1
|
Tos SM, Mantziaris G, Shaaban A, Pikis S, Dumot C, Sheehan JP. Stereotactic Radiosurgery Dose Reduction for Melanoma Brain Metastases Patients on Immunotherapy or Target Therapy: A Single-Center Experience. Neurosurgery 2024:00006123-990000000-01412. [PMID: 39465916 DOI: 10.1227/neu.0000000000003239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Better local control but higher rates of adverse radiation events (ARE) have been reported when combining American Society for Radiation Oncology (ASTRO)-guideline-suggested dose (SD) stereotactic radiosurgery (SRS) with immunotherapy or targeted therapy for melanoma brain metastases. The objective of this study is to explore the efficacy and safety of lower prescription doses compared with ASTRO guidelines for single-fraction SRS for patients with melanoma metastases who are concurrently receiving immunotherapy or targeted therapy. METHODS We conducted a retrospective, single-center study on 194 patients who underwent SRS between 2009 and 2022. After propensity score matching, 71 patients with 292 metastases were included in the ASTRO-SD (20-24 Gy for <2 cm, 18 Gy for ≥2 to <3 cm) group and 33 patients with 292 metastases in the reduced dose (RD, <20 Gy for <2 cm, <18 Gy for ≥2 to <3 cm) group. RESULTS The median diameter (5.4 vs 5.2 mm, P = .6), prescription volume (0.2 vs 0.2 cm3, P = .2), and radiographic follow-up (11 vs 12 months, P = .2) were similar in the 2 groups. The cumulative incidence of progressing metastases was significantly higher in the SD compared with the RD group (P = .018). Higher prescription volumes and ASTRO-suggested radiation doses were associated with local progression in multivariable analysis. Radiographic AREs were significantly more common in the SD compared with the RD group (8.6% vs 3.1%, P = .005). BRAF and other tyrosine kinase inhibitors' concurrent use, higher prescription volumes, and ASTRO-suggested radiation doses were associated with an increased risk of radiographic ARE. CONCLUSION This study provides evidence that RD SRS could offer reduced toxicity rates, while maintaining high local control as compared with the current guideline-SDs for the treatment of melanoma brain metastases.
Collapse
Affiliation(s)
- Salem M Tos
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Georgios Mantziaris
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Ahmed Shaaban
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Stylianos Pikis
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chloe Dumot
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
- Department of Neurological Surgery, Hospices Civils de Lyon, Lyon, France
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Bliley R, Avant A, Medina TM, Lanning RM. Radiation and Melanoma: Where Are We Now? Curr Oncol Rep 2024; 26:904-914. [PMID: 38822928 DOI: 10.1007/s11912-024-01557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the current role of radiotherapy for the treatment of cutaneous melanoma in the definitive, adjuvant, and palliative settings, and combinations with immunotherapy and targeted therapies. RECENT FINDINGS Definitive radiotherapy may be considered for lentigo maligna if surgery would be disfiguring. High risk, resected melanoma may be treated with adjuvant radiotherapy, but the role is poorly defined since the advent of effective systemic therapies. For patients with metastatic disease, immunotherapy and targeted therapies can be delivered safely in tandem with radiotherapy to improve outcomes. Radiotherapy and modern systemic therapies act in concert to improve outcomes, especially in the metastatic setting. Further prospective data is needed to guide the use of definitive radiotherapy for lentigo maligna and adjuvant radiotherapy for high-risk melanoma in the immunotherapy era. Current evidence does not support an abscopal response or at least identify the conditions necessary to reliably produce one with combinations of radiation and immunotherapy.
