. However, further validation is needed to correlate systemic biomarkers to repetitive brain impacts, as opposed to the extracranial effects common to an athletic population such as exercise and muscle damage.
Collapse
Affiliation(s)
- Alex P. Di Battista
- Institute of Medical Science, University of Toronto, Toronto ON, Canada
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto ON, Canada
| | - Doug Richards
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto ON, Canada
| | - Nathan Churchill
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
| | - Andrew J. Baker
- Institute of Medical Science, University of Toronto, Toronto ON, Canada
- Departments of Critical Care, Anesthesia and Surgery, St. Michael’s Hospital, University of Toronto, Toronto ON, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Michael G. Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto ON, Canada
- Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
38
|
Mutch WAC, Ellis MJ, Ryner LN, Morissette MP, Pries PJ, Dufault B, Essig M, Mikulis DJ, Duffin J, Fisher JA. Longitudinal Brain Magnetic Resonance Imaging CO2 Stress Testing in Individual Adolescent Sports-Related Concussion Patients: A Pilot Study. Front Neurol 2016; 7:107. [PMID: 27458426 PMCID: PMC4937024 DOI: 10.3389/fneur.2016.00107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022] Open
Abstract
Background Advanced neuroimaging studies in concussion have been limited to detecting group differences between concussion patients and healthy controls. In this small pilot study, we used brain magnetic resonance imaging (MRI) CO2 stress testing to longitudinally assess cerebrovascular responsiveness (CVR) in individual sports-related concussion (SRC) patients. Methods Six SRC patients (three males and three females; mean age = 15.7, range = 15–17 years) underwent longitudinal brain MRI CO2 stress testing using blood oxygen level-dependent (BOLD) MRI and model-based prospective end-tidal CO2 targeting under isoxic conditions. First-level and second-level comparisons were undertaken using statistical parametric mapping (SPM) to score the scans and compare them to an atlas of 24 healthy control subjects. Results All tests were well tolerated and without any serious adverse events. Anatomical MRI was normal in all study participants. The CO2 stimulus was consistent between the SRC patients and control subjects and within SRC patients across the longitudinal study. Individual SRC patients demonstrated both quantitative and qualitative patient-specific alterations in CVR (p < 0.005) that correlated strongly with clinical findings, and that persisted beyond clinical recovery. Conclusion Standardized brain MRI CO2 stress testing is capable of providing a longitudinal assessment of CVR in individual SRC patients. Consequently, larger prospective studies are needed to examine the utility of brain MRI CO2 stress testing as a clinical tool to help guide the evaluation, classification, and longitudinal management of SRC patients.
Collapse
Affiliation(s)
- W Alan C Mutch
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada; University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, Winnipeg, MB, Canada; Canada North Concussion Network, Winnipeg, MB, Canada
| | - Michael J Ellis
- University of Manitoba, Winnipeg, MB, Canada; Canada North Concussion Network, Winnipeg, MB, Canada; Department of Surgery, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada; Pan Am Concussion Program, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Lawrence N Ryner
- University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, Winnipeg, MB, Canada; Canada North Concussion Network, Winnipeg, MB, Canada; Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Marc P Morissette
- Pan Am Concussion Program, Winnipeg, MB, Canada; Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Philip J Pries
- University of Manitoba, Winnipeg, MB, Canada; College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Brenden Dufault
- University of Manitoba, Winnipeg, MB, Canada; Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marco Essig
- University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, Winnipeg, MB, Canada; Canada North Concussion Network, Winnipeg, MB, Canada; Pan Am Concussion Program, Winnipeg, MB, Canada; Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada
| | - James Duffin
- University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
|
40
|
Griffin GD. Letter to the Editor: Pediatric sports-related concussions. J Neurosurg Pediatr 2016; 17:631-4. [PMID: 26722672 DOI: 10.3171/2015.7.peds15426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Ellis MJ, Ryner LN, Sobczyk O, Fierstra J, Mikulis DJ, Fisher JA, Duffin J, Mutch WAC. Neuroimaging Assessment of Cerebrovascular Reactivity in Concussion: Current Concepts, Methodological Considerations, and Review of the Literature. Front Neurol 2016; 7:61. [PMID: 27199885 PMCID: PMC4850165 DOI: 10.3389/fneur.2016.00061] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/07/2023] Open
Abstract
