1
|
Song W, Giannotti A, Bekiaridou A, Bloom O, Zanos S. Low intensity trans-spinal focused ultrasound reduces mechanical sensitivity and suppresses spinal microglia activation in rats with chronic constriction injury. Bioelectron Med 2025; 11:8. [PMID: 40159475 PMCID: PMC11956222 DOI: 10.1186/s42234-025-00170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Low intensity, trans-spinal focused ultrasound (tsFUS) is a noninvasive neuromodulation approach that has been shown to modulate spinal circuit excitability in healthy rats. Here, we evaluated the potential of tsFUS for alleviating neuropathic pain by testing it in a chronic constriction injury (CCI) model. Male rats underwent CCI of the left sciatic nerve and then received tsFUS (2 kHz pulse repetition frequency; 40% duty cycle) or sham stimulation, targeted at spinal segment level L5 for 3 min daily over three days. As expected, CCI causes significant reduction of von Frey Threshold (vFT), a measure of mechanical sensitivity. We found that tsFUS treatment is associated with increased vFT compared to sham; this increase persists beyond the duration of treatment, through days 4 to 23 post-CCI. In spinal cords of tsFUS-treated animals, counts of spinal microglia (Iba1 + cells) and of activated, pro-inflammatory microglia (Iba1 + /CD86 + cells), are reduced compared to sham-treated animals. This reduction in microglia counts is limited to the insonified side of the spinal cord, ipsilateral to CCI. These findings suggest that tsFUS may be a promising approach for treatment of neuropathic pain at early stages, possibly by attenuating the development of microglial-driven inflammation.
Collapse
Affiliation(s)
- Weiguo Song
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| | - Alice Giannotti
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alexandra Bekiaridou
- Elmezzi Graduate School of Molecular Medicine, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Ona Bloom
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
| |
Collapse
|
2
|
Mofatteh M, Mohamed A, Mashayekhi MS, Skandalakis GP, Neudorfer C, Arfaie S, MohanaSundaram A, Sabahi M, Anand A, Aboulhosn R, Liao X, Horn A, Ashkan K. Deep brain stimulation of the hypothalamic region: a systematic review. Acta Neurochir (Wien) 2025; 167:33. [PMID: 39904782 PMCID: PMC11794333 DOI: 10.1007/s00701-025-06430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been successfully used for the treatment of circuitopathies including movement, anxiety, and behavioral disorders. The hypothalamus is a crucial integration center for many peripheral and central pathways relating to cardiovascular, metabolic, and behavioral functions and constitutes a potential target for neuromodulation in treatment-refractory conditions. To conduct a systematic review, investigating hypothalamic targets in DBS, their indications, and the primary clinical findings. METHODS PubMed, Scopus, and Web of Science databases were searched in accordance with the PRISMA guideline to identify papers published in English studying DBS of the hypothalamus in humans. RESULTS After screening 3,148 papers, 34 studies consisting of 412 patients published over two decades were included in the final review. Hypothalamic DBS was indicated in refractory headaches (n = 238, 57.8%), aggressive behavior (n = 100, 24.3%), mild Alzheimer's disease (n = 58, 14.1%), trigeminal neuralgia in multiple sclerosis (n = 5, 1.2%), Prader-Willi syndrome (n = 4, 0.97%), and atypical facial pain (n = 3, 0.73%). The posterior hypothalamus was the most common DBS target site across 30 studies (88.2%). 262 (63.6%) participants were males, and 110 (26.7%) were females. 303 (73.5%) patients were adults whereas 33 (8.0%) were pediatrics. The lowest mean age of participants was 15.25 ± 4.6 years for chronic refractory aggressiveness, and the highest was 68.5 ± 7.9 years in Alzheimer's disease patients. The mean duration of the disease ranged from 2.2 ± 1.7 (mild Alzheimer's disease) to 19.8 ± 10.1 years (refractory headaches). 213 (51.7%) patients across 29 studies (85.3%) reported symptom improvements which ranged from 23.1% to 100%. 25 (73.5%) studies reported complications, most of which were associated with higher voltage stimulations. CONCLUSIONS DBS of the hypothalamus is feasible in selected patients with various refractory conditions ranging from headaches to aggression in both pediatric and adult populations. Future large-scale studies with long-term follow-up are required to validate the safety and efficacy data and extend these findings.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- Neuro International Collaboration (NIC), London, UK.
| | - Abdulkadir Mohamed
- Medical Sciences Division, University of Oxford, Oxford, UK
- Neuro International Collaboration (NIC), Oxford, UK
| | - Mohammad Sadegh Mashayekhi
- Faculty of Medicine, Division of Neurosurgery, University of Ottawa, Ottawa, ON, Canada
- Neuro International Collaboration (NIC), Vancouver, Ottawa, ON, Canada
| | - Georgios P Skandalakis
- Department of Neurosurgery, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Clemens Neudorfer
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, corporate member of, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Neurosurgery, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Neuro International Collaboration (NIC), Montreal, QC, Canada
| | | | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Ayush Anand
- Koirala Institute of Health Sciences, B. P, Dharan, Nepal
| | | | - Xuxing Liao
- Department of Neurosurgery, First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Keyoumars Ashkan
- Neuro International Collaboration (NIC), London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- King's Health Partners Academic Health Sciences Centre, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Colasurdo M, Ahmed AK, Gandhi D. MR-guided Focused Ultrasound Thalamotomy for Chronic Pain. Magn Reson Imaging Clin N Am 2024; 32:661-672. [PMID: 39322355 DOI: 10.1016/j.mric.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
MR-guided focused ultrasound (FUS) represents a promising alternative for patients with chronic neuropathic who have failed medical management and other treatment options. Early single-center experience with chronic neuropathic pain and trigeminal neuralgia has demonstrated favorable long-term outcomes. Excellent safety profile with low risk of motor and sensory complications and so far anecdotal permanent neurologic deficits make FUS a powerful tool to treat patients who are otherwise hopeless. Neuromodulation may be the most influential factor driving outcomes and studies devised to detect neuroplasticity will be critical to guide such therapies.
Collapse
Affiliation(s)
- Marco Colasurdo
- Department of Interventional Radiology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Dheeraj Gandhi
- Department of Neurosurgery, University of Maryland School of Medicine; Division of Neurointerventional Surgery, Department of Diagnostic Radiology, University of Maryland School of Medicine, University of Maryland, 22 South Green Street, Baltimore, MD 21201, USA; Department of Radiology, University of Maryland School of Medicine, 22 South Green Street, Baltimore, MD 21201, USA; Department of Neurology, University of Maryland School of Medicine, 22 South Green Street, Baltimore, MD 21201, USA; Department of Neurosurgery, University of Maryland School of Medicine, 22 South Green Street, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Natera-Villalba E, Ruiz-Yanzi MA, Gasca-Salas C, Matarazzo M, Martínez-Fernández R. MR-guided focused ultrasound in movement disorders and beyond: Lessons learned and new frontiers. Parkinsonism Relat Disord 2024; 122:106040. [PMID: 38378311 DOI: 10.1016/j.parkreldis.2024.106040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
The development of MR-guided focused ultrasound (MRgFUS) has provided a new therapeutic tool for neuropsychiatric disorders. In contrast to previously available neurosurgical techniques, MRgFUS allows precise impact on deep brain structures without the need for incision and yields an immediate effect. In its high-intensity modality (MRgHIFU), it produces accurate therapeutic thermoablation in previously selected brain targets. Importantly, the production of the lesion is progressive and highly controlled in real-time by both neuroimaging and clinical means. MRgHIFU ablation is already an accepted and widely used treatment for medically-refractory Parkinson's disease and essential tremor. Notably, other neurological disorders and diverse brain targets, including bilateral treatments, are currently under examination. Conversely, the low-intensity modality (MRgLIFU) shows promising prospects in neuromodulation and transient blood-brain barrier opening (BBBO). In the former circumstance, MRgLIFU could serve as a powerful clinical and research tool for non-invasively modulating brain activity and function. BBBO, on the other hand, emerges as a potentially impactful method to influence disease pathogenesis and progression by increasing brain target engagement of putative therapeutic agents. While promising, these applications remain experimental. As a recently developed technology, MRgFUS is not without challenges and questions to be addressed. Further developments and broader experience are necessary to enhance MRgFUS capabilities in both research and clinical practice, as well as to define device constraints. This clinical mini-review aims to provide an overview of the main evidence of MRgFUS application and to highlight unmet needs and future potentialities of the technique.
Collapse
Affiliation(s)
- Elena Natera-Villalba
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain; PhD Medicine Program, Universidad Autónoma de Madrid, Madrid, Spain
| | - María-Agustina Ruiz-Yanzi
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain
| | - Carmen Gasca-Salas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto Carlos III, Madrid, Spain; University CEU-San Pablo, Madrid, Spain
| | - Michele Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Raúl Martínez-Fernández
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta Del Sur, HM Hospitales, Madrid, Spain; CIBERNED, Instituto Carlos III, Madrid, Spain; University CEU-San Pablo, Madrid, Spain.
| |
Collapse
|