Collapse
Affiliation(s)
- Roy Bliley
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adam Avant
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theresa M Medina
- Department of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ryan M Lanning
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
3
|
Mashiach E, Alzate JD, De Nigris Vasconcellos F, Adams S, Santhumayor B, Meng Y, Schnurman Z, Donahue BR, Bernstein K, Orillac C, Bollam R, Kwa MJ, Meyers M, Oratz R, Novik Y, Silverman JS, Harter DH, Golfinos JG, Kondziolka D. Improved outcomes for triple negative breast cancer brain metastases patients after stereotactic radiosurgery and new systemic approaches. J Neurooncol 2024; 168:99-109. [PMID: 38630386 DOI: 10.1007/s11060-024-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 05/15/2024]
Abstract
PURPOSE Although ongoing studies are assessing the efficacy of new systemic therapies for patients with triple negative breast cancer (TNBC), the overwhelming majority have excluded patients with brain metastases (BM). Therefore, we aim to characterize systemic therapies and outcomes in a cohort of patients with TNBC and BM managed with stereotactic radiosurgery (SRS) and delineate predictors of increased survival. METHODS We used our prospective patient registry to evaluate data from 2012 to 2023. We included patients who received SRS for TNBC-BM. A competing risk analysis was conducted to assess local and distant control. RESULTS Forty-three patients with 262 tumors were included. The median overall survival (OS) was 16 months (95% CI 13-19 months). Predictors of increased OS after initial SRS include Breast GPA score > 1 (p < 0.001) and use of immunotherapy such as pembrolizumab (p = 0.011). The median time on immunotherapy was 8 months (IQR 4.4, 11.2). The median time to new CNS lesions after the first SRS treatment was 17 months (95% CI 12-22). The cumulative rate for development of new CNS metastases after initial SRS at 6 months, 1 year, and 2 years was 23%, 40%, and 70%, respectively. Thirty patients (70%) underwent multiple SRS treatments, with a median time of 5 months (95% CI 0.59-9.4 months) for the appearance of new CNS metastases after second SRS treatment. CONCLUSIONS TNBC patients with BM can achieve longer survival than might have been previously anticipated with median survival now surpassing one year. The use of immunotherapy is associated with increased median OS of 23 months.
Collapse
Affiliation(s)
- Elad Mashiach
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA.
| | - Juan Diego Alzate
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | | | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Brandon Santhumayor
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Ying Meng
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Zane Schnurman
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Bernadine R Donahue
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
- Maimonides Cancer Center, Maimonides Health, Brooklyn, NY, 11220, USA
| | - Kenneth Bernstein
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
| | - Cordelia Orillac
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Rishitha Bollam
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Maryann J Kwa
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Marleen Meyers
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Ruth Oratz
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Yelena Novik
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Joshua S Silverman
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
| | - David H Harter
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - John G Golfinos
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| |
Collapse
|
4
|
Knox A, Wang T, Shackleton M, Ameratunga M. Symptomatic brain metastases in melanoma. Exp Dermatol 2024; 33:e15075. [PMID: 38610093 DOI: 10.1111/exd.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Although clinical outcomes in metastatic melanoma have improved in recent years, the morbidity and mortality of symptomatic brain metastases remain challenging. Response rates and survival outcomes of patients with symptomatic melanoma brain metastases (MBM) are significantly inferior to patients with asymptomatic disease. This review focusses upon the specific challenges associated with the management of symptomatic MBM, discussing current treatment paradigms, obstacles to improving clinical outcomes and directions for future research.
Collapse
Affiliation(s)
- Andrea Knox
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
| | - Tim Wang
- Department of Radiation Oncology, Westmead Hospital, Sydney, Australia
| | - Mark Shackleton
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Vaios EJ, Shenker RF, Hendrickson PG, Wan Z, Niedzwiecki D, Winter SF, Shih HA, Dietrich J, Wang C, Salama AKS, Clarke JM, Allen K, Sperduto P, Mullikin T, Kirkpatrick JP, Floyd SR, Reitman ZJ. Long-Term Intracranial Outcomes With Combination Dual Immune-Checkpoint Blockade and Stereotactic Radiosurgery in Patients With Melanoma and Non-Small Cell Lung Cancer Brain Metastases. Int J Radiat Oncol Biol Phys 2024; 118:1507-1518. [PMID: 38097090 PMCID: PMC11056239 DOI: 10.1016/j.ijrobp.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE The intracranial benefit of offering dual immune-checkpoint inhibition (D-ICPI) with ipilimumab and nivolumab to patients with melanoma or non-small cell lung cancer (NSCLC) receiving stereotactic radiosurgery (SRS) for brain metastases (BMs) is unknown. We hypothesized that D-ICPI improves local control compared with SRS alone. METHODS AND MATERIALS Patients with melanoma or NSCLC treated with SRS from 2014 to 2022 were evaluated. Patients were stratified by treatment with D-ICPI, single ICPI (S-ICPI), or SRS alone. Local recurrence, intracranial progression (IP), and overall survival were estimated using competing risk and Kaplan-Meier analyses. IP included both local and distant intracranial recurrence. RESULTS Two hundred eighty-eight patients (44% melanoma, 56% NSCLC) with 1,704 BMs were included. Fifty-three percent of patients had symptomatic BMs. The median follow-up was 58.8 months. Twelve-month local control rates with D-ICPI, S-ICPI, and SRS alone were 94.73% (95% CI, 91.11%-96.90%), 91.74% (95% CI, 89.30%-93.64%), and 88.26% (95% CI, 84.07%-91.41%). On Kaplan-Meier analysis, only D-ICPI was significantly associated with reduced local recurrence (P = .0032). On multivariate Cox regression, D-ICPI (hazard ratio [HR], 0.4003; 95% CI, 0.1781-0.8728; P = .0239) and planning target volume (HR, 1.022; 95% CI, 1.004-1.035; P = .0059) correlated with local control. One hundred seventy-three (60%) patients developed IP. The 12-month cumulative incidence of IP was 41.27% (95% CI, 30.27%-51.92%), 51.86% (95% CI, 42.78%-60.19%), and 57.15% (95% CI, 44.98%-67.59%) after D-ICPI, S-ICPI, and SRS alone. On competing risk analysis, only D-ICPI was significantly associated with reduced IP (P = .0408). On multivariate Cox regression, D-ICPI (HR, 0.595; 95% CI, 0.373-0.951; P = .0300) and presentation with >10 BMs (HR, 2.492; 95% CI, 1.668-3.725; P < .0001) remained significantly correlated with IP. The median overall survival after D-ICPI, S-ICPI, and SRS alone was 26.1 (95% CI, 15.5-40.7), 21.5 (16.5-29.6), and 17.5 (11.3-23.8) months. S-ICPI, fractionation, and histology were not associated with clinical outcomes. There was no difference in hospitalizations or neurologic adverse events between cohorts. CONCLUSIONS The addition of D-ICPI for patients with melanoma and NSCLC undergoing SRS is associated with improved local and intracranial control. This appears to be an effective strategy, including for patients with symptomatic or multiple BMs.
Collapse
Affiliation(s)
- Eugene J Vaios
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Rachel F Shenker
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter G Hendrickson
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zihan Wan
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Donna Niedzwiecki
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, North Carolina
| | - Sebastian F Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Chunhao Wang
- Departments of Medical Physics, Duke University Medical Center, Durham, North Carolina
| | - April K S Salama
- Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey M Clarke
- Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Karen Allen
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Paul Sperduto
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Trey Mullikin
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P Kirkpatrick
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott R Floyd
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zachary J Reitman
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Neurosurgery, Duke University Medical Center, Durham, North Carolina; Pathology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
6
|
Antoni D, Mesny E, El Kabbaj O, Josset S, Noël G, Biau J, Feuvret L, Latorzeff I. Role of radiotherapy in the management of brain oligometastases. Cancer Radiother 2024; 28:103-110. [PMID: 37802747 DOI: 10.1016/j.canrad.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/27/2023] [Accepted: 03/29/2023] [Indexed: 10/08/2023]
Abstract
The management of patients with brain oligometastases is complex and relies on specific reasoning compared to extracranial oligometastases. The levels of evidence are still low because patients with brain oligometastases are frequently excluded from randomized clinical trials. Stereotactic radiotherapy should be preferred in this indication over whole brain irradiation, both for patients with metastases in place and for those who have undergone surgery. The decision of local treatment and its timing must be a multidisciplinary reflection taking into account the histological and molecular characteristics of the tumor as well as the intracranial efficacy of the prescribed systemic treatments. Great caution must be observed when using stereotactic radiotherapy and concomitant systemic treatments because interactions are still poorly documented. We present the recommendations of the French society of radiation oncology on the management of brain oligometastatic patients with radiotherapy.
Collapse
Affiliation(s)
- D Antoni
- Radiation Therapy Department, Institut de cancérologie Strasbourg Europe, 67033 Strasbourg, France.
| | - E Mesny
- Radiation Therapy Department, Hospices civils de Lyon, 69000 Lyon, France
| | - O El Kabbaj
- Radiation Therapy Department, hôpital privé Océane, 56000 Vannes, France
| | - S Josset
- Medical Physics, Institut de cancérologie de l'Ouest, 44800 Saint-Herblain, France
| | - G Noël
- Radiation Therapy Department, Institut de cancérologie Strasbourg Europe, 67033 Strasbourg, France
| | - J Biau
- Radiation Therapy Department, centre Jean-Perrin, 63011 Clermont-Ferrand, France
| | - L Feuvret
- Radiation Therapy Department, Hospices civils de Lyon, 69000 Lyon, France
| | - I Latorzeff
- Radiation Therapy Department, clinique Pasteur, 31300 Toulouse, France
| |
Collapse
|
7
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
8
|
Botticella A, Dhermain F. Combination of radiosurgery and immunotherapy in brain metastases: balance between efficacy and toxicities. Curr Opin Neurol 2023; 36:587-591. [PMID: 37865858 DOI: 10.1097/wco.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW The incidence of brain metastasis is high and still increasing. Among local therapies, stereotactic radiosurgery (SRS) is an effective treatment option, optimally sparing normal brain, even for multiple brain metastases. Immune checkpoint inhibitors (ICIs) become the new standard of care in an increasing number of cancers, and the combination SRS and ICI is often proposed to patients, but few data have been published on the efficacy and the toxicity of this association. RECENT FINDINGS Explaining this lack of consensus: retrospective studies with different primary cancers, various treatment lines and unknown levels of steroid exposure. Concerning the toxicity, the independent association of radionecrosis with brain-PTV volume was confirmed, and a decreased dose of SRS is now tested in a randomized study. Finally, a 'concurrent' delivery of SRS and ICI (within a 4 weeks' interval) seems the optimal schedule; fractionated radiosurgery for large brain metastasis should be favored. Radio-sensitizing nanoparticles and devices aiming to increase the permeability of the blood brain barrier should be considered in future combinations. SUMMARY The efficacy/toxicity balance of SRS-ICI combination should be regularly re-evaluated, anticipating continued progress in ICI and SRS delivery, with more long-survivors potentially exposed to long-term toxicities. Patients should be included in clinical trials and clearly informed to participate more closely in the final choice.
Collapse
Affiliation(s)
- Angela Botticella
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy Cancer Campus, Villejuif, France
| | | |
Collapse
|
9
|
Dohm AE, Nakashima JY, Kalagotla H, Jiang SX, Tang JD, Bhandari M, Kim Y, Graham JA, Khushalani NI, Forsyth PA, Etame AB, Liu JK, Tran ND, Vogelbaum MA, Wuthrick EJ, Yu HHM, Oliver DE, Ahmed KA. Stereotactic radiosurgery and anti-PD-1 + CTLA-4 therapy, anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK inhibitors, BRAF inhibitors, or conventional chemotherapy for the management of melanoma brain metastases. Eur J Cancer 2023; 192:113287. [PMID: 37657227 DOI: 10.1016/j.ejca.2023.113287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Immunotherapy and targeted BRAF/MEK inhibitors (i) have revolutionised the systemic management of advanced melanoma. Given the role of stereotactic radiosurgery (SRS) in the local management of brain metastases, we sought to evaluate clinical outcomes in patients with melanoma brain metastases (MBM) treated with SRS and various systemic therapies. METHODS Patients were included if MBM were diagnosed and treated with SRS within 3 months of receiving anti-PD-1+CTLA-4 therapy, anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK-i, BRAF-i, or conventional chemotherapy. Comparisons between groups were made for overall survival (OS), distant MBM control, local MBM, systemic progression-free survival (sPFS), and neurotoxicity. RESULTS In total, 257 patients with 1048 MBM treated over 368 SRS sessions between 2011 and 2020 were identified. On MVA, treatment with anti-PD1+anti-CTLA-4, anti-PD-1, and BRAF/MEK-i improved distant intracranial control over conventional chemotherapy. No significant differences were noted in local control (LC) between groups (p = 0.78). Kaplan-Meier OS at 12 months for anti-PD-1 + CTLA-4 therapy, anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK-i, BRAF-i, and conventional chemotherapy was 68%, 59%, 45%, 62%, 21%, and 15%, respectively (p = <0.0001). The sPFS rates at 12 months were 57%, 53%, 42%, 45%, 14%, and 6% (p = <0.0001). No significant differences were noted in rates of radiation necrosis (p = 0.93). CONCLUSIONS This is among the largest series evaluating MBM treated with SRS and various systemic therapy regimens. Our analysis noted significant differences in OS, distant MBM control, and sPFS by systemic therapy. No differences in LC or radiation necrosis risk were noted.
Collapse
Affiliation(s)
- Ammoren E Dohm
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Justyn Y Nakashima
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Hruday Kalagotla
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Shirley X Jiang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joseph D Tang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Menal Bhandari
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jasmine A Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nikhil I Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Peter A Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Arnold B Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - James K Liu
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nam D Tran
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Evan J Wuthrick
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Daniel E Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
10
|
Johannwerner L, Werner EM, Blanck O, Janssen S, Cremers F, Yu NY, Rades D. Radiation Necrosis Following Stereotactic Radiosurgery or Fractionated Stereotactic Radiotherapy with High Biologically Effective Doses for Large Brain Metastases. BIOLOGY 2023; 12:biology12050655. [PMID: 37237469 DOI: 10.3390/biology12050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
In Radiation Therapy Oncology Group 90-05, the maximum tolerated dose of single-fraction radiosurgery (SRS) for brain metastases of 21-30 mm was 18 Gy (biologically effective dose (BED) 45 Gy12). Since the patients in this study received prior brain irradiation, tolerable BED may be >45 Gy12 for de novo lesions. We investigated SRS and fractionated stereotactic radiotherapy (FSRT) with a higher BED for radiotherapy-naive lesions. Patients receiving SRS (19-20 Gy) and patients treated with FSRT (30-48 Gy in 3-12 fractions) with BED > 49 Gy12 for up to 4 brain metastases were compared for grade ≥ 2 radiation necrosis (RN). In the entire cohort (169 patients with 218 lesions), 1-year and 2-year RN rates were 8% after SRS vs. 2% and 13% after FSRT (p = 0.73) in per-patient analyses, and 7% after SRS vs. 7% and 10% after FSRT (p = 0.59) in per-lesion analyses. For lesions ≤ 20 mm (137 patients with 185 lesions), the RN rates were 4% (SRS) vs. 0% and 15%, respectively, (FSRT) (p = 0.60) in per-patient analyses, and 3% (SRS) vs. 0% and 11%, respectively, (FSRT) (p = 0.80) in per-lesion analyses. For lesions > 20 mm (32 patients with 33 lesions), the RN rates were 50% (SRS) vs. 9% (FSRT) (p = 0.012) in both per-patient and per-lesion analyses. In the SRS group, a lesion size > 20 mm was significantly associated with RN; in the FSRT group, lesion size had no impact on RN. Given the limitations of this study, FSRT with BED > 49 Gy12 was associated with low RN risk and may be safer than SRS for brain metastases > 20 mm.
Collapse
Affiliation(s)
- Leonie Johannwerner
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Elisa M Werner
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Saphir Radiosurgery Center Northern Germany, 24105 Kiel, Germany
| | - Stefan Janssen
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
- Medical Practice for Radiotherapy and Radiation Oncology, 30161 Hannover, Germany
| | - Florian Cremers
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Dirk Rades
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| |
Collapse
|
11
|
Thomson HM, Fortin Ensign SP, Edmonds VS, Sharma A, Butterfield RJ, Schild SE, Ashman JB, Zimmerman RS, Patel NP, Bryce AH, Vora SA, Sio TT, Porter AB. Clinical Outcomes of Stereotactic Radiosurgery-Related Radiation
Necrosis in Patients with Intracranial Metastasis from Melanoma. Clin Med Insights Oncol 2023; 17:11795549231161878. [PMID: 36968334 PMCID: PMC10034291 DOI: 10.1177/11795549231161878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/19/2023] [Indexed: 03/24/2023] Open
Abstract
Background: Radiation necrosis (RN) is a clinically relevant complication of stereotactic
radiosurgery (SRS) for intracranial metastasis (ICM) treatments. Radiation
necrosis development is variable following SRS. It remains unclear if risk
factors for and clinical outcomes following RN may be different for melanoma
patients. We reviewed patients with ICM from metastatic melanoma to
understand the potential impact of RN in this patient population. Methods: Patients who received SRS for ICM from melanoma at Mayo Clinic Arizona
between 2013 and 2018 were retrospectively reviewed. Data collected included
demographics, tumor characteristics, radiation parameters, prior surgical
and systemic treatments, and patient outcomes. Radiation necrosis was
diagnosed by clinical evaluation including brain magnetic resonance imaging
(MRI) and, in some cases, tissue evaluation. Results: Radiation necrosis was diagnosed in 7 (27%) of 26 patients at 1.6 to 38
months following initial SRS. Almost 92% of all patients received systemic
therapy and 35% had surgical resection prior to SRS. Patients with RN
trended toward having larger ICM and a prior history of surgical resection,
although statistical significance was not reached. Among patients with
resection, those who developed RN had a longer period between surgery and
SRS start (mean 44 vs 33 days). Clinical improvement following treatment for
RN was noted in 2 (29%) patients. Conclusions: Radiation necrosis is relatively common following SRS for treatment of ICM
from metastatic melanoma and clinical outcomes are poor. Further studies
aimed at mitigating RN development and identifying novel approaches for
treatment are warranted.
Collapse
Affiliation(s)
- Holly M Thomson
- Department of Internal Medicine, Mayo
Clinic, Phoenix, AZ, USA
| | | | | | - Akanksha Sharma
- Department of Neurology, Pacific
Neurosciences Institute and John Wayne Cancer Center, Santa Monica, CA, USA
| | | | - Steven E Schild
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | | | | | - Naresh P Patel
- Department of Neurosurgery, Mayo
Clinic, Phoenix, AZ, USA
| | - Alan H Bryce
- Department of Hematology and Oncology,
Mayo Clinic, Phoenix, AZ, USA
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | - Alyx B Porter
- Department of Hematology and Oncology,
Mayo Clinic, Phoenix, AZ, USA
- Department of Neurology, College of
Medicine, Mayo Clinic, Phoenix, AZ, USA
- Alyx B Porter, Department of Neurology,
College of Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
12
|
A Review of the Role of Stereotactic Radiosurgery and Immunotherapy in the Management of Primary Central Nervous System Tumors. Biomedicines 2022; 10:biomedicines10112977. [PMID: 36428546 PMCID: PMC9687865 DOI: 10.3390/biomedicines10112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Stereotactic radiosurgery (SRS) and immune checkpoint inhibitors (ICIs) are widely used in the management of brain metastases. These therapies are commonly administered concurrently; as SRS may enhance anti-tumor immunity and responsiveness to ICIs. However, the use of ICIs with and without SRS in the management of primary brain tumors remains a controversial topic. Meningiomas are the most common nonmalignant and extra-parenchymal brain tumor, which often respond well to surgery and radiotherapy. However, higher grade meningiomas tend to be resistant to these treatments, and the use of chemotherapy and targeted agents in this setting have yielded disappointing results. Thus, there is heightened interest in the utilization of ICIs. Glioblastoma is the most common malignant primary intraparenchymal brain tumor. It is associated with a grim prognosis with a median overall survival of approximately 20 months, despite optimal therapy. While SRS in the adjuvant setting, and ICI in the recurrent setting, have failed to demonstrate a survival benefit, SRS in the preoperative setting has the potential to enhance anti-tumor immunity and responsiveness to ICIs. Thus, these treatments represent an attractive option to add to the armamentarium of meningioma and glioblastoma management. In this review, we provide a detailed overview of the evidence supporting the use of ICIs and SRS in each of these settings.
Collapse
|