Concussion is a form of traumatic brain injury (TBI) that presents with a wide spectrum of subjective symptoms and few objective clinical findings. Emerging research suggests that one of the processes that may contribute to concussion pathophysiology is dysregulation of cerebral blood flow (CBF) leading to a mismatch between CBF delivery and the metabolic needs of the injured brain. Cerebrovascular reactivity (CVR) is defined as the change in CBF in response to a measured vasoactive stimulus. Several magnetic resonance imaging (MRI) techniques can be used as a surrogate measure of CBF in clinical and laboratory studies. In order to provide an accurate assessment of CVR, these sequences must be combined with a reliable, reproducible vasoactive stimulus that can manipulate CBF. Although CVR imaging currently plays a crucial role in the diagnosis and management of many cerebrovascular diseases, only recently have studies begun to apply this assessment tool in patients with concussion. In order to evaluate the quality, reliability, and relevance of CVR studies in concussion, it is important that clinicians and researchers have a strong foundational understanding of the role of CBF regulation in health, concussion, and more severe forms of TBI, and an awareness of the advantages and limitations of currently available CVR measurement techniques. Accordingly, in this review, we (1) discuss the role of CVR in TBI and concussion, (2) examine methodological considerations for MRI-based measurement of CVR, and (3) provide an overview of published CVR studies in concussion patients.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada; Pan Am Concussion Program, University of Manitoba, Winnipeg, MB, Canada; Childrens Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada; University of Manitoba, Winnipeg, MB, Canada
| | - Lawrence N Ryner
- Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada; Department of Radiology, University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Olivia Sobczyk
- Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich , Zurich , Switzerland
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada
| | - Joseph A Fisher
- University of Toronto, Toronto, ON, Canada; University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada; Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - James Duffin
- University of Toronto, Toronto, ON, Canada; University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - W Alan C Mutch
- Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada; University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada; Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
42
|
Nelson LD, Tarima S, LaRoche AA, Hammeke TA, Barr WB, Guskiewicz K, Randolph C, McCrea MA. Preinjury somatization symptoms contribute to clinical recovery after sport-related concussion. Neurology 2016; 86:1856-63. [PMID: 27164666 DOI: 10.1212/wnl.0000000000002679] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/12/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the degree to which preinjury and acute postinjury psychosocial and injury-related variables predict symptom duration following sport-related concussion. METHODS A total of 2,055 high school and collegiate athletes completed preseason evaluations. Concussed athletes (n = 127) repeated assessments serially (<24 hours and days 8, 15, and 45) postinjury. Cox proportional hazard modeling was used to predict concussive symptom duration (in days). Predictors considered included demographic and history variables; baseline psychological, neurocognitive, and balance functioning; acute injury characteristics; and postinjury clinical measures. RESULTS Preinjury somatic symptom score (Brief Symptom Inventory-18 somatization scale) was the strongest premorbid predictor of symptom duration. Acute (24-hour) postconcussive symptom burden (Sport Concussion Assessment Tool-3 symptom severity) was the best injury-related predictor of recovery. These 2 predictors were moderately correlated (r = 0.51). Path analyses indicated that the relationship between preinjury somatization symptoms and symptom recovery was mediated by postinjury concussive symptoms. CONCLUSIONS Preinjury somatization symptoms contribute to reported postconcussive symptom recovery via their influence on acute postconcussive symptoms. The findings highlight the relevance of premorbid psychological factors in postconcussive recovery, even in a healthy athlete sample relatively free of psychopathology or medical comorbidities. Future research should elucidate the neurobiopsychosocial mechanisms that explain the role of this individual difference variable in outcome following concussive injury.
Collapse
Affiliation(s)
- Lindsay D Nelson
- From the Departments of Neurosurgery & Neurology (L.D.N., M.A.M.), Department of Neurosurgery (A.A.L.), Division of Biostatistics, Institute for Health and Society (S.T.), Department of Psychiatry & Behavioral Medicine (T.A.H.), Medical College of Wisconsin, Milwaukee; Department of Neurology (W.B.B.), New York University School of Medicine, New York; Department of Exercise and Sport Science (K.G.), University of North Carolina, Chapel Hill; and Department of Neurology (C.R.), Loyola University Medical Center, Maywood, IL.
| | - Sergey Tarima
- From the Departments of Neurosurgery & Neurology (L.D.N., M.A.M.), Department of Neurosurgery (A.A.L.), Division of Biostatistics, Institute for Health and Society (S.T.), Department of Psychiatry & Behavioral Medicine (T.A.H.), Medical College of Wisconsin, Milwaukee; Department of Neurology (W.B.B.), New York University School of Medicine, New York; Department of Exercise and Sport Science (K.G.), University of North Carolina, Chapel Hill; and Department of Neurology (C.R.), Loyola University Medical Center, Maywood, IL
| | - Ashley A LaRoche
- From the Departments of Neurosurgery & Neurology (L.D.N., M.A.M.), Department of Neurosurgery (A.A.L.), Division of Biostatistics, Institute for Health and Society (S.T.), Department of Psychiatry & Behavioral Medicine (T.A.H.), Medical College of Wisconsin, Milwaukee; Department of Neurology (W.B.B.), New York University School of Medicine, New York; Department of Exercise and Sport Science (K.G.), University of North Carolina, Chapel Hill; and Department of Neurology (C.R.), Loyola University Medical Center, Maywood, IL
| | - Thomas A Hammeke
- From the Departments of Neurosurgery & Neurology (L.D.N., M.A.M.), Department of Neurosurgery (A.A.L.), Division of Biostatistics, Institute for Health and Society (S.T.), Department of Psychiatry & Behavioral Medicine (T.A.H.), Medical College of Wisconsin, Milwaukee; Department of Neurology (W.B.B.), New York University School of Medicine, New York; Department of Exercise and Sport Science (K.G.), University of North Carolina, Chapel Hill; and Department of Neurology (C.R.), Loyola University Medical Center, Maywood, IL
| | - William B Barr
- From the Departments of Neurosurgery & Neurology (L.D.N., M.A.M.), Department of Neurosurgery (A.A.L.), Division of Biostatistics, Institute for Health and Society (S.T.), Department of Psychiatry & Behavioral Medicine (T.A.H.), Medical College of Wisconsin, Milwaukee; Department of Neurology (W.B.B.), New York University School of Medicine, New York; Department of Exercise and Sport Science (K.G.), University of North Carolina, Chapel Hill; and Department of Neurology (C.R.), Loyola University Medical Center, Maywood, IL
| | - Kevin Guskiewicz
- From the Departments of Neurosurgery & Neurology (L.D.N., M.A.M.), Department of Neurosurgery (A.A.L.), Division of Biostatistics, Institute for Health and Society (S.T.), Department of Psychiatry & Behavioral Medicine (T.A.H.), Medical College of Wisconsin, Milwaukee; Department of Neurology (W.B.B.), New York University School of Medicine, New York; Department of Exercise and Sport Science (K.G.), University of North Carolina, Chapel Hill; and Department of Neurology (C.R.), Loyola University Medical Center, Maywood, IL
| | - Christopher Randolph
- From the Departments of Neurosurgery & Neurology (L.D.N., M.A.M.), Department of Neurosurgery (A.A.L.), Division of Biostatistics, Institute for Health and Society (S.T.), Department of Psychiatry & Behavioral Medicine (T.A.H.), Medical College of Wisconsin, Milwaukee; Department of Neurology (W.B.B.), New York University School of Medicine, New York; Department of Exercise and Sport Science (K.G.), University of North Carolina, Chapel Hill; and Department of Neurology (C.R.), Loyola University Medical Center, Maywood, IL
| | - Michael A McCrea
- From the Departments of Neurosurgery & Neurology (L.D.N., M.A.M.), Department of Neurosurgery (A.A.L.), Division of Biostatistics, Institute for Health and Society (S.T.), Department of Psychiatry & Behavioral Medicine (T.A.H.), Medical College of Wisconsin, Milwaukee; Department of Neurology (W.B.B.), New York University School of Medicine, New York; Department of Exercise and Sport Science (K.G.), University of North Carolina, Chapel Hill; and Department of Neurology (C.R.), Loyola University Medical Center, Maywood, IL
| |
Collapse
|
43
|
Ellis MJ, McDonald PJ, Cordingley D, Mansouri B, Essig M, Ritchie L. Retirement-from-sport considerations following pediatric sports-related concussion: case illustrations and institutional approach. Neurosurg Focus 2016; 40:E8. [DOI: 10.3171/2016.1.focus15600] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decision to advise an athlete to retire from sports following sports-related concussion (SRC) remains a persistent challenge for physicians. In the absence of strong empirical evidence to support recommendations, clinical decision making must be individualized and should involve a multidisciplinary team of experts in concussion and traumatic brain injury. Although previous authors have advocated for a more conservative approach to these issues in child and adolescent athletes, there are few reports outlining considerations for this process among this unique population. Here, the authors use multiple case illustrations to discuss 3 subgroups of clinical considerations for sports retirement among pediatric SRC patients including the following: those with structural brain abnormalities identified on neuroimaging, those presenting with focal neurological deficits and abnormalities on physical examination, and those in whom the cumulative or prolonged effects of concussion are suspected or demonstrated. The authors' evolving multidisciplinary institutional approach to return-to-play and retirement decision making in pediatric SRC is also presented.
Collapse
|
44
|
Diduch BK, Hudson K, Resch JE, Shen F, Broshek DK, Brady W, Cole SL, Courson R, Castens T, Shimer A, Miller MD. Treatment of Head and Neck Injuries in the Helmeted Athlete. JBJS Rev 2016; 4:01874474-201603000-00002. [PMID: 27500432 DOI: 10.2106/jbjs.rvw.15.00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sport-related concussion treatment includes three major phases: initial evaluation at the time of the injury, treatment while the patient is symptomatic, and evaluation of the readiness for a gradual return to participation. Each concussion evaluation should include similar elements: assessment of symptoms, assessment of cognitive ability, assessment of coordination (of the eyes, upper extremities, and lower extremities), and assessment for additional injuries. The spine-boarding recommendations from the American College of Emergency Physicians, National Association of EMS Physicians, and National Athletic Trainers' Association have changed. These recommendations include both decreased use of spinal immobilization and removal of the helmet and shoulder pads prior to securing the athlete to the board when sufficient numbers of trained providers are present. Preseason training and pregame meetings or "medical time outs" should become standard practice for the sidelines medical team (including the athletic trainer, team physician, emergency response personnel, and possibly others).
Collapse
Affiliation(s)
- B Kent Diduch
- Department of Health Sciences, James Madison University, Harrisonburg, Virginia
| | - Korin Hudson
- Department of Emergency Medicine, MedStar Georgetown University Hospital & Washington Hospital Center, Washington, DC
| | - Jacob E Resch
- Department of Kinesiology (J.E.R.), Spine Division, Spine Center, Department of Orthopaedic Surgery (F.S.), Department of Psychiatry and Neurobehavioral Sciences (D.K.B.), Department of Emergency Medicine, University of Virginia School of Medicine (W.B.), Orthopedic Inpatient Unit, Department of Orthopaedic Surgery (A.S.), Division of Sports Medicine (M.D.M.), University of Virginia, Charlottesville, Virginia
| | - Francis Shen
- Department of Kinesiology (J.E.R.), Spine Division, Spine Center, Department of Orthopaedic Surgery (F.S.), Department of Psychiatry and Neurobehavioral Sciences (D.K.B.), Department of Emergency Medicine, University of Virginia School of Medicine (W.B.), Orthopedic Inpatient Unit, Department of Orthopaedic Surgery (A.S.), Division of Sports Medicine (M.D.M.), University of Virginia, Charlottesville, Virginia
| | - Donna K Broshek
- Department of Kinesiology (J.E.R.), Spine Division, Spine Center, Department of Orthopaedic Surgery (F.S.), Department of Psychiatry and Neurobehavioral Sciences (D.K.B.), Department of Emergency Medicine, University of Virginia School of Medicine (W.B.), Orthopedic Inpatient Unit, Department of Orthopaedic Surgery (A.S.), Division of Sports Medicine (M.D.M.), University of Virginia, Charlottesville, Virginia
| | - William Brady
- Department of Kinesiology (J.E.R.), Spine Division, Spine Center, Department of Orthopaedic Surgery (F.S.), Department of Psychiatry and Neurobehavioral Sciences (D.K.B.), Department of Emergency Medicine, University of Virginia School of Medicine (W.B.), Orthopedic Inpatient Unit, Department of Orthopaedic Surgery (A.S.), Division of Sports Medicine (M.D.M.), University of Virginia, Charlottesville, Virginia
| | | | | | - Titus Castens
- Albemarle County Fire Rescue, Charlottesville, Virginia
| | - Adam Shimer
- Department of Kinesiology (J.E.R.), Spine Division, Spine Center, Department of Orthopaedic Surgery (F.S.), Department of Psychiatry and Neurobehavioral Sciences (D.K.B.), Department of Emergency Medicine, University of Virginia School of Medicine (W.B.), Orthopedic Inpatient Unit, Department of Orthopaedic Surgery (A.S.), Division of Sports Medicine (M.D.M.), University of Virginia, Charlottesville, Virginia
| | - Mark D Miller
- Department of Kinesiology (J.E.R.), Spine Division, Spine Center, Department of Orthopaedic Surgery (F.S.), Department of Psychiatry and Neurobehavioral Sciences (D.K.B.), Department of Emergency Medicine, University of Virginia School of Medicine (W.B.), Orthopedic Inpatient Unit, Department of Orthopaedic Surgery (A.S.), Division of Sports Medicine (M.D.M.), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
45
|
Prospective, Head-to-Head Study of Three Computerized Neurocognitive Assessment Tools (CNTs): Reliability and Validity for the Assessment of Sport-Related Concussion. J Int Neuropsychol Soc 2016; 22:24-37. [PMID: 26714883 PMCID: PMC4882608 DOI: 10.1017/s1355617715001101] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Limited data exist comparing the performance of computerized neurocognitive tests (CNTs) for assessing sport-related concussion. We evaluated the reliability and validity of three CNTs-ANAM, Axon Sports/Cogstate Sport, and ImPACT-in a common sample. High school and collegiate athletes completed two CNTs each at baseline. Concussed (n=165) and matched non-injured control (n=166) subjects repeated testing within 24 hr and at 8, 15, and 45 days post-injury. Roughly a quarter of each CNT's indices had stability coefficients (M=198 day interval) over .70. Group differences in performance were mostly moderate to large at 24 hr and small by day 8. The sensitivity of reliable change indices (RCIs) was best at 24 hr (67.8%, 60.3%, and 47.6% with one or more significant RCIs for ImPACT, Axon, and ANAM, respectively) but diminished to near the false positive rates thereafter. Across time, the CNTs' sensitivities were highest in those athletes who became asymptomatic within 1 day before neurocognitive testing but was similar to the tests' false positive rates when including athletes who became asymptomatic several days earlier. Test-retest reliability was similar among these three CNTs and below optimal standards for clinical use on many subtests. Analyses of group effect sizes, discrimination, and sensitivity and specificity suggested that the CNTs may add incrementally (beyond symptom scores) to the identification of clinical impairment within 24 hr of injury or within a short time period after symptom resolution but do not add significant value over symptom assessment later. The rapid clinical recovery course from concussion and modest stability probably jointly contribute to limited signal detection capabilities of neurocognitive tests outside a brief post-injury window. (JINS, 2016, 22, 24-37).
Collapse
|
46
|
Concussion management in the ED: Beyond GCS. Int Emerg Nurs 2015; 26:47-51. [PMID: 26749207 DOI: 10.1016/j.ienj.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 11/20/2022]
|
47
|
Morgan CD, Zuckerman SL, King LE, Beaird SE, Sills AK, Solomon GS. Post-concussion syndrome (PCS) in a youth population: defining the diagnostic value and cost-utility of brain imaging. Childs Nerv Syst 2015; 31:2305-9. [PMID: 26419243 DOI: 10.1007/s00381-015-2916-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE Approximately 90% of concussions are transient, with symptoms resolving within 10-14 days. However, a minority of patients remain symptomatic several months post-injury, a condition known as post-concussion syndrome (PCS). The treatment of these patients can be challenging. The goal of our study was to assess the utility and cost-effectiveness of neurologic imaging two or more weeks post-injury in a cohort of youth with PCS. METHODS We conducted a retrospective study of 52 pediatric patients with persistent post-concussion symptoms after 3 months. We collected demographics and neuroimaging results obtained greater than 2 weeks post-concussion. Neuroimaging ordered in the first 2 weeks post-concussion was excluded, except to determine the rate of re-imaging. Descriptive statistics and corresponding cost data were collected. RESULTS Of 52 patients with PCS, 23/52 (44%) had neuroimaging at least 2 weeks after the initial injury, for a total of 32 diagnostic studies. In summary, 1/19 MRIs (5.3%), 1/8 CTs (13%), and 0/5 x-rays (0%) yielded significant positive findings, none of which altered clinical management. Chronic phase neuroimaging estimated costs from these 52 pediatric patients totaled $129,025. We estimate the cost to identify a single positive finding was $21,000 for head CT and $104,500 for brain MRI. CONCLUSIONS In this cohort of pediatric PCS patients, brain imaging in the chronic phase (defined as more than 2 weeks after concussion) was pursued in almost half the study sample, had low diagnostic yield, and had poor cost-effectiveness. Based on these results, outpatient management of pediatric patients with long-term post-concussive symptoms should rarely include repeat neuroimaging beyond the acute phase.
Collapse
Affiliation(s)
- Clinton D Morgan
- Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Medical Center North T-4224, 37212, Nashville, TN, USA
| | - Scott L Zuckerman
- Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Medical Center North T-4224, 37212, Nashville, TN, USA.
| | - Lauren E King
- Division of Pediatric Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Susan E Beaird
- Division of Pediatric Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Allen K Sills
- Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Medical Center North T-4224, 37212, Nashville, TN, USA
| | - Gary S Solomon
- Department of Neurological Surgery, Vanderbilt Sports Concussion Center, Vanderbilt University School of Medicine, Medical Center North T-4224, 37212, Nashville, TN, USA
| |
Collapse
|
48
|
Takala RSK, Posti JP, Runtti H, Newcombe VF, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Kyllönen A, Maanpää HR, Tallus J, Hossain MI, Coles JP, Hutchinson P, van Gils M, Menon DK, Tenovuo O. Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 as Outcome Predictors in Traumatic Brain Injury. World Neurosurg 2015; 87:8-20. [PMID: 26547005 DOI: 10.1016/j.wneu.2015.10.066] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Biomarkers ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) may help detect brain injury, assess its severity, and improve outcome prediction. This study aimed to evaluate the prognostic value of these biomarkers during the first days after brain injury. METHODS Serum UCH-L1 and GFAP were measured in 324 patients with traumatic brain injury (TBI) enrolled in a prospective study. The outcome was assessed using the Glasgow Outcome Scale (GOS) or the extended version, Glasgow Outcome Scale-Extended (GOSE). RESULTS Patients with full recovery had lower UCH-L1 concentrations on the second day and patients with favorable outcome had lower UCH-L1 concentrations during the first 2 days compared with patients with incomplete recovery and unfavorable outcome. Patients with full recovery and favorable outcome had significantly lower GFAP concentrations in the first 2 days than patients with incomplete recovery or unfavorable outcome. There was a strong negative correlation between outcome and UCH-L1 in the first 3 days and GFAP levels in the first 2 days. On arrival, both UCH-L1 and GFAP distinguished patients with GOS score 1-3 from patients with GOS score 4-5, but not patients with GOSE score 8 from patients with GOSE score 1-7. For UCH-L1 and GFAP to predict unfavorable outcome (GOS score ≤ 3), the area under the receiver operating characteristic curve was 0.727, and 0.723, respectively. Neither UCHL-1 nor GFAP was independently able to predict the outcome when age, worst Glasgow Coma Scale score, pupil reactivity, Injury Severity Score, and Marshall score were added into the multivariate logistic regression model. CONCLUSIONS GFAP and UCH-L1 are significantly associated with outcome, but they do not add predictive power to commonly used prognostic variables in a population of patients with TBI of varying severities.
Collapse
Affiliation(s)
- Riikka S K Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland.
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital and University of Turku, Turku, Finland; Department of Neurology, University of Turku, Turku, Finland
| | - Hilkka Runtti
- Systems Medicine, VTT Technical Research Centre of Finland, Tampere, Finland
| | - Virginia F Newcombe
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Joanne Outtrim
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari J Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Janek Frantzén
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital and University of Turku, Turku, Finland; Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Anna Kyllönen
- Department of Neurology, University of Turku, Turku, Finland
| | | | - Jussi Tallus
- Department of Neurology, University of Turku, Turku, Finland
| | | | - Jonathan P Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Hutchinson
- Department of Clinical Neurosciences, Neurosurgery Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark van Gils
- Systems Medicine, VTT Technical Research Centre of Finland, Tampere, Finland
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Olli Tenovuo
- Division of Clinical Neurosciences, Department of Rehabilitation and Brain Trauma, Turku University Hospital and University of Turku, Turku, Finland; Department of Neurology, University of Turku, Turku, Finland
| |
Collapse
|
49
|
Koerte IK, Lin AP, Willems A, Muehlmann M, Hufschmidt J, Coleman MJ, Green I, Liao H, Tate DF, Wilde EA, Pasternak O, Bouix S, Rathi Y, Bigler ED, Stern RA, Shenton ME. A review of neuroimaging findings in repetitive brain trauma. Brain Pathol 2015; 25:318-49. [PMID: 25904047 PMCID: PMC5699448 DOI: 10.1111/bpa.12249] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease confirmed at postmortem. Those at highest risk are professional athletes who participate in contact sports and military personnel who are exposed to repetitive blast events. All neuropathologically confirmed CTE cases, to date, have had a history of repetitive head impacts. This suggests that repetitive head impacts may be necessary for the initiation of the pathogenetic cascade that, in some cases, leads to CTE. Importantly, while all CTE appears to result from repetitive brain trauma, not all repetitive brain trauma results in CTE. Magnetic resonance imaging has great potential for understanding better the underlying mechanisms of repetitive brain trauma. In this review, we provide an overview of advanced imaging techniques currently used to investigate brain anomalies. We also provide an overview of neuroimaging findings in those exposed to repetitive head impacts in the acute/subacute and chronic phase of injury and in more neurodegenerative phases of injury, as well as in military personnel exposed to repetitive head impacts. Finally, we discuss future directions for research that will likely lead to a better understanding of the underlying mechanisms separating those who recover from repetitive brain trauma vs. those who go on to develop CTE.
Collapse
Affiliation(s)
- Inga K. Koerte
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
- Department of Child and Adolescent PsychiatryPsychosomatic and PsychotherapyDr. von Hauner Children's HospitalLudwig‐Maximilian UniversityMunichGermany
| | - Alexander P. Lin
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
- Center for Clinical SpectroscopyDepartment of RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
| | - Anna Willems
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
- Department of Child and Adolescent PsychiatryPsychosomatic and PsychotherapyDr. von Hauner Children's HospitalLudwig‐Maximilian UniversityMunichGermany
| | - Marc Muehlmann
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
- Department of Child and Adolescent PsychiatryPsychosomatic and PsychotherapyDr. von Hauner Children's HospitalLudwig‐Maximilian UniversityMunichGermany
| | - Jakob Hufschmidt
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
- Department of Pediatric NeurologyDr. von Hauner Children's HospitalLudwig‐Maximilian UniversityMunichGermany
| | - Michael J. Coleman
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
| | - Isobel Green
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
| | - Huijun Liao
- Center for Clinical SpectroscopyDepartment of RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
| | - David F. Tate
- General Dynamic Information Technologies ContractorDefense and Veterans Brain Injury CentersSan Antonio Military Medical CenterSan AntonioTX
| | - Elisabeth A. Wilde
- Departments of Physical Medicine and RehabilitationNeurology and RadiologyBaylor College of MedicineSan AntonioTX
- Michael E. DeBakey VA Medical CenterSan AntonioTX
| | - Ofer Pasternak
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
| | - Sylvain Bouix
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
| | - Yogesh Rathi
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
| | - Erin D. Bigler
- Neuroscience Center and Department of PsychologyBrigham Young UniversityProvoUT
| | - Robert A. Stern
- Departments of Neurology, Neurosurgery, and Anatomy and Neurobiology, Boston University Alzheimer's Disease CenterBoston University School of MedicineBostonMA
| | - Martha E. Shenton
- Psychiatry Neuroimaging LaboratoryDepartments of Psychiatry and RadiologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMA
- VA Boston Healthcare SystemBostonMA
| |
Collapse
|
50
|
McCarthy MT, Kosofsky BE. Clinical features and biomarkers of concussion and mild traumatic brain injury in pediatric patients. Ann N Y Acad Sci 2015; 1345:89-98. [DOI: 10.1111/nyas.12736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthew T. McCarthy
- Department of Pediatrics; NewYork-Presbyterian/Weill Cornell Medical Center; New York New York
| | - Barry E. Kosofsky
- Department of Pediatrics; NewYork-Presbyterian/Weill Cornell Medical Center; New York New York
| |
Collapse
|