1
|
Yang ZL, Liang ZY, Lin YK, Lin FB, Rao J, Xu XJ, Wang CH, Chen CM. Efficacy of extracellular vesicles of different cell origins in traumatic brain injury: A systematic review and network meta-analysis. Front Neurosci 2023; 17:1147194. [PMID: 37065922 PMCID: PMC10090410 DOI: 10.3389/fnins.2023.1147194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundThere was still no effective treatment for traumatic brain injury (TBI). Recently, many preclinical studies had shown promising efficacy of extracellular vesicles (EVs) from various cell sources. Our aim was to compare which cell-derived EVs were most effective in treating TBI through a network meta-analysis.MethodsWe searched four databases and screened various cell-derived EVs for use in preclinical studies of TBI treatment. A systematic review and network meta-analysis were conducted for two outcome indicators, modified Neurological Severity Score (mNSS) and Morris Water Maze (MWM), and they were ranked by the surface under the cumulative ranking curves (SUCRA). Bias risk assessment was performed with SYRCLE. R software (version 4.1.3, Boston, MA, USA) was used for data analysis.ResultsA total of 20 studies were included in this study, involving 383 animals. Astrocyte-derived extracellular vesicles (AEVs) ranked first in response to mNSS at day 1 (SUCRA: 0.26%), day 3 (SUCRA: 16.32%), and day 7 (SUCRA: 9.64%) post-TBI. Extracellular vesicles derived from mesenchymal stem cells (MSCEVs) were most effective in mNSS assessment on day 14 (SUCRA: 21.94%) and day 28 (SUCRA: 6.26%), as well as MWM’s escape latency (SUCRA: 6.16%) and time spent in the target quadrant (SUCRA: 86.52%). The result of mNSS analysis on day 21 showed that neural stem cell-derived extracellular vesicles (NSCEVs) had the best curative effect (SUCRA: 6.76%).ConclusionAEVs may be the best choice to improve early mNSS recovery after TBI. The efficacy of MSCEVs may be the best in the late mNSS and MWM after TBI.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42023377350.
Collapse
|
2
|
Lee SH, Choung JS, Kim JM, Kim H, Kim M. Distribution of Embryonic Stem Cell-Derived Mesenchymal Stem Cells after Intravenous Infusion in Hypoxic-Ischemic Encephalopathy. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010227. [PMID: 36676176 PMCID: PMC9861288 DOI: 10.3390/life13010227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) has been reported to improve neurological function in brain damage, including hypoxic-ischemic encephalopathy (HIE), though the action mechanisms have not been fully elucidated. In this study, the cells were tracked live using a Pearl Trilogy Small Animal fluorescence imaging system after human embryonic stem Cell-Derived MSCs (ES-MSCs) infusion for an HIE mouse model. ES-MSC-treated HIE mice showed neurobehavioral improvement. In vivo imaging showed similar sequential migration of ES-MSCs from lungs, liver, and spleen within 7 days in both HIE and normal mice with the exception of lungs, where there was higher entrapment in the HIE 1 h after infusion. In addition, ex vivo experiments confirmed time-dependent infiltration of ES-MSCs into the organs, with similar findings in vivo, although lungs and brain revealed small differences. ES-MSCs seemed to remain in the brain only in the case of HIE on day 14 after the cell infusion. The homing effect in the host brain was confirmed with immunofluorescence staining, which showed that grafted cells remained in the brain tissue at the lesion area with neurorestorative findings. Further research should be carried out to elucidate the role of each host organ's therapeutic effects when stem cells are systemically introduced.
Collapse
Affiliation(s)
- Su Hyun Lee
- School of Medicine, CHA University, Pocheon 13496, Republic of Korea
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
| | - Jin Seung Choung
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jong Moon Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - Hyunjin Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-1872
| |
Collapse
|
3
|
Messmer SJ, Fraser JF, Pennypacker KR, Roberts JM. Method of intra-arterial drug administration in a rat: Sex based optimization of infusion rate. J Neurosci Methods 2021; 357:109178. [PMID: 33819555 DOI: 10.1016/j.jneumeth.2021.109178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Endovascular thrombectomy is the process of removing a blood clot and re-establishing blood flow in patients with emergent large vessel occlusion. The technique provides an opportunity to deliver therapeutics directly to the site of injury. The intra-arterial (IA) route of drug administration in the mouse was developed to bridge the gap between animal stroke treatments and clinical stroke therapy. Here, we adapted the IA method for use in rats, by investigating various flow rates to optimize the IA injection through the internal carotid artery (ICA). METHODS Male and female Sprague-Dawley rats (∼4 months of age) were subjected to placement of micro-angio tubing at the bifurcation of the common carotid artery for injection into the ICA. We evaluated a range of infusion rates of carbon black ink and its vascular distribution within the brain. RESULTS Optimal injection rates in males was 4-6 μl/min and 2-4 μl/min in females. The IA injection using these sex-specific rates resulted in appropriate limited dye delivery to only the ipsilateral region of the brain, without inducing a subarachnoid hemorrhage. CONCLUSION Upon adapting the IA administration model to rats, it was determined that the rate of infusion varied between males and females. This variability is an important consideration for studies utilizing both sexes, such as in ischemic stroke studies.
Collapse
Affiliation(s)
- Sarah J Messmer
- Center for Advanced Translational Stroke Science, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Neurology, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA
| | - Justin F Fraser
- Center for Advanced Translational Stroke Science, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Neurology, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Neurosurgery, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Radiology, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA
| | - Keith R Pennypacker
- Center for Advanced Translational Stroke Science, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Neurology, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA
| | - Jill M Roberts
- Center for Advanced Translational Stroke Science, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Neurosurgery, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA.
| |
Collapse
|
4
|
3D Printing and NIR Fluorescence Imaging Techniques for the Fabrication of Implants. MATERIALS 2020; 13:ma13214819. [PMID: 33126650 PMCID: PMC7662749 DOI: 10.3390/ma13214819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields. To realize the 3D-printed structures to implant them in the body and tissue regeneration, it is important to understand 3D printing technology and its enabling technologies. This paper concisely reviews 3D printing techniques in terms of hardware, software, and materials with a focus on surgery. In addition, it reviews bioprinting technology and a non-invasive monitoring method using near-infrared (NIR) fluorescence, with special attention to the 3D-bioprinted tissue constructs. NIR fluorescence imaging applied to 3D printing technology can play a significant role in monitoring the therapeutic efficacy of 3D structures for clinical implants. Consequently, these techniques can provide individually customized products and improve the treatment outcome of surgeries.
Collapse
|
5
|
Investigation on Anti-Autofluorescence, Osteogenesis and Long-Term Tracking of HA-Based Upconversion Material. Sci Rep 2018; 8:11267. [PMID: 30050096 PMCID: PMC6062553 DOI: 10.1038/s41598-018-29539-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023] Open
Abstract
Hydroxyapatite (HA) material will be long-standing once implanted in bone tissue of the body. It should be considered to endow the osteogenic HA material with traceable fluorescence to realize a lifelong in vivo tracking. We prepared and utilized lanthanides-doped HA upconversion material, and revealed for the first time that the lanthanides (ytterbium (Yb) and holmium (Ho)) co-doped HA upconversion material was suitable for long-term or lifelong in vivo tracking, the lanthanide ions doped in the HA matrix would not affect the biocompatibility and osteogenesis, and the tissue autofluorescence could be effectively avoided by the HA:Yb/Ho upconversion material. Also the distribution in bone and osteointegration with bone of the HA:Yb/Ho material could be clearly discriminated by its bright fluorescence under NIR irradiation. The upconversion characteristic of the HA:Yb/Ho material provides a feasibility and promising prospect for lifelong in vivo tracking, and has an advantage in revealing the material-tissue interrelation. The material has important clinical application value in addition to its usefulness for scientific investigation.
Collapse
|
6
|
Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke. Stem Cells Int 2018; 2018:4829534. [PMID: 29765415 PMCID: PMC5911312 DOI: 10.1155/2018/4829534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/17/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Bone marrow stromal cell (BMSC) transplantation has the therapeutic potential for ischemic stroke. However, it is unclear which delivery routes would yield both safety and maximal therapeutic benefits. We assessed whether a novel recombinant peptide (RCP) sponge, that resembles human collagen, could act as a less invasive and beneficial scaffold in cell therapy for ischemic stroke. BMSCs from green fluorescent protein-transgenic rats were cultured and Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAo). A BMSC-RCP sponge construct was transplanted onto the ipsilateral intact neocortex 7 days after MCAo. A BMSC suspension or vehicle was transplanted into