1
|
Godoy DA, Rubiano AM, Aguilera S, Jibaja M, Videtta W, Rovegno M, Paranhos J, Paranhos E, de Amorim RLO, Castro Monteiro da Silva Filho R, Paiva W, Flecha J, Faleiro RM, Almanza D, Rodriguez E, Carrizosa J, Hawryluk GWJ, Rabinstein AA. Moderate Traumatic Brain Injury in Adult Population: The Latin American Brain Injury Consortium Consensus for Definition and Categorization. Neurosurgery 2024; 95:e57-e70. [PMID: 38529956 DOI: 10.1227/neu.0000000000002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
Moderate traumatic brain injury (TBI) is a diagnosis that describes diverse patients with heterogeneity of primary injuries. Defined by a Glasgow Coma Scale between 9 and 12, this category includes patients who may neurologically worsen and require increasing intensive care resources and/or emergency neurosurgery. Despite the unique characteristics of these patients, there have not been specific guidelines published before this effort to support decision-making in these patients. A Delphi consensus group from the Latin American Brain Injury Consortium was established to generate recommendations related to the definition and categorization of moderate TBI. Before an in-person meeting, a systematic review of the literature was performed identifying evidence relevant to planned topics. Blinded voting assessed support for each recommendation. A priori the threshold for consensus was set at 80% agreement. Nine PICOT questions were generated by the panel, including definition, categorization, grouping, and diagnosis of moderate TBI. Here, we report the results of our work including relevant consensus statements and discussion for each question. Moderate TBI is an entity for which there is little published evidence available supporting definition, diagnosis, and management. Recommendations based on experts' opinion were informed by available evidence and aim to refine the definition and categorization of moderate TBI. Further studies evaluating the impact of these recommendations will be required.
Collapse
Affiliation(s)
| | - Andres M Rubiano
- Universidad El Bosque, Bogota , Colombia
- MEDITECH Foundation, Cali , Colombia
| | - Sergio Aguilera
- Department Neurosurgery, Herminda Martín Hospital, Chillan , Chile
| | - Manuel Jibaja
- School of Medicine, San Francisco University, Quito , Ecuador
- Intensive Care Unit, Eugenio Espejo Hospital, Quito , Ecuador
| | - Walter Videtta
- Intensive Care Unit, Hospital Posadas, Buenos Aires , Argentina
| | - Maximiliano Rovegno
- Department Critical Care, Pontificia Universidad Católica de Chile, Santiago , Chile
| | - Jorge Paranhos
- Department of Neurosurgery and Critical Care, Santa Casa da Misericordia, Sao Joao del Rei , Minas Gerais , Brazil
| | - Eduardo Paranhos
- Intensive Care Unit, HEMORIO and Santa Barbara Hospitals, Rio de Janeiro , Brazil
| | | | | | - Wellingson Paiva
- Experimental Surgery Laboratory and Division of Neurological Surgery, University of São Paulo Medical School, Sao Paulo , Brazil
| | - Jorge Flecha
- Intensive Care Unit, Trauma Hospital, Asuncion , Paraguay
- Social Security Institute Central Hospital, Asuncion , Paraguay
| | - Rodrigo Moreira Faleiro
- Department of Neurosurgery, João XXIII Hospital and Felício Rocho Hospital, Faculdade de Ciencias Médicas de MG, Belo Horizonte , Brazil
| | - David Almanza
- Critical and Intensive Care Medicine Department, University Hospital, Fundación Santa Fe de Bogotá, Bogotá , Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá , Colombia
| | - Eliana Rodriguez
- Critical and Intensive Care Medicine Department, University Hospital, Fundación Santa Fe de Bogotá, Bogotá , Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá , Colombia
| | - Jorge Carrizosa
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá , Colombia
- Neurointensive Care Unit, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá , Colombia
| | - Gregory W J Hawryluk
- Cleveland Clinic Akron General Hospital, Neurological Institute, Akron , Ohio , USA
| | - Alejandro A Rabinstein
- Neurocritical Care and Hospital Neurology Division, Mayo Clinic, Rochester , Minnesota , USA
| |
Collapse
|
2
|
Kasprowicz M, Hendler M, Ziółkowski A, Nasr N, Czosnyka M. Analysis of phase shift between pulse oscillations of macro- and microvascular cerebral blood flow in patients with traumatic brain injury. Acta Neurochir (Wien) 2024; 166:321. [PMID: 39093519 PMCID: PMC11297107 DOI: 10.1007/s00701-024-06209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE After a traumatic brain injury (TBI), monitoring of both macrovascular and microvascular blood circulation can potentially yield a better understanding of pathophysiology of potential secondary brain lesions. We investigated the changes in phase shift (PS) between cardiac-induced oscillations of cerebral blood flow (CBF) measured at macro (ultrasound Doppler) and microvascular (laser Doppler) level. Further we assessed the impact of intracranial pressure (ICP) on PS in TBI patients. A secondary aim was to compare PS to TCD-derived cerebral arterial time constant (τ), a parameter that reflects the circulatory transit time. METHODS TCD blood flow velocities (FV) in the middle cerebral artery, laser Doppler blood microcirculation flux (LDF), arterial blood pressure (ABP), and ICP were monitored in 29 consecutive patients with TBI. Eight patients were excluded because of poor-quality signals. For the remaining 21 patients (median age = 23 (Q1: 20-Q3: 33); men:16,) data were retrospectively analysed. PS between the fundamental harmonics of FV and LDF signals was determined using spectral analysis. τ was estimated as a product of cerebrovascular resistance and compliance, based on the mathematical transformation of FV and ABP, ICP pulse waveforms. RESULTS PS was negative (median: -26 (Q1: -38-Q3: -15) degrees) indicating that pulse LDF at a heart rate frequency lagged behind TCD pulse. With rising mean ICP, PS became more negative (R = -0.51, p < 0.019) indicating that delay of LDF pulse increases. There was a significant correlation between PS and cerebrovascular time constant (R = -0.47, p = 0.03). CONCLUSIONS Pulse divergence between FV and LDF became greater with elevated ICP, likely reflecting prolonged circulatory travel time.
Collapse
Affiliation(s)
- Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Marta Hendler
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Arkadiusz Ziółkowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nathalie Nasr
- Department of Neurology, Poitiers University Hospital, Poitiers, France
- Laboratoire de Neurosciences Expérimentales Et Cliniques, INSERM U-1084, University of Poitiers, Poitiers, France
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
3
|
Llompart-Pou JA, Galarza L, Amaya-Villar R, Godoy DA. Transcranial sonography in the critical patient. Med Intensiva 2024; 48:165-173. [PMID: 38431382 DOI: 10.1016/j.medine.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 03/05/2024]
Abstract
Transcranial ultrasonography is a non-invasive, bedside technique that has become a widely implemented tool in the evaluation and management of neurocritically ill patients. It constitutes a technique in continuous growth whose fundamentals (and limitations) must be known by the intensivist. This review provides a practical approach for the intensivist, including the different sonographic windows and planes of insonation and its role in different conditions of the neurocritical patients and in critical care patients of other etiologies.
Collapse
Affiliation(s)
- Juan Antonio Llompart-Pou
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
| | - Laura Galarza
- Servicio de Medicina Intensiva, Hospital General Universitario de Castellón, Castellón de la Plana, Spain
| | - Rosario Amaya-Villar
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Daniel Agustín Godoy
- Unidad de Cuidados Neurointensivos, Sanatorio Pasteur, San Fernando del Valle de Catamarca, Argentina
| |
Collapse
|
4
|
Gil-Jardiné C, Payen JF, Bernard R, Bobbia X, Bouzat P, Catoire P, Chauvin A, Claessens YE, Douay B, Dubucs X, Galanaud D, Gauss T, Gauvrit JY, Geeraerts T, Glize B, Goddet S, Godier A, Le Borgne P, Rousseau G, Sapin V, Velly L, Viglino D, Vigue B, Cuvillon P, Frasca D, Claret PG. Management of patients suffering from mild traumatic brain injury 2023. Anaesth Crit Care Pain Med 2023; 42:101260. [PMID: 37285919 DOI: 10.1016/j.accpm.2023.101260] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To develop a multidisciplinary French reference that addresses initial pre- and in-hospital management of a mild traumatic brain injury patient. DESIGN A panel of 22 experts was formed on request from the French Society of Emergency Medicine (SFMU) and the French Society of Anaesthesiology and Critical Care Medicine (SFAR). A policy of declaration and monitoring of links of interest was applied and respected throughout the process of producing the guidelines. Similarly, no funding was received from any company marketing a health product (drug or medical device). The expert panel had to respect and follow the Grade® (Grading of Recommendations Assessment, Development and Evaluation) methodology to evaluate the quality of the evidence on which the recommendations were based. Given the impossibility of obtaining a high level of evidence for most of the recommendations, it was decided to adopt a "Recommendations for Professional Practice" (RPP) format, rather than a Formalized Expert Recommendation (FER) format, and to formulate the recommendations using the terminology of the SFMU and SFAR Guidelines. METHODS Three fields were defined: 1) pre-hospital assessment, 2) emergency room management, and 3) emergency room discharge modalities. The group assessed 11 questions related to mild traumatic brain injury. Each question was formulated using a PICO (Patients Intervention Comparison Outcome) format. RESULTS The experts' synthesis work and the application of the GRADE® method resulted in the formulation of 14 recommendations. After two rounds of rating, strong agreement was obtained for all recommendations. For one question, no recommendation could be made. CONCLUSION There was strong agreement among the experts on important, transdisciplinary recommendations, the purpose of which is to improve management practices for patients with mild head injury.
Collapse
Affiliation(s)
- Cédric Gil-Jardiné
- Centre Hospitalier Universitaire de Bordeaux, Hôpital Pellegrin, Service des Urgences-Adultes, Population Health, INSERM U1219, équipe aHeAD, Université de Bordeaux, Bordeaux, France.
| | - Jean-François Payen
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Rémy Bernard
- Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Xavier Bobbia
- Montpellier University, UR UM 103 (IMAGINE), Department of Emergency Medicine, CHU Montpellier, Montpellier, France
| | - Pierre Bouzat
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Pierre Catoire
- Emergency Consultant, Academic Clinical Fellow (Pitié-Salpétrière University, General Emergency Department, Paris) - Tactical Ultrasound Course for Ukraine (TUSC-UA) Course Director - Mehad, France
| | - Anthony Chauvin
- Service d'Accueil des Urgences/SMUR, CHU Lariboisière, Université de Paris - Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Yann-Erick Claessens
- Département de Médecine d'urgence, Centre Hospitalier Princesse Grace, Avenue Pasteur, MC-98002, Monaco
| | - Bénédicte Douay
- SMUR/Service des Urgences, Hôpital Beaujon, AP-HP Nord, Clichy, France
| | - Xavier Dubucs
- Emergency Departement, Centre Hospitalo-Universitaire de Toulouse, Place du Docteur Baylac, 31300 Toulouse, France
| | - Damien Galanaud
- Service de Neuroradiologie, GH Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Tobias Gauss
- Department of Anesthesiology and Critical Care, Grenoble Alpes University Hospital, University Grenoble Alpes, F-38000 Grenoble, France
| | - Jean-Yves Gauvrit
- Service de Neuroradiologie, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - Thomas Geeraerts
- Pole Anesthesie Réanimation et INSERM Tonic, CHU de Toulouse et Universite Toulouse 3, Toulouse, France
| | - Bertrand Glize
- PMR Department, CHU de Bordeaux, ACTIVE Team, BPH INSERM U1219, University of Bordeaux, France
| | - Sybille Goddet
- Samu-21, CHU de Dijon, SAU-Smur, CH du Creusot, Dijon, France
| | - Anne Godier
- Université Paris Cité, APHP, Hôpital Européen Georges Pompidou, Service d'anesthésie Réanimation and Inserm UMRS_1140, Paris, France
| | - Pierrick Le Borgne
- Emergency Department, University Hospitals of Strasbourg, 1 place de l'hôpital, 67000 Strasbourg, France - INSERM UMR 1260, Regenerative NanoMedicine (RNM), Fédération de Médecine Translationnelle (FMTS), Faculté de Médecine, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg Cedex, France
| | | | - Vincent Sapin
- Service de Biochimie et de Génétique Moléculaire, Centre de Biologie, CHU de Clermont-Ferrand, France
| | - Lionel Velly
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Aix Marseille University, Marseille, France
| | - Damien Viglino
- University Grenoble-Alpes, Emergency Department, CHU Grenoble-Alpes, Grenoble, France - HP2 Laboratory INSERM U1300, Grenoble, France
| | - Bernard Vigue
- Département d'Anesthésie Réanimation, Hôpital Universitaire de Bicêtre, Le Kremlin Bicêtre, France
| | - Philippe Cuvillon
- EA 2992 IMAGINE, Prévention et Prise en Charge de la Défaillance Circulatoire des Patients en état de Choc, Anaesthesiology Department, CHU Nîmes, University Montpellier, 30000 Nîmes, France
| | - Denis Frasca
- Université de Poitiers, UFR de Médecine-Pharmacie, Poitiers, France, Service d'Anesthésie, Réanimation et Médecine Péri-Opératoire, CHU de Poitiers, France, INSERM U1246, Methods in Patients-Centered Outcomes and Health Research - SPHERE, Nantes, France
| | | |
Collapse
|
5
|
Chen M, Wu H, Li Z, Ge S, Zhao L, Zhang X, Qu Y. Intracranial-Pressure-Monitoring-Assisted Management Associated with Favorable Outcomes in Moderate Traumatic Brain Injury Patients with a GCS of 9-11. J Clin Med 2022; 11:6661. [PMID: 36431137 PMCID: PMC9694446 DOI: 10.3390/jcm11226661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: With a mortality rate of 10−30%, a moderate traumatic brain injury (mTBI) is one of the most variable traumas. The indications for intracranial pressure (ICP) monitoring in patients with mTBI and the effects of ICP on patients’ outcomes are uncertain. The purpose of this study was to examine the indications of ICP monitoring (ICPm) and its effects on the long-term functional outcomes of mTBI patients. Methods: Patients with Glasgow Coma Scale (GCS) scores of 9−11 at Tangdu hospital, between January 2015 and December 2021, were enrolled and treated in this retrospective cohort study. We assessed practice variations in ICP interventions using the therapy intensity level (TIL). Six-month mortality and a Glasgow Outcome Scale Extended (GOS-E) score were the main outcomes. The secondary outcome was neurological deterioration (ND) events. The indication and the estimated impact of ICPm on the functional outcome were investigated by using binary regression analyses. Results: Of the 350 patients, 145 underwent ICP monitoring-assisted management, and the other 205 patients received a standard control based on imaging or clinical examinations. A GCS ≤ 10 (OR 1.751 (95% CI 1.216−3.023), p = 0.003), midline shift (mm) ≥ 2.5 (OR 3.916 (95% CI 2.076−7.386) p < 0.001), and SDH (OR 1.772 (95% CI 1.065−2.949) p = 0.028) were predictors of ICP. Patients who had ICPm (14/145 (9.7%)) had a decreased 6-month mortality rate compared to those who were not monitored (40/205 (19.5%), p = 0.011). ICPm was linked to both improved neurological outcomes at 6 months (OR 0.815 (95% CI 0.712−0.933), p = 0.003) and a lower ND rate (2 = 11.375, p = 0.010). A higher mean ICP (17.32 ± 3.52, t = −6.047, p < 0.001) and a more significant number of ICP > 15 mmHg (27 (9−45.5), Z = −5.406, p < 0.001) or ICP > 20 mmHg (5 (0−23), Z = −4.635, p < 0.001) 72 h after injury were associated with unfavorable outcomes. The best unfavorable GOS-E cutoff value of different ICP characteristics showed that the mean ICP was >15.8 mmHg (AUC 0.698; 95% CI, 0.606−0.789, p < 0.001), the number of ICP > 15 mmHg was >25.5 (AUC 0.681; 95% CI, 0.587−0.774, p < 0.001), and the number of ICP > 20 mmHg was >6 (AUC 0.660; 95% CI, 0.561−0.759, p < 0.001). The total TIL score during the first 72 h post-injury in the non-ICP group (9 (8, 11)) was lower than that of the ICP group (13 (9, 17), Z = −8.388, p < 0.001), and was associated with unfavorable outcomes. Conclusion: ICPm-assisted management was associated with better clinical outcomes six months after discharge and lower incidences of ND for seven days post-injury. A mean ICP > 15.8 mmHg, the number of ICP > 15 mmHg > 25.5, or the number of ICP > 20 mmHg > 6 implicate an unfavorable long-term prognosis after 72 h of an mTBI.
Collapse
Affiliation(s)
| | | | | | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | | | | | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| |
Collapse
|
6
|
Dzierzęcki S, Ząbek M, Zapolska G, Tomasiuk R. The S-100B level, intracranial pressure, body temperature, and transcranial blood flow velocities predict the outcome of the treatment of severe brain injury. Medicine (Baltimore) 2022; 101:e30348. [PMID: 36197246 PMCID: PMC9509168 DOI: 10.1097/md.0000000000030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study evaluates the applicability of S100B levels, mean maximum velocity (Vmean) over time, pulsatility index (PI), intracranial pressure (ICP), and body temperature (T) for the prediction of the treatment of patients with traumatic brain injury (TBI). Sixty patients defined by the Glasgow Coma Scale score ≤ 8 were stratified using the Glasgow Coma Scale into 2 groups: favorable (FG: Glasgow Outcome Scale ≥ 4) and unfavorable (UG: Glasgow Outcome Scale < 4). The S100B concentration was at the time of hospital admission. Vmean was measured using transcranial Doppler. PI was derived from a transcranial Doppler examination. T was measured in the temporal artery. The differences in mean between FG and UG were tested using a bootstrap test of 10,000 repetitions with replacement. Changes in S100B, Vmean, PI, ICP, and T levels stratified by the group were calculated using the one-way aligned rank transform for nonparametric factorial analysis of variance. The reference ranges for the levels of S100B, Vmean, and PI were 0.05 to 0.23 µg/L, 30.8 to 73.17 cm/s, and 0.62 to 1.13, respectively. Both groups were defined by an increase in Vmean, a decrease in S100B, PI, and ICP levels; and a virtually constant T. The unfavorable outcome is defined by significantly higher levels of all parameters, except T. A favorable outcome is defined by S100B < 3 mg/L, PI < 2.86, ICP > 25 mm Hg, and Vmean > 40 cm/s. The relationships provided may serve as indicators of the results of the TBI treatment.
Collapse
Affiliation(s)
- Sebastian Dzierzęcki
- Department of Neurosurgery, Postgraduate Medical Centre, Warsaw, Poland
- Gamma Knife Centre, Brodno Masovian Hospital, Warsaw, Poland
- *Correspondence: Sebastian Dzierzecki, Warsaw Gamma Knife Centre, Brodno Masovian Hospital, Kondratowicza 8 Building H, 03-242 Warsaw, Poland (e-mail: )
| | - Mirosław Ząbek
- Department of Neurosurgery, Postgraduate Medical Centre, Warsaw, Poland
- Clinical Department of Neurosurgery, Central Clinical Hospital of the Ministry of the Interior and Administration, Warsaw, Poland
| | | | - Ryszard Tomasiuk
- Kazimierz Pulaski University of Technology and Humanities Radom, Faculty of Medical Sciences and Health Sciences, Radom, Poland
| |
Collapse
|
7
|
Razumovsky AY, Jahangiri FR, Balzer J, Alexandrov AV. ASNM and ASN joint guidelines for transcranial Doppler ultrasonic monitoring: An update. J Neuroimaging 2022; 32:781-797. [PMID: 35589555 DOI: 10.1111/jon.13013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Today, it seems prudent to reconsider how ultrasound technology can be used for providing intraoperative neurophysiologic monitoring that will result in better patient outcomes and decreased length and cost of hospitalization. An extensive and rapidly growing literature suggests that the essential hemodynamic information provided by transcranial Doppler (TCD) ultrasonography neuromonitoring (TCDNM) would provide effective monitoring modality for improving outcomes after different types of vascular, neurosurgical, orthopedic, cardiovascular, and cardiothoracic surgeries and some endovascular interventional or diagnostic procedures, like cardiac catheterization or cerebral angiography. Understanding, avoiding, and preventing peri- or postoperative complications, including neurological deficits following abovementioned surgeries, endovascular intervention, or diagnostic procedures, represents an area of great public and economic benefit for society, especially considering the aging population. The American Society of Neurophysiologic Monitoring and American Society of Neuroimaging Guidelines Committees formed a joint task force and developed updated guidelines to assist in the use of TCDNM in the surgical and intensive care settings. Specifically, these guidelines define (1) the objectives of TCD monitoring; (2) the responsibilities and behaviors of the neurosonographer during monitoring; (3) instrumentation and acquisition parameters; (4) safety considerations; (5) contemporary rationale for TCDNM; (6) TCDNM perspectives; and (7) major recommendations.
Collapse
Affiliation(s)
| | | | - Jeffrey Balzer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Andrei V Alexandrov
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Cerebral Pulsatility Index and In-Hospital Mortality in Chinese Patients with Traumatic Brain Injury: A Retrospective Cohort Study. J Clin Med 2022; 11:jcm11061559. [PMID: 35329885 PMCID: PMC8950001 DOI: 10.3390/jcm11061559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
There are limited studies on the relationship between the vascular transcranial Doppler (TCD) pulsatility index (PI) and in-hospital mortality in patients with traumatic brain injury (TBI). To address this issue, we conducted this study to explore whether, in newly diagnosed Chinese TBI patients, the PI is an independent predictor of the in-hospital mortality rate after adjusting for other covariates. This study is a retrospective cohort study. From 24 March 2019 to 24 January 2020, we recruited 144 Chinese patients with newly diagnosed TBI from a Chinese hospital. The independent variable was the PI, and the dependent variable was in-hospital mortality in TBI patients. The relationship between the PI and in-hospital mortality in TBI patients was nonlinear and had an inflection point of 1.11. In the multivariate analysis, after adjusting for potential confounders, the effect sizes and confidence intervals per additional 0.1 units on the left and right sides of the inflection point were 4.09 (1.30–12.83) and 1.42 (0.93–2.17). The relationship between the PI and in-hospital mortality was nonlinear. The PI was positively related with in-hospital mortality when the PI was less than 1.11.
Collapse
|
9
|
Chen M, Li Z, Yan Z, Ge S, Zhang Y, Yang H, Zhao L, Liu L, Zhang X, Cai Y, Qu Y. Predicting Neurological Deterioration after Moderate Traumatic Brain Injury: Development and Validation of a Prediction Model Based on Data Collected on Admission. J Neurotrauma 2022; 39:371-378. [PMID: 35018830 DOI: 10.1089/neu.2021.0360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Moderate traumatic brain injury (mTBI) is a heterogeneous entity that poorly defined in the literature. mTBI patients suffer from a high rate of neurological deterioration (ND), which is usually accompanied with poor prognosis and no definitive methods to predict. The purpose of this study is to develop and validate a prediction model that estimates the ND risk in mTBI patients using data collected on admission. Retrospectively collected 479 mTBI patients' data in our department were analyzed by logistic regression models. Bivariable logistic regression identified variables with a p-value<0.05. Multivariable logistic regression modeling with backward stepwise elimination was used to determine reduced parameters and establish a prediction model. The discrimination efficacy, calibration efficacy, and clinical utility of the prediction model were evaluated. The prediction model was validated using 176 patients' data collected from another hospital. Eight independent prognostic factors were identified: hypertension, Marshall's scale (types III and IV), subdural hemorrhage (SDH), location of contusion (LOC) (frontal and temporal contusions), Injury Severity Score (ISS) >13, D-dimer level >11.4 mg/L, Glasgow Coma Scale (GCS) score ≤10, and platelet (PLT) count ≤152×109/L. A prediction model was established and was shown as a nomogram. Using bootstrapping, internal validation showed that the C-statistic of the prediction model was 0.881 (95% confidence interval (CI): 0.849-0.909). The results of external validation showed that the nomogram could predict ND with an area under the curve (AUC) of 0.827 (95% CI: 0763.-0.880). The present model, based on simple parameters collected on admission, can predict the risk of ND in mTBI patients accurately. The high discriminative ability indicates the potential of this model for classifying mTBI patients according to ND risk.
Collapse
Affiliation(s)
- Mingsheng Chen
- Air Force Medical University Tangdu Hospital Department of Neurosurgery, 571816, Xi'an, Shaanxi, China;
| | - Zhihong Li
- Air Force Medical University Tangdu Hospital Department of Neurosurgery, 571816, Xi'an, Shaanxi, China;
| | - Zhifeng Yan
- Air Force Medical University Tangdu Hospital Department of Neurosurgery, 571816, Xi'an, Shaanxi, China;
| | - Shunnan Ge
- Tangdu Hospital Fourth Military Medical University, 56697, Department of Neurosurgery, Xi'an, Shaan Xi, China;
| | - Yongbing Zhang
- Department of Neurosurgery, Yan'an People's Hospital, yan'an, Shaanxi, China;
| | - Haigui Yang
- Department of Neurosurgery, Yan'an People's Hospital, yan'an, Shaanxi, China;
| | - Lanfu Zhao
- Air Force Medical University Tangdu Hospital Department of Neurosurgery, 571816, Xi'an, Shaanxi, China;
| | - Lingyu Liu
- Air Force Medical University Tangdu Hospital Department of Neurosurgery, 571816, Xi'an, Shaanxi, China;
| | - Xingye Zhang
- Air Force Medical University Tangdu Hospital Department of Neurosurgery, 571816, Xi'an, Shaanxi, China;
| | - Yaning Cai
- Air Force Medical University Tangdu Hospital Department of Neurosurgery, 571816, Xi'an, Shaanxi, China;
| | - Yan Qu
- Tangdu Hospital Fourth Military Medical University, 56697, Department of Neurosurgery, Xi'an, Shaan Xi, China.,Tangdu Hospital Fourth Military Medical University, 56697, Neurosurgery Dpartment, Xi'an, China;
| |
Collapse
|
10
|
Batson C, Gomez A, Sainbhi AS, Froese L, Zeiler FA. Association of Age and Sex With Multi-Modal Cerebral Physiology in Adult Moderate/Severe Traumatic Brain Injury: A Narrative Overview and Future Avenues for Personalized Approaches. Front Pharmacol 2021; 12:676154. [PMID: 34899283 PMCID: PMC8652202 DOI: 10.3389/fphar.2021.676154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of age and biological sex on outcome in moderate/severe traumatic brain injury (TBI) has been documented in large cohort studies, with advanced age and male sex linked to worse long-term outcomes. However, the association between age/biological sex and high-frequency continuous multi-modal monitoring (MMM) cerebral physiology is unclear, with only sparing reference made in guidelines and major literature in moderate/severe TBI. In this narrative review, we summarize some of the largest studies associating various high-frequency MMM parameters with age and biological sex in moderate/severe TBI. To start, we present this by highlighting the representative available literature on high-frequency data from Intracranial Pressure (ICP), Cerebral Perfusion Pressure (CPP), Extracellular Brain Tissue Oxygenation (PbtO2), Regional Cerebral Oxygen Saturations (rSO2), Cerebral Blood Flow (CBF), Cerebral Blood Flow Velocity (CBFV), Cerebrovascular Reactivity (CVR), Cerebral Compensatory Reserve, common Cerebral Microdialysis (CMD) Analytes and their correlation to age and sex in moderate/severe TBI cohorts. Then we present current knowledge gaps in the literature, discuss biological implications of age and sex on cerebrovascular monitoring in TBI and some future avenues for bedside research into the cerebrovascular physiome after TBI.
Collapse
Affiliation(s)
- C Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A S Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - L Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Millet A, Evain JN, Desrumaux A, Francony G, Bouzat P, Mortamet G. Clinical applications of transcranial Doppler in non-trauma critically ill children: a scoping review. Childs Nerv Syst 2021; 37:2759-2768. [PMID: 34244843 DOI: 10.1007/s00381-021-05282-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Many applications of transcranial Doppler (TCD) as a diagnosis or monitoring tool have raised interest in the last decades. It is important that clinicians know when and how to perform TCD in this population, what parameter to assess and monitor and how to interpret it. OBJECTIVE This review aims to describe the emerging clinical applications of TCD in critically ill children excluding those suffering from trauma. METHODS Databases Web of Science, Cochrane and PubMed were searched in May 2020. We considered all publications since the year 2000 addressing the use of TCD as a prognostic, diagnostic or follow-up tool in children aged 0 to 15 years admitted to intensive care or emergency units, excluding neonatology and traumatic brain injury. Two independent reviewers selected 82 abstracts and full-text articles from the 2011 unique citations identified at the outset. RESULTS TCD provides crucial additional information at bedside about cerebrovascular hemodynamics. Many clinical applications include the diagnosis and management of various medical and surgical neurologic conditions (central nervous system infections, arterial ischemic stroke, subarachnoid hemorrhage and vasospasm, brain death, seizures, metabolic disease, hydrocephalus) as well as monitoring the impact systemic conditions on brain perfusion (hemodynamic instability, circulatory assistance). CONCLUSION To conclude, TCD has become an invaluable asset for non-invasive neuromonitoring in critically ill children excluding those suffering from trauma. However, the scope of TCD remains unclearly defined yet and reference values in critically ill children are still lacking.
Collapse
Affiliation(s)
- Anne Millet
- Pediatric Intensive Care Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Jean-Noël Evain
- Department of Anesthesia and Intensive Care, Grenoble-Alpes University Hospital, Grenoble, France
| | - Amélie Desrumaux
- Pediatric Intensive Care Unit, Grenoble-Alpes University Hospital, Grenoble, France
| | - Gilles Francony
- Department of Anesthesia and Intensive Care, Grenoble-Alpes University Hospital, Grenoble, France
| | - Pierre Bouzat
- Department of Anesthesia and Intensive Care, Grenoble-Alpes University Hospital, Grenoble, France
| | - Guillaume Mortamet
- Pediatric Intensive Care Unit, Grenoble-Alpes University Hospital, Grenoble, France.
| |
Collapse
|
12
|
|
13
|
Gomez A, Batson C, Froese L, Sainbhi AS, Zeiler FA. Utility of Transcranial Doppler in Moderate and Severe Traumatic Brain Injury: A Narrative Review of Cerebral Physiologic Metrics. J Neurotrauma 2021; 38:2206-2220. [PMID: 33554739 PMCID: PMC8328046 DOI: 10.1089/neu.2020.7523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since its creation in the 1980s, transcranial Doppler (TCD) has provided a method of non-invasively monitoring cerebral physiology and has become an invaluable tool in neurocritical care. In this narrative review, we examine the role TCD has in the management of the moderate and severe traumatic brain injury (TBI) patient. We examine the principles of TCD and the ways in which it has been applied to gain insight into cerebral physiology following TBI, as well as explore the clinical evidence supporting these applications. Its usefulness as a tool to non-invasively determine intracranial pressure, detect post-traumatic vasospasm, predict patient outcome, and assess the state of cerebral autoregulation are all explored.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Surgery, University of Manitoba, Winnipeg, Canada
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Carleen Batson
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| | | | - Frederick Adam Zeiler
- Department of Surgery, University of Manitoba, Winnipeg, Canada
- Department of Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
- Center on Aging, University of Manitoba, Winnipeg, Canada
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Maamar A, Rafi S, Tadié J. Reply to: Return of spontaneous circulation after an out-of-hospital cardiac arrest: An acute brain injury like others? Resuscitation 2020; 153:270-271. [DOI: 10.1016/j.resuscitation.2020.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 11/26/2022]
|
15
|
Grahf DC, Binz SI, Belle T, Jayaprakash N. Watching the Brain: an Overview of Neuromonitoring Systems and Their Utility in the Emergency Department. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2020. [DOI: 10.1007/s40138-020-00208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Muralidharan J, Biswas I, Toshkhani D. Role of Point-of-care Ultrasound in Management of Critically Ill COVID-19 Patients: A Case Series. JOURNAL OF PERIOPERATIVE ECHOCARDIOGRAPHY 2019; 7:40-43. [DOI: 10.5005/jp-journals-10034-1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
|
17
|
Fitzgibbon-Collins LK, Noguchi M, Heckman GA, Hughson RL, Robertson AD. Acute reduction in cerebral blood velocity on supine-to-stand transition increases postural instability in young adults. Am J Physiol Heart Circ Physiol 2019; 317:H1342-H1353. [PMID: 31674810 DOI: 10.1152/ajpheart.00360.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We tested the hypothesis that transient deficits in cerebral blood flow are associated with postural sway. In 19 young, healthy adults, we examined the association between the drop in cerebral blood flow during supine-to-stand transitions, indexed by transcranial Doppler ultrasound [middle cerebral artery blood velocity at diastole (MCAdv)] and near-infrared spectroscopy [tissue saturation index (TSI)] and the center of pressure displacement while standing. Participants performed transitions under three conditions aimed at progressively increasing the drop in MCAdv, in a randomized order: 1) a control transition (Con); 2) a transition that coincided with deflation of bilateral thigh cuffs; and 3) a transition that coincided with both thigh-cuff deflation and 90 s of prior hyperventilation (HTC). The deficit in diastolic blood velocity (MCAdv deficit) was quantified as the difference between MCAdv and its preceding baseline value, summed over 10 s, beginning at the MCAdv nadir. Compared with Con, HTC led to greater drops in MCAdv (P = 0.003) and TSI (P < 0.001) at nadir. The MCAdv deficit was positively associated with the center of pressure displacement vector-average using repeated-measures correlation (repeated-measures correlation coefficient = 0.56, P < 0.001). An a posteriori analysis identified a sub-group of participants that showed an exaggerated increase in MCAdv deficit and greater postural instability in both the anterior-posterior (P = 0.002) and medial-lateral (P = 0.021) directions in response to the interventions. These findings support the theory that individuals who experience greater initial cerebral hypoperfusion on standing may be at a greater risk for falls.NEW & NOTEWORTHY Dizziness and risk for falls after standing might link directly to reduced delivery of oxygen to the brain. By introducing challenges that increased the drop in brain blood flow in healthy young adults, we have shown for the first time a direct link to greater postural instability. These results point to a need to measure cerebral blood flow and/or oxygenation after postural transitions in populations, such as older adults, to assist in fall risk assessment.
Collapse
Affiliation(s)
| | | | - George A Heckman
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Andrew D Robertson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| |
Collapse
|
18
|
Nag DS, Sahu S, Swain A, Kant S. Intracranial pressure monitoring: Gold standard and recent innovations. World J Clin Cases 2019; 7:1535-1553. [PMID: 31367614 PMCID: PMC6658373 DOI: 10.12998/wjcc.v7.i13.1535] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/11/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Intracranial pressure monitoring (ICP) is based on the doctrine proposed by Monroe and Kellie centuries ago. With the advancement of technology and science, various invasive and non-invasive modalities of monitoring ICP continue to be developed. An ideal monitor to track ICP should be easy to use, accurate, reliable, reproducible, inexpensive and should not be associated with infection or haemorrhagic complications. Although the transducers connected to the extra ventricular drainage continue to be Gold Standard, its association with the likelihood of infection and haemorrhage have led to the search for alternate non-invasive methods of monitoring ICP. While Camino transducers, Strain gauge micro transducer based ICP monitoring devices and the Spiegelberg ICP monitor are the emerging technology in invasive ICP monitoring, optic nerve sheath diameter measurement, venous opthalmodynamometry, tympanic membrane displacement, tissue resonance analysis, tonometry, acoustoelasticity, distortion-product oto-acoustic emissions, trans cranial doppler, electro encephalogram, near infra-red spectroscopy, pupillometry, anterior fontanelle pressure monitoring, skull elasticity, jugular bulb monitoring, visual evoked response and radiological based assessment of ICP are the non-invasive methods which are assessed against the gold standard.
Collapse
Affiliation(s)
- Deb Sanjay Nag
- Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
| | - Seelora Sahu
- Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
| | - Amlan Swain
- Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
| | - Shashi Kant
- Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
| |
Collapse
|
19
|
Montrief T, Alerhand S, Jewell C, Scott J. Incorporation of Transcranial Doppler into the ED for the neurocritical care patient. Am J Emerg Med 2019; 37:1144-1152. [PMID: 30894296 DOI: 10.1016/j.ajem.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION In the catastrophic neurologic emergency, a complete neurological exam is not always possible or feasible given the time-sensitive nature of the underlying disease process, or if emergent airway management is indicated. As the neurologic exam may be limited in some patients, the emergency physician is reliant on the assessment of brainstem structures to determine neurological function. Physicians thus routinely depend on advanced imaging modalities to further investigate for potential catastrophic diagnoses. Acquiring these tests introduces the risks of transport as well as delays in managing time-sensitive neurologic processes. A more immediate, non-invasive bedside approach complementing these modalities has evolved: Transcranial Doppler (TCD). OBJECTIVE This narrative review will provide a description of scenarios in which TCD may be applicable. It will summarize the sonographic findings and associated underlying pathophysiology in such neurocritical care patients. An illustrated tutorial, along with pearls and pitfalls, is provided. DISCUSSION Although there are numerous formalized TCD protocols utilizing four views (transtemporal, submandibular, suboccipital, and transorbital), point-of-care TCD is best accomplished through the transtemporal window. The core applications include the evaluation of midline shift, vasospasm after subarachnoid hemorrhage, acute ischemic stroke, and elevated intracranial pressure. An illustrative tutorial is provided. CONCLUSIONS With the wide dissemination of bedside ultrasound within the emergency department, there is a unique opportunity for the emergency physician to utilize TCD for a variety of conditions. While barriers to training exist, emergency physician performance of limited point-of-care TCD is feasible and may provide rapid and reliable clinical information with high temporal resolution.
Collapse
Affiliation(s)
- Tim Montrief
- Department of Emergency Medicine, Jackson Memorial Health System, Miami, FL 33136, USA.
| | - Stephen Alerhand
- Department of Emergency Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Corlin Jewell
- Berbee Walsh Department of Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Jeffery Scott
- Department of Emergency Medicine, Jackson Memorial Health System, Miami, FL 33136, USA
| |
Collapse
|
20
|
Corradi F, Robba C, Tavazzi G, Via G. Combined lung and brain ultrasonography for an individualized "brain-protective ventilation strategy" in neurocritical care patients with challenging ventilation needs. Crit Ultrasound J 2018; 10:24. [PMID: 30221312 PMCID: PMC6139291 DOI: 10.1186/s13089-018-0105-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/23/2018] [Indexed: 01/27/2023] Open
Abstract
When intracranial hypertension and severe lung damage coexist in the same clinical scenario, their management poses a difficult challenge, especially as concerns mechanical ventilation management. The needs of combined lung and brain protection from secondary damage may conflict, as ventilation strategies commonly used in patients with ARDS are potentially associated with an increased risk of intracranial hypertension. In particular, the use of positive end-expiratory pressure, recruitment maneuvers, prone positioning, and protective lung ventilation can have undesirable effects on cerebral physiology: they may positively or negatively affect intracranial pressure, based on the final repercussions on PaO2 and cerebral perfusion pressure (through changes in cardiac output, mean arterial pressure, venous return, PaO2 and PaCO2), also according to the baseline conditions of cerebral autoregulation. Lung ultrasound (LUS) and brain ultrasound (BUS, as a combination of optic nerve sheath diameter assessment and cerebrovascular Doppler ultrasound) have independently proven their potential in respectively monitoring lung aeration and brain physiology at the bedside. In this narrative review, we describe how the combined use of LUS and BUS on neurocritical patients with demanding mechanical ventilation needs can contribute to ventilation management, with the aim of a tailored "brain-protective ventilation strategy."
Collapse
Affiliation(s)
- Francesco Corradi
- Servizio di Anestesia e Rianimazione, Ente ospedaliero Ospedali Galliera, Genoa, Italy
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCSS S. Martino Hospital, Genoa, Italy.,Neurocritical Care Unit, Addenbrookes Hospital Cambridge, Cambridge, UK
| | - Guido Tavazzi
- Emergency Department, Anaesthesia and Intensive Care Unit, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, Anaesthesia, Intensive Care and Pain Therapy Unit, University of Pavia, Pavia, Italy
| | - Gabriele Via
- Cardiac Anesthesia and Intensive Care, Cardiocentro Ticino, Via Tesserete, 48, Lugano, Switzerland.
| |
Collapse
|
21
|
Abecasis F, Oliveira V, Robba C, Czosnyka M. Transcranial Doppler in pediatric emergency and intensive care unit: a case series and literature review. Childs Nerv Syst 2018; 34:1465-1470. [PMID: 29955941 DOI: 10.1007/s00381-018-3877-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 02/03/2023]
Abstract
PURPOSE Transcranial Doppler (TCD) has been used for more than 30 years in clinical practice. Although adult intensive care is relatively well covered, pediatric cases are still underrepresented. We intend to review a series of pediatric cases where TCD was determinant in clinical decisions and a literature review on this topic. METHODS We describe cases with different pathologies where TCD had an important role in clinical management of the patients. We discuss TCD utility and potential role both in the emergency department and the intensive care unit. RESULTS Five patients with different neurologic insults are presented. TCD was useful in the identification of intracranial hypertension in traumatic brain injury, hydrocephalus and central nervous system infection; identification of decreased cerebral perfusion pressure in hypovolemic shock and the diagnosis of impending cerebral circulatory arrest in a child with meningococcal septicemia. We discuss how TCD can be used in emergency and intensive care settings, reviewing relevant literature and our own experience. CONCLUSIONS Non-invasive testing using TCD can aid clinical decisions. More widespread use of this technique will allow for better care of children with neurologic insults.
Collapse
Affiliation(s)
- Francisco Abecasis
- Pediatric Intensive Care Unit, Centro Hospitalar Lisboa Norte, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Vitor Oliveira
- Department of Neurology, Centro Hospitalar Lisboa Norte, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Chiara Robba
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRSSS for Oncology, Genoa, Italy
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, Cambridge, UK.,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
22
|
Optimization of Care for Adults With Moderate Traumatic Brain Injury: A Place for Transcranial Doppler. Crit Care Med 2018; 46:e716-e717. [PMID: 29912113 DOI: 10.1097/ccm.0000000000003059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Bobbia X, Abou-Badra M, Hansel N, Pes P, Petrovic T, Claret PG, Lefrant JY, de La Coussaye JE. Changes in the availability of bedside ultrasound practice in emergency rooms and prehospital settings in France. Anaesth Crit Care Pain Med 2018; 37:201-205. [PMID: 28826982 DOI: 10.1016/j.accpm.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Ensuring the availability of ultrasound devices is the initial step in implementing clinical ultrasound (CUS) in emergency services. In France in 2011, 52% of emergency departments (EDs) and only 9% of mobile intensive care stations (MICS) were equipped with ultrasound devices. The main goal of this study was to determine the movement of these rates since 2011. METHODS We conducted a cross-sectional, descriptive, multicentre study in the form of a questionnaire. To estimate the numbers of EDs and MICS equipped with at least one ultrasound system with a confidence level of 95% and margin of error of 5%, 170 responding EDs and 145 MICS were required. Each service was solicited three times by secure online questionnaire and then by phone. RESULTS Three hundred and twenty-eight (84%) services responded to the questionnaire: 179 (86%) EDs and 149 (82%) MICS. At least one ultrasound machine was available in 127 (71%, 95% CI [64; 78]) EDs vs. 52% in 2011 (P<0.01). 42 (28%, 95% CI [21; 35]) MICS were equipped vs. 9% in 2011 (P<0.01). In 97 (76%) EDs and 24 (55%) MICS, less than a half of physicians were trained. CUS was used at least three times a day in 52 (41%) EDs and in 8 (19%) MICS. CONCLUSION Our study demonstrates improved access to ultrasound devices in French EDs and MICS. Almost three-quarters of EDs and nearly one-third of MICS are now equipped with at least one ultrasound device. However, the rate of physicians trained per service remains insufficient.
Collapse
Affiliation(s)
- X Bobbia
- Pôle anesthésie réanimation douleur urgence, CHU de Nîmes, place du Pr-Debré, 30029 Nîmes, France.
| | - M Abou-Badra
- Pôle anesthésie réanimation douleur urgence, CHU de Nîmes, place du Pr-Debré, 30029 Nîmes, France.
| | - N Hansel
- Pôle anesthésie réanimation douleur urgence, CHU de Nîmes, place du Pr-Debré, 30029 Nîmes, France.
| | - P Pes
- Samu-Smur urgence (PHU3), CHU de Nantes, 1, Quai Moncousu, 44093 Nantes cedex 01, France.
| | - T Petrovic
- Samu-Smur, CHU Avicenne, 125, rue de Stalingrad, 93009 Bobigny cedex, France.
| | - P G Claret
- Pôle anesthésie réanimation douleur urgence, CHU de Nîmes, place du Pr-Debré, 30029 Nîmes, France.
| | - J Y Lefrant
- Pôle anesthésie réanimation douleur urgence, CHU de Nîmes, place du Pr-Debré, 30029 Nîmes, France.
| | - J E de La Coussaye
- Pôle anesthésie réanimation douleur urgence, CHU de Nîmes, place du Pr-Debré, 30029 Nîmes, France.
| |
Collapse
|
24
|
Shrestha P, Ansari SR, Ghimire RK, Gongal DN, Devkota UP. Transcranial doppler ultrasonography cerebral blood flow dynamics study of neurosurgical patients in peri-agonal period with fixed dilated or non-reacting pupils. Br J Neurosurg 2018; 32:182-187. [PMID: 29693475 DOI: 10.1080/02688697.2018.1467374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Fixed dilated and unreactive pupils are a harbinger of imminent death in neurosurgical patients, signifying that the brainstem is not functioning. Transcranial Doppler (TCD) ultrasonography is a noninvasive, bedside method of determining the flow velocities in the basal cerebral arteries, used extensively in various neurosurgical conditions. AIMS AND OBJECTIVES To study the cerebral blood flow dynamics of neurosurgical patients in peri-agonal period with fixed dilated or non reacting pupils using TCD. MATERIALS AND METHODS Repeated TCD studies were done in patients with fixed dilated or unreactive pupils in a tertiary care, neurosurgical hospital over a year, recording the various waveforms and indices as Pulsatility Index (PI), Resistivity Index, Peak systolic flow velocity (PSV), End diastolic flow velocity (EDV), Mean cerebral blood flow velocity (MCBFV) of their middle cerebral artery in their peri-agonal period. The subsequent change in the indices as the patients died or improved was analyzed. RESULTS A total of 104 TCD studies were done on 57 patients. Mean initial PI and MCBFV in the patients that died were 1.52 ± 0.76 and 28.55 ± 14.92 cm/sec respectively; and in the patients that showed neurosurgical recovery was 1.11 ± 0.28 and 36.52 ± 8.56 cm/sec respectively. Four out of 57 patients showed neurosurgical recovery and all of them had an initial PI less than 1.4 and they showed decrement in PI and increment in MCBFV on subsequent TCD study. The specificity and positive predictive value of the TCD waveform in predicting death was 100%, however, it had low sensitivity (47.17%) and negative predictive value (12.5%). CONCLUSION The various indices and waveforms of TCD can be useful in assessing the cerebral blood flow dynamics in patients with various traumatic and non-traumatic ailments in the peri-agonal period; and hence help in their management as well as in the confirmation of brainstem death.
Collapse
Affiliation(s)
- Pratyush Shrestha
- a Department of Neurosurgery , National Institute of Neurological and Allied Sciences , Basbari , Kathmandu
| | - Safiur Rahman Ansari
- b Department of Epidemiology and Biostatistics , National Institute of Neurological and Allied Sciences , Basbari , Kathmandu
| | - Ram Kumar Ghimire
- c Department of Radiodiagnosis , National Institute of Neurological and Allied Sciences , Basbari , Kathmandu
| | - Dinesh Nath Gongal
- a Department of Neurosurgery , National Institute of Neurological and Allied Sciences , Basbari , Kathmandu
| | - Upendra Psd Devkota
- a Department of Neurosurgery , National Institute of Neurological and Allied Sciences , Basbari , Kathmandu
| |
Collapse
|
25
|
Geeraerts T, Velly L, Abdennour L, Asehnoune K, Audibert G, Bouzat P, Bruder N, Carrillon R, Cottenceau V, Cotton F, Courtil-Teyssedre S, Dahyot-Fizelier C, Dailler F, David JS, Engrand N, Fletcher D, Francony G, Gergelé L, Ichai C, Javouhey É, Leblanc PE, Lieutaud T, Meyer P, Mirek S, Orliaguet G, Proust F, Quintard H, Ract C, Srairi M, Tazarourte K, Vigué B, Payen JF. Management of severe traumatic brain injury (first 24hours). Anaesth Crit Care Pain Med 2017; 37:171-186. [PMID: 29288841 DOI: 10.1016/j.accpm.2017.12.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The latest French Guidelines for the management in the first 24hours of patients with severe traumatic brain injury (TBI) were published in 1998. Due to recent changes (intracerebral monitoring, cerebral perfusion pressure management, treatment of raised intracranial pressure), an update was required. Our objective has been to specify the significant developments since 1998. These guidelines were conducted by a group of experts for the French Society of Anesthesia and Intensive Care Medicine (Société francaise d'anesthésie et de réanimation [SFAR]) in partnership with the Association de neuro-anesthésie-réanimation de langue française (ANARLF), The French Society of Emergency Medicine (Société française de médecine d'urgence (SFMU), the Société française de neurochirurgie (SFN), the Groupe francophone de réanimation et d'urgences pédiatriques (GFRUP) and the Association des anesthésistes-réanimateurs pédiatriques d'expression française (ADARPEF). The method used to elaborate these guidelines was the Grade® method. After two Delphi rounds, 32 recommendations were formally developed by the experts focusing on the evaluation the initial severity of traumatic brain injury, the modalities of prehospital management, imaging strategies, indications for neurosurgical interventions, sedation and analgesia, indications and modalities of cerebral monitoring, medical management of raised intracranial pressure, management of multiple trauma with severe traumatic brain injury, detection and prevention of post-traumatic epilepsia, biological homeostasis (osmolarity, glycaemia, adrenal axis) and paediatric specificities.
Collapse
Affiliation(s)
- Thomas Geeraerts
- Pôle anesthésie-réanimation, Inserm, UMR 1214, Toulouse neuroimaging center, ToNIC, université Toulouse 3-Paul Sabatier, CHU de Toulouse, 31059 Toulouse, France.
| | - Lionel Velly
- Service d'anesthésie-réanimation, Aix-Marseille université, CHU Timone, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Lamine Abdennour
- Département d'anesthésie-réanimation, groupe hospitalier Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Karim Asehnoune
- Service d'anesthésie et de réanimation chirurgicale, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 1, France
| | - Gérard Audibert
- Département d'anesthésie-réanimation, hôpital Central, CHU de Nancy, 54000 Nancy, France
| | - Pierre Bouzat
- Pôle anesthésie-réanimation, CHU Grenoble-Alpes, 38043 Grenoble cedex 9, France
| | - Nicolas Bruder
- Service d'anesthésie-réanimation, Aix-Marseille université, CHU Timone, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Romain Carrillon
- Service d'anesthésie-réanimation, hôpital neurologique Pierre-Wertheimer, groupement hospitalier Est, hospices civils de Lyon, 69677 Bron, France
| | - Vincent Cottenceau
- Service de réanimation chirurgicale et traumatologique, SAR 1, hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - François Cotton
- Service d'imagerie, centre hospitalier Lyon Sud, hospices civils de Lyon, 69495 Pierre-Bénite cedex, France
| | - Sonia Courtil-Teyssedre
- Service de réanimation pédiatrique, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 69677 Bron, France
| | | | - Frédéric Dailler
- Service d'anesthésie-réanimation, hôpital neurologique Pierre-Wertheimer, groupement hospitalier Est, hospices civils de Lyon, 69677 Bron, France
| | - Jean-Stéphane David
- Service d'anesthésie réanimation, centre hospitalier Lyon Sud, hospices civils de Lyon, 69495 Pierre-Bénite, France
| | - Nicolas Engrand
- Service d'anesthésie-réanimation, Fondation ophtalmologique Adolphe de Rothschild, 75940 Paris cedex 19, France
| | - Dominique Fletcher
- Service d'anesthésie réanimation chirurgicale, hôpital Raymond-Poincaré, université de Versailles Saint-Quentin, AP-HP, Garches, France
| | - Gilles Francony
- Pôle anesthésie-réanimation, CHU Grenoble-Alpes, 38043 Grenoble cedex 9, France
| | - Laurent Gergelé
- Département d'anesthésie-réanimation, CHU de Saint-Étienne, 42055 Saint-Étienne, France
| | - Carole Ichai
- Service de réanimation médicochirurgicale, UMR 7275, CNRS, Sophia Antipolis, hôpital Pasteur, CHU de Nice, 06000 Nice, France
| | - Étienne Javouhey
- Service de réanimation pédiatrique, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 69677 Bron, France
| | - Pierre-Etienne Leblanc
- Département d'anesthésie-réanimation, hôpital de Bicêtre, hôpitaux universitaires Paris-Sud, AP-HP, Le Kremlin-Bicêtre, France; Équipe TIGER, CNRS 1072-Inserm 5288, service d'anesthésie, centre hospitalier de Bourg en Bresse, centre de recherche en neurosciences, Lyon, France
| | - Thomas Lieutaud
- UMRESTTE, UMR-T9405, IFSTTAR, université Claude-Bernard de Lyon, Lyon, France; Service d'anesthésie-réanimation, hôpital universitaire Necker-Enfants-Malades, université Paris Descartes, AP-HP, Paris, France
| | - Philippe Meyer
- EA 08 Paris-Descartes, service de pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte, 75743 Paris cedex 15, France
| | - Sébastien Mirek
- Service d'anesthésie-réanimation, CHU de Dijon, Dijon, France
| | - Gilles Orliaguet
- EA 08 Paris-Descartes, service de pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte, 75743 Paris cedex 15, France
| | - François Proust
- Service de neurochirurgie, hôpital Hautepierre, CHU de Strasbourg, 67098 Strasbourg, France
| | - Hervé Quintard
- Service de réanimation médicochirurgicale, UMR 7275, CNRS, Sophia Antipolis, hôpital Pasteur, CHU de Nice, 06000 Nice, France
| | - Catherine Ract
- Département d'anesthésie-réanimation, hôpital de Bicêtre, hôpitaux universitaires Paris-Sud, AP-HP, Le Kremlin-Bicêtre, France; Équipe TIGER, CNRS 1072-Inserm 5288, service d'anesthésie, centre hospitalier de Bourg en Bresse, centre de recherche en neurosciences, Lyon, France
| | - Mohamed Srairi
- Pôle anesthésie-réanimation, Inserm, UMR 1214, Toulouse neuroimaging center, ToNIC, université Toulouse 3-Paul Sabatier, CHU de Toulouse, 31059 Toulouse, France
| | - Karim Tazarourte
- SAMU/SMUR, service des urgences, hospices civils de Lyon, hôpital Édouard-Herriot, 69437 Lyon cedex 03, France
| | - Bernard Vigué
- Département d'anesthésie-réanimation, hôpital de Bicêtre, hôpitaux universitaires Paris-Sud, AP-HP, Le Kremlin-Bicêtre, France; Équipe TIGER, CNRS 1072-Inserm 5288, service d'anesthésie, centre hospitalier de Bourg en Bresse, centre de recherche en neurosciences, Lyon, France
| | - Jean-François Payen
- Pôle anesthésie-réanimation, CHU Grenoble-Alpes, 38043 Grenoble cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Viski S, Olah L. Use of Transcranial Doppler in Intensive Care Unit. ACTA ACUST UNITED AC 2017; 3:99-104. [PMID: 29967879 PMCID: PMC5769900 DOI: 10.1515/jccm-2017-0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 11/25/2022]
Abstract
Use of transcranial Doppler has undergone much development since its introduction in 1982, making the technique suitable for general use in intensive care units. The main application in intensive care units is to assess intracranial pressure, confirm the lack of cerebral circulation in brain death, detect vasospasm in subarachnoid haemorrhage, and monitor the blood flow parameters during thrombolysis and carotid endarterectomy, as well as measuring stenosis of the main intracranial arteries in sickle cell disease in children. This review summarises the use of transcranial Doppler in intensive care units.
Collapse
Affiliation(s)
- Sandor Viski
- Department of Family and Occupational Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Laszlo Olah
- Department of Neurology, University of Debrecen, Móricz Zs. krt. 22, H-4032, Debrecen, Hungary
| |
Collapse
|
27
|
Vinciguerra L, Bösel J. Noninvasive Neuromonitoring: Current Utility in Subarachnoid Hemorrhage, Traumatic Brain Injury, and Stroke. Neurocrit Care 2017; 27:122-140. [PMID: 28004334 DOI: 10.1007/s12028-016-0361-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noninvasive neuromonitoring is increasingly being used to monitor the course of primary brain injury and limit secondary brain damage of patients in the neurocritical care unit. Proposed advantages over invasive neuromonitoring methods include a lower risk of infection and bleeding, no need for surgical installation, mobility and portability of some devices, and safety. The question, however, is whether noninvasive neuromonitoring is practical and trustworthy enough already. We searched the recent literature and reviewed English-language studies on noninvasive neuromonitoring in subarachnoid hemorrhage, traumatic brain injury, and ischemic and hemorrhagic stroke between the years 2010 and 2015. We found 88 studies that were eligible for review including the methods transcranial ultrasound, electroencephalography, evoked potentials, near-infrared spectroscopy, bispectral index, and pupillometry. Noninvasive neuromonitoring cannot yet completely replace invasive methods in most situations, but has great potential being complementarily integrated into multimodality monitoring, for guiding management, and for limiting the use of invasive devices and in-hospital transports for imaging.
Collapse
Affiliation(s)
- Luisa Vinciguerra
- Department GF Ingrassia, Section of Neurosciences, University of Catania, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Julian Bösel
- Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
28
|
Khan MN, Shallwani H, Khan MU, Shamim MS. Noninvasive monitoring intracranial pressure - A review of available modalities. Surg Neurol Int 2017; 8:51. [PMID: 28480113 PMCID: PMC5402331 DOI: 10.4103/sni.sni_403_16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/26/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Intracranial pressure (ICP) monitoring is important in many neurosurgical and neurological patients. The gold standard for monitoring ICP, however, is via an invasive procedure resulting in the placement of an intraventricular catheter, which is associated with many risks. Several noninvasive ICP monitoring techniques have been examined with the hope to replace the invasive techniques. The goal of this paper is to provide an overview of all modalities that have been used for noninvasive ICP monitoring to date. Methods: A thorough literature search was conducted on PubMed, selected articles were reviewed in completion, and pertinent data was included in the review. Results: A total of 94 publications were reviewed, and we found that over the past few decades clinicians have attempted to use a number of modalities to monitor ICP noninvasively. Conclusion: Although the intraventricular catheter remains the gold standard for monitoring ICP, several noninvasive modalities that can be used in settings when invasive monitoring is not possible are also available. In our opinion, measurement of optic nerve sheath diameter and pupillometry are the two modalities which may prove to be valid options for centers not performing invasive ICP monitoring.
Collapse
Affiliation(s)
| | - Hussain Shallwani
- Endovascular Research Fellow, University of Buffalo Neurosurgery, Buffalo, New York, USA
| | - Muhammad Ulusyar Khan
- Division of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan
| | | |
Collapse
|
29
|
Hatefi M, Behzadi S, Dastjerdi MM, Ghahnavieh AA, Rahmani A, Mahdizadeh F, Hafezi Ahmadi MR, Asadollahi K. Correlation of Homocysteine with Cerebral Hemodynamic Abnormality, Endothelial Dysfunction Markers, and Cognition Impairment in Patients with Traumatic Brain Injury. World Neurosurg 2017; 97:70-79. [DOI: 10.1016/j.wneu.2016.09.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023]
|
30
|
Transcranial Color Duplex Ultrasound: A Reliable Tool for Cerebral Hemodynamic Assessment in Brain Injuries. J Neurosurg Anesthesiol 2016; 28:159-63. [PMID: 26524419 DOI: 10.1097/ana.0000000000000242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transcranial color duplex ultrasound (TCCD) is becoming an important tool for cerebral monitoring of brain-injured patients. To date, TCCD reproducibility has been studied in healthy volunteers or patients with subarachnoid hemorrhage and its efficiency in many brain injuries has not been proved. Our aim was to evaluate TCCD interobserver agreement in different brain injuries. PATIENTS AND METHODS We performed a prospective monocentric trial conducted from January 2014 to September 2014 in intensive care unit (ICU) of Saint-Etienne university teaching hospital, France.Brain-damaged patients admitted in ICU were included, excluding those with decompressive craniectomy. Two randomized operators among the ICU medical staff consecutively performed measurements of cerebral blood flow velocities with TCCD. RESULTS One hundred measurements were obtained from 42 patients. Hemodynamic and end-tidal CO2 pressure were similar between both measurement set. The results obtained with the Bland-Altman method showed bias at 0.52 (95% confidence interval [CI], -4.19 to 3.16), 0.53 (95% CI, -1.86 to 2.92), and 0.002 (95% CI, -0.06 to 0.06) for mean velocity, diastolic velocity, and pulsatility index, respectively. The limits of agreement were (-32.4; 31.4), (-20.4; 21.4), (-0.5; 0.5) for mean velocity, diastolic velocity, and pulsatility index, respectively. The Passing and Bablok regression have shown a quasilinear relationship between measurements. CONCLUSIONS We reported the reliability of TCCD interobserver agreement in brain-damaged patients.
Collapse
|
31
|
Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, Cabeleira M, Smielewski P, Schmidt B, Czosnyka M. Non-invasive Monitoring of Intracranial Pressure Using Transcranial Doppler Ultrasonography: Is It Possible? Neurocrit Care 2016; 25:473-491. [PMID: 26940914 PMCID: PMC5138275 DOI: 10.1007/s12028-016-0258-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although intracranial pressure (ICP) is essential to guide management of patients suffering from acute brain diseases, this signal is often neglected outside the neurocritical care environment. This is mainly attributed to the intrinsic risks of the available invasive techniques, which have prevented ICP monitoring in many conditions affecting the intracranial homeostasis, from mild traumatic brain injury to liver encephalopathy. In such scenario, methods for non-invasive monitoring of ICP (nICP) could improve clinical management of these conditions. A review of the literature was performed on PUBMED using the search keywords 'Transcranial Doppler non-invasive intracranial pressure.' Transcranial Doppler (TCD) is a technique primarily aimed at assessing the cerebrovascular dynamics through the cerebral blood flow velocity (FV). Its applicability for nICP assessment emerged from observation that some TCD-derived parameters change during increase of ICP, such as the shape of FV pulse waveform or pulsatility index. Methods were grouped as: based on TCD pulsatility index; aimed at non-invasive estimation of cerebral perfusion pressure and model-based methods. Published studies present with different accuracies, with prediction abilities (AUCs) for detection of ICP ≥20 mmHg ranging from 0.62 to 0.92. This discrepancy could result from inconsistent assessment measures and application in different conditions, from traumatic brain injury to hydrocephalus and stroke. Most of the reports stress a potential advantage of TCD as it provides the possibility to monitor changes of ICP in time. Overall accuracy for TCD-based methods ranges around ±12 mmHg, with a great potential of tracing dynamical changes of ICP in time, particularly those of vasogenic nature.
Collapse
Affiliation(s)
- Danilo Cardim
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - C Robba
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - M Bohdanowicz
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - J Donnelly
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - B Cabella
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - X Liu
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - M Cabeleira
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - P Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - B Schmidt
- Department of Neurology, University Hospital Chemnitz, Chemnitz, Germany
| | - M Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| |
Collapse
|
32
|
Johnson GGRJ, Zeiler FA, Unger B, Hansen G, Karakitsos D, Gillman LM. Estimating the accuracy of optic nerve sheath diameter measurement using a pocket-sized, handheld ultrasound on a simulation model. Crit Ultrasound J 2016; 8:18. [PMID: 27832503 PMCID: PMC5104698 DOI: 10.1186/s13089-016-0053-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ultrasound measurement of optic nerve sheath diameter (ONSD) appears to be a promising, rapid, non-invasive bedside tool for identification of elevated intra-cranial pressure. With improvements in ultrasound technology, machines are becoming smaller; however, it is unclear if these ultra-portable handheld units have the resolution to make these measurements precisely. In this study, we estimate the accuracy of ONSD measurement in a pocket-sized ultrasound unit. METHODS Utilizing a locally developed, previously validated model of the eye, ONSD was measured by two expert observers, three times with two machines and on five models with different optic nerve sheath sizes. A pocket ultrasound (Vscan, GE Healthcare) and a standard portable ultrasound (M-Turbo, SonoSite) were used to measure the models. Data was analyzed by Bland-Altman plot and intra-class correlation coefficient (ICC). RESULTS The ICC between raters for the SonoSite was 0.878, and for the Vscan was 0.826. The between-machine agreement ICC was 0.752. Bland-Altman agreement analysis between the two ultrasound methods showed an even spread across the range of sheath sizes, and that the Vscan tended to read on average 0.33 mm higher than the SonoSite for each measurement, with a standard deviation of 0.65 mm. CONCLUSIONS Accurate ONSD measurement may be possible utilizing pocket-sized, handheld ultrasound devices despite their small screen size, lower resolution, and lower probe frequencies. Further study in human subjects is warranted for all newer handheld ultrasound models as they become available on the market.
Collapse
Affiliation(s)
| | - Frederick A Zeiler
- Departments of Surgery, University of Manitoba, GF439, 820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada.,Clinician Investigator Program, University of Manitoba, Winnipeg, MB, Canada
| | - Bertram Unger
- Department of Internal Medicine, Section of Critical Care, University of Manitoba, Winnipeg, MB, Canada
| | - Gregory Hansen
- Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | | | - Lawrence M Gillman
- Departments of Surgery, University of Manitoba, GF439, 820 Sherbrook Street, Winnipeg, MB, R3A 1R9, Canada.
| |
Collapse
|
33
|
Transcranial Doppler to Predict Neurologic Outcome after Mild to Moderate Traumatic Brain Injury. Anesthesiology 2016; 125:346-54. [DOI: 10.1097/aln.0000000000001165] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background
To assess the performance of transcranial Doppler (TCD) in predicting neurologic worsening after mild to moderate traumatic brain injury.
Methods
The authors conducted a prospective observational study across 17 sites. TCD was performed upon admission in 356 patients (Glasgow Coma Score [GCS], 9 to 15) with mild lesions on cerebral computed tomography scan. Normal TCD was defined as a pulsatility index of less than 1.25 and diastolic blood flow velocity higher than 25 cm/s in the two middle cerebral arteries. The primary endpoint was secondary neurologic deterioration on day 7.
Results
Twenty patients (6%) developed secondary neurologic deterioration within the first posttraumatic week. TCD thresholds had 80% sensitivity (95% CI, 56 to 94%) and 79% specificity (95% CI, 74 to 83%) to predict neurologic worsening. The negative predictive values and positive predictive values of TCD were 98% (95% CI, 96 to 100%) and 18% (95% CI, 11to 28%), respectively. In patients with minor traumatic brain injury (GCS, 14 to 15), the sensitivity and specificity of TCD were 91% (95% CI, 59 to 100%) and 80% (95% CI, 75 to 85%), respectively. The area under the receiver operating characteristic curve of a multivariate predictive model including age and GCS was significantly improved with the adjunction of TCD. Patients with abnormal TCD on admission (n = 86 patients) showed a more altered score for the disability rating scale on day 28 compared to those with normal TCD (n = 257 patients).
Conclusions
TCD measurements upon admission may provide additional information about neurologic outcome after mild to moderate traumatic brain injury. This technique could be useful for in-hospital triage in this context. (Anesthesiology 2016; 125:346-54)
Collapse
|
34
|
Robba C, Bacigaluppi S, Cardim D, Donnelly J, Bertuccio A, Czosnyka M. Non-invasive assessment of intracranial pressure. Acta Neurol Scand 2016; 134:4-21. [PMID: 26515159 DOI: 10.1111/ane.12527] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
Monitoring of intracranial pressure (ICP) is invaluable in the management of neurosurgical and neurological critically ill patients. Invasive measurement of ventricular or parenchymal pressure is considered the gold standard for accurate measurement of ICP but is not always possible due to certain risks. Therefore, the availability of accurate methods to non-invasively estimate ICP has the potential to improve the management of these vulnerable patients. This review provides a comparative description of different methods for non-invasive ICP measurement. Current methods are based on changes associated with increased ICP, both morphological (assessed with magnetic resonance, computed tomography, ultrasound, and fundoscopy) and physiological (assessed with transcranial and ophthalmic Doppler, tympanometry, near-infrared spectroscopy, electroencephalography, visual-evoked potentials, and otoacoustic emissions assessment). At present, none of the non-invasive techniques alone seem suitable as a substitute for invasive monitoring. However, following the present analysis and considerations upon each technique, we propose a possible flowchart based on the combination of non-invasive techniques including those characterizing morphologic changes (e.g., repetitive US measurements of ONSD) and those characterizing physiological changes (e.g., continuous TCD). Such an integrated approach, which still needs to be validated in clinical practice, could aid in deciding whether to place an invasive monitor, or how to titrate therapy when invasive ICP measurement is contraindicated or unavailable.
Collapse
Affiliation(s)
- C. Robba
- Neurosciences Critical Care Unit; Addenbrooke's Hospital; Cambridge United Kingdom
- Brain Physics Lab; Division of Neurosurgery; Department of Clinical Neurosciences; University of Cambridge; United Kingdom
| | - S. Bacigaluppi
- Department of Neurosurgery; Galliera Hospital; Genova Italy
| | - D. Cardim
- Brain Physics Lab; Division of Neurosurgery; Department of Clinical Neurosciences; University of Cambridge; United Kingdom
| | - J. Donnelly
- Brain Physics Lab; Division of Neurosurgery; Department of Clinical Neurosciences; University of Cambridge; United Kingdom
| | - A. Bertuccio
- Department of Neurosurgery; S. George's Hospital; University of London; United Kingdom
| | - M. Czosnyka
- Brain Physics Lab; Division of Neurosurgery; Department of Clinical Neurosciences; University of Cambridge; United Kingdom
| |
Collapse
|
35
|
Ziegler D, Cravens G, Poche G, Gandhi R, Tellez M. Use of Transcranial Doppler in Patients with Severe Traumatic Brain Injuries. J Neurotrauma 2016; 34:121-127. [PMID: 26913374 DOI: 10.1089/neu.2015.3967] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe traumatic brain injuries (TBI) are associated with a high rate of mortality and disability. Transcranial Doppler (TCD) sonography permits a noninvasive measurement of cerebral blood flow. The purpose of this study is to determine the usefulness of TCD in patients with severe TBI. TCD was performed, from April 2008 to April 2013, on 255 patients with severe TBI, defined as a Glasgow Coma Scale score of ≤8 on admission. TCD was performed on hospital days 1, 2, 3, and 7. Hypoperfusion was defined by having two out of three of the following: 1) mean velocity (Vm) of the middle cerebral artery <35 cm/sec, 2) diastolic velocity (Vd) of the middle cerebral artery <20 cm/sec, or 3) pulsatility index (PI) of >1.4. Vasospasm was defined by the following: Vm of the middle cerebral artery >120 cm/sec and/or a Lindegaard index (LI) >3. One hundred fourteen (45%) had normal measurements. Of these, 92 (80.7%) had a good outcome, 6 (5.3%) had moderate disability, and 16 (14%) died, 4 from brain death. Seventy-two patients (28%) had hypoperfusion and 71 (98.6%) died, 65 from brain death, and 1 patient survived with moderate disability. Sixty-nine patients (27%) had vasospasm, 31 (44.9%) had a good outcome, 16 (23.2%) had severe disability, and 22 (31.9%) died, 13 from brain death. The vasospasm was detected on hospital day 1 in 8 patients, on day 2 in 23 patients, on day 3 in 22 patients, and on day 7 in 16 patients. Patients with normal measurements can be expected to survive. Patients with hypoperfusion have a poor prognosis. Patients with vasospasm have a high incidence of mortality and severe disability. TCD is useful in determining early prognosis.
Collapse
Affiliation(s)
- Daniel Ziegler
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| | - George Cravens
- 2 Department of Neurosurgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Gerard Poche
- 2 Department of Neurosurgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Raj Gandhi
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| | - Mark Tellez
- 1 Department of Surgery, John Peter Smith Hospital , Fort Worth, Texas
| |
Collapse
|
36
|
Godoy DA, Rubiano A, Rabinstein AA, Bullock R, Sahuquillo J. Moderate Traumatic Brain Injury: The Grey Zone of Neurotrauma. Neurocrit Care 2016; 25:306-19. [DOI: 10.1007/s12028-016-0253-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Guilliams K, Wainwright MS. Pathophysiology and Management of Moderate and Severe Traumatic Brain Injury in Children. J Child Neurol 2016; 31:35-45. [PMID: 25512361 DOI: 10.1177/0883073814562626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/14/2014] [Indexed: 01/21/2023]
Abstract
Traumatic brain injury remains a leading cause of morbidity and mortality in children. Key pathophysiologic processes of traumatic brain injury are initiated by mechanical forces at the time of trauma, followed by complex excitotoxic cascades associated with compromised cerebral autoregulation and progressive edema. Acute care focuses on avoiding secondary insults, including hypoxia, hypotension, and hyperthermia. Children with moderate or severe traumatic brain injury often require intensive monitoring and treatment of multiple parameters, including intracranial pressure, blood pressure, metabolism, and seizures, to minimize secondary brain injury. Child neurologists can play an important role in acute and long-term care. Acutely, as members of a multidisciplinary team in the intensive care unit, child neurologists monitor for early signs of neurological change, guide neuroprotective therapies, and transition patients to long-term recovery. In the longer term, neurologists are uniquely positioned to treat complications of moderate and severe traumatic brain injury, including epilepsy and cognitive and behavioral issues.
Collapse
Affiliation(s)
- Kristin Guilliams
- Department of Neurology, Division of Pediatric and Developmental Neurology, and Department of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Wainwright
- Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA Department of Pediatrics, Divisions of Neurology and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
38
|
Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J Neurotrauma 2015; 32:1693-721. [PMID: 26176603 PMCID: PMC4651019 DOI: 10.1089/neu.2013.3306] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.
Collapse
Affiliation(s)
- Franck Amyot
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David B. Arciniegas
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, Texas
- Brain Injury Research, TIRR Memorial Hermann, Houston, Texas
| | | | - Kenneth C. Curley
- Combat Casualty Care Directorate (RAD2), U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amir Gandjbakhche
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Sidney R. Hinds
- Defense and Veterans Brain Injury Center, Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Silver Spring, Maryland
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Anthony Pacifico
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | | | - Jason Riley
- Queens University, Kingston, Ontario, Canada
- ArcheOptix Inc., Picton, Ontario, Canada
| | - Wanda Salzer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James G. Smirniotopoulos
- Department of Radiology, Neurology, and Biomedical Informatics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Derek Stocker
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
39
|
Nouveaux outils de neuromonitorage. MEDECINE INTENSIVE REANIMATION 2015. [DOI: 10.1007/s13546-015-1099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Zieleskiewicz L, Muller L, Lakhal K, Meresse Z, Arbelot C, Bertrand PM, Bouhemad B, Cholley B, Demory D, Duperret S, Duranteau J, Guervilly C, Hammad E, Ichai C, Jaber S, Langeron O, Lefrant JY, Mahjoub Y, Maury E, Meaudre E, Michel F, Muller M, Nafati C, Perbet S, Quintard H, Riu B, Vigne C, Chaumoitre K, Antonini F, Allaouchiche B, Martin C, Constantin JM, De Backer D, Leone M. Point-of-care ultrasound in intensive care units: assessment of 1073 procedures in a multicentric, prospective, observational study. Intensive Care Med 2015; 41:1638-1647. [PMID: 26160727 DOI: 10.1007/s00134-015-3952-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To describe current use and diagnostic and therapeutic impacts of point-of-care ultrasound (POCUS) in the intensive care unit (ICU). BACKGROUND POCUS is of growing importance in the ICU. Several guidelines recommend its use for procedural guidance and diagnostic assessment. Nevertheless, its current use and clinical impact remain unknown. METHODS Prospective multicentric study in 142 ICUs in France, Belgium, and Switzerland. All the POCUS procedures performed during a 24-h period were prospectively analyzed. Data regarding patient condition and the POCUS procedures were collected. Factors associated with diagnostic and therapeutic impacts were identified. RESULTS Among 1954 patients hospitalized during the study period, 1073 (55%) POCUS/day were performed in 709 (36%) patients. POCUS served for diagnostic assessment in 932 (87%) cases and procedural guidance in 141 (13%) cases. Transthoracic echocardiography, lung ultrasound, and transcranial Doppler accounted for 51, 17, and 16% of procedures, respectively. Diagnostic and therapeutic impacts of diagnostic POCUS examinations were 84 and 69%, respectively. Ultrasound guidance was used in 54 and 15% of cases for central venous line and arterial catheter placement, respectively. Hemodynamic instability, emergency conditions, transthoracic echocardiography, and ultrasounds performed by certified intensivists themselves were independent factors affecting diagnostic or therapeutic impacts. CONCLUSIONS With regard to guidelines, POCUS utilization for procedural guidance remains insufficient. In contrast, POCUS for diagnostic assessment is of extensive use. Its impact on both diagnosis and treatment of ICU patients seems critical. This study identified factors associated with an improved clinical value of POCUS.
Collapse
Affiliation(s)
- Laurent Zieleskiewicz
- Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Aix Marseille Université, Chemin des Bourrely, 13015, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Point-of-care ultrasound in intensive care units: assessment of 1073 procedures in a multicentric, prospective, observational study. Intensive Care Med 2015. [PMID: 26160727 DOI: 10.1007/s00134‐015‐3952‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To describe current use and diagnostic and therapeutic impacts of point-of-care ultrasound (POCUS) in the intensive care unit (ICU). BACKGROUND POCUS is of growing importance in the ICU. Several guidelines recommend its use for procedural guidance and diagnostic assessment. Nevertheless, its current use and clinical impact remain unknown. METHODS Prospective multicentric study in 142 ICUs in France, Belgium, and Switzerland. All the POCUS procedures performed during a 24-h period were prospectively analyzed. Data regarding patient condition and the POCUS procedures were collected. Factors associated with diagnostic and therapeutic impacts were identified. RESULTS Among 1954 patients hospitalized during the study period, 1073 (55%) POCUS/day were performed in 709 (36%) patients. POCUS served for diagnostic assessment in 932 (87%) cases and procedural guidance in 141 (13%) cases. Transthoracic echocardiography, lung ultrasound, and transcranial Doppler accounted for 51, 17, and 16% of procedures, respectively. Diagnostic and therapeutic impacts of diagnostic POCUS examinations were 84 and 69%, respectively. Ultrasound guidance was used in 54 and 15% of cases for central venous line and arterial catheter placement, respectively. Hemodynamic instability, emergency conditions, transthoracic echocardiography, and ultrasounds performed by certified intensivists themselves were independent factors affecting diagnostic or therapeutic impacts. CONCLUSIONS With regard to guidelines, POCUS utilization for procedural guidance remains insufficient. In contrast, POCUS for diagnostic assessment is of extensive use. Its impact on both diagnosis and treatment of ICU patients seems critical. This study identified factors associated with an improved clinical value of POCUS.
Collapse
|
42
|
Wakerley BR, Sharma VK. Transcranial Doppler sonography in patients with severe brain injury. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:931-932. [PMID: 25911729 DOI: 10.7863/ultra.34.5.931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Benjamin R Wakerley
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England (B.R.W.), Department of Neurology, National University of Singapore, Singapore (V.K.S.)
| | - Vijay K Sharma
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England (B.R.W.), Department of Neurology, National University of Singapore, Singapore (V.K.S.)
| |
Collapse
|
43
|
Varsos GV, Richards HK, Kasprowicz M, Reinhard M, Smielewski P, Brady KM, Pickard JD, Czosnyka M. Cessation of diastolic cerebral blood flow velocity: the role of critical closing pressure. Neurocrit Care 2015; 20:40-8. [PMID: 24248737 DOI: 10.1007/s12028-013-9913-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Reducing cerebral perfusion pressure (CPP) below the lower limit of autoregulation (LLA) causes cerebral blood flow (CBF) to become pressure passive. Further reductions in CPP can cause cessation of CBF during diastole. We hypothesized that zero diastolic flow velocity (FV) occurs when diastolic blood pressure becomes less than the critical closing pressure (CrCP). METHODS We retrospectively analyzed studies of 34 rabbits with CPP below the LLA, induced with pharmacologic sympathectomy (N = 23) or cerebrospinal fluid infusion (N = 11). Basilar artery blood FV and cortical Laser Doppler Flow (LDF) were monitored. CrCP was trended using a model of cerebrovascular impedance. The diastolic closing margin (DCM) was monitored as the difference between diastolic blood pressure and CrCP. LDF was recorded for DCM values greater than and less than zero. RESULTS Arterial hypotension caused a reduction of CrCP (p < 0.001), consistent with decreased wall tension (p < 0.001) and a drop in intracranial pressure (ICP; p = 0.004). Cerebrospinal infusion caused an increase of CrCP (p = 0.002) accounted for by increasing ICP (p < 0.001). The DCM was compromised by either arterial hypotension or intracranial hypertension (p < 0.001 for both). When the DCM reached zero, diastolic FV ceased for a short period during each heart cycle (R = 0.426, p < 0.001). CBF pressure passivity accelerated when DCM decreased below zero (from 1.51 ± 0.51 to 2.17 ± 1.17 % ΔLDF/ΔmmHg; mean ± SD; p = 0.010). CONCLUSIONS The disappearance of diastolic CBF below LLA can be explained by DCM reaching zero or negative values. Below this point the decrease in CBF accelerates with further decrements of CPP.
Collapse
Affiliation(s)
- Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Biomedical Campus, Cambridge, CB20QQ, UK,
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To present the practical aspects of transcranial Doppler (TCD) and provide evidence supporting its use for the management of traumatic brain injury (TBI) patients. RECENT FINDINGS TCD measures systolic, mean, and diastolic cerebral blood flow (CBF) velocities and calculates the pulsatility index from basal intracranial arteries. These variables reflect the brain circulation, provided there is control of potential confounding factors. TCD can be useful in patients with severe TBI to detect low CBF, for example, during intracranial hypertension, and to assess cerebral autoregulation. In the emergency room, TCD might complement brain computed tomography (CT) scan and clinical examination to screen patients at risk for further neurological deterioration after mild-to-moderate TBI. SUMMARY The diagnostic value of TCD should be incorporated into other findings from multimodal brain monitoring and CT scan to optimize the bedside management of patients with TBI and help guide the choice of appropriate therapies.
Collapse
|
45
|
Choudhry OJ, Prestigiacomo CJ, Gala N, Slasky S, Sifri ZC. Delayed neurological deterioration after mild head injury: cause, temporal course, and outcomes. Neurosurgery 2014; 73:753-60; discussion 760. [PMID: 23867298 DOI: 10.1227/neu.0000000000000105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mild head injury (MHI) complicated by an intracranial hemorrhage (ICH) is a common cause of hospital admission after head trauma. Most patients are treated nonoperatively, remain neurologically stable, and are discharged uneventfully. However, a small percentage of patients suffer delayed neurological deterioration (DND). Little is known about the characteristics of DND after an MHI complicated by ICH. OBJECTIVE To identify the cause, temporal course, and outcomes of patients who deteriorated neurologically after presenting with MHI and ICH. METHODS A retrospective review was performed of all adult patients presenting over 54 consecutive months with MHI and ICH. Patients who were treated nonoperatively after initial head computed tomography and had a subsequent DND (Glasgow Coma Scale score decrease ≥2) were identified. Demographics, neurological status, clinical course, radiographic findings, and outcome data were collected. RESULTS Over 54 months, 757 patients with MHI plus ICH were admitted for observation; of these, 31 (4.1%) experienced DND. Eighty-seven percent of patients deteriorated within 24 hours after admission. Twenty-one patients (68%) deteriorated as a result of progressive intracranial hemorrhage, and 10 patients (32%) deteriorated as a result of medical causes. Seven patients (23%) died. Variables significantly associated with mortality included age > 60 years, coagulopathy, and change in Marshall computed tomography classification. CONCLUSION The incidence of delayed neurological deterioration after MHI with ICH is low and usually occurs within 24 hours after admission. It results in significant morbidity and mortality if it is the result of progressive intracranial hemorrhage. Further research is needed to identify risk factors that can allow early detection and improve outcomes in these patients.
Collapse
Affiliation(s)
- Osamah J Choudhry
- *Department of Neurological Surgery; ‡Department of Radiology; and §Division of Trauma Surgery, Department of Surgery, UMDNJ--New Jersey Medical School, Newark, New Jersey
| | | | | | | | | |
Collapse
|
46
|
Traumi cranioencefalici. Neurologia 2014. [DOI: 10.1016/s1634-7072(14)67225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Wakerley BR, Kusuma Y, Yeo LLL, Liang S, Kumar K, Sharma AK, Sharma VK. Usefulness of transcranial Doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging 2014; 25:111-6. [PMID: 24593670 DOI: 10.1111/jon.12100] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/15/2013] [Accepted: 12/30/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Transcranial Doppler (TCD) ultrasonography is a noninvasive bedside tool that can evaluate cerebral blood flow hemodynamics in major intracranial arteries. TCD-derived pulsatility index (PI) is believed to be influenced by intracranial pressure (ICP). OBJECTIVE To correlate TCD-PI with cerebrospinal fluid (CSF) pressure (representing ICP), measured by standard lumbar puncture (LP) manometry. METHODS CSF pressures (CSF-P) were measured in 78 patients by LP manometry. Stable TCD spectra were obtained 5 minutes before LP from either middle cerebral arteries using Spencer's head frame and 2-MHz transducer. PI values were calculated from the TCD spectra by an independent neurosonologist. RESULTS Factors displaying a significant relationship with CSF-P included age (R = -.426, P < .0005); EDV (R = -.328, P = .002;) and PI (R = .650, P < .0005). On analyzing dichotomized data (CSF-P < 20 vs. ≥ 20 cm H2 0) TCD-PI was an independent determinant (OR per .1 increase in PI = 2.437; 95% CI, 1.573-3.777; P < .0005). PI ≥ 1.26 could reliably predict CSF-P ≥ 20 cm H2 0 (sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were 81.1%, 96.3%, 93.8%, 88.1%, and 90.1% respectively). CONCLUSION TCD-derived PI could be used to identify patients with CSF-P ≥ 20 cm H2 0 and may play an important role as a monitoring tool.
Collapse
|
48
|
Availability and practice of bedside ultrasonography in emergency rooms and prehospital setting: A French survey. ACTA ACUST UNITED AC 2014; 33:e29-33. [DOI: 10.1016/j.annfar.2013.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022]
|
49
|
Fox WC, Park MS, Belverud S, Klugh A, Rivet D, Tomlin JM. Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage. Neurol Res 2013; 35:223-32. [PMID: 23485049 DOI: 10.1179/1743132813y.0000000162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES To follow the progression of neuroimaging as a means of non-invasive evaluation of mild traumatic brain injury (mTBI) in order to provide recommendations based on reproducible, defined imaging findings. METHODS A comprehensive literature review and analysis of contemporary published articles was performed to study the progression of neuroimaging findings as a non-invasive 'biomarker' for mTBI. RESULTS Multiple imaging modalities exist to support the evaluation of patients with mTBI, including ultrasound (US), computed tomography (CT), single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI). These techniques continue to evolve with the development of fractional anisotropy (FA), fiber tractography (FT), and diffusion tensor imaging (DTI). DISCUSSION Modern imaging techniques, when applied in the appropriate clinical setting, may serve as a valuable tool for diagnosis and management of patients with mTBI. An understanding of modern neuroanatomical imaging will enhance our ability to analyse injury and recognize the manifestations of mTBI.
Collapse
Affiliation(s)
- W Christopher Fox
- Department of Neurosurgery, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92134, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care 2013; 3:23. [PMID: 23837598 PMCID: PMC3716965 DOI: 10.1186/2110-5820-3-23] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/25/2013] [Indexed: 02/17/2023] Open
Abstract
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult—after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Collapse
Affiliation(s)
- Pierre Bouzat
- Department of Intensive Care Medicine, CHUV-University Hospital, Rue du Bugnon 46, BH 08,623, CH-1011 Lausanne, Switzerland.
| | | | | | | |
Collapse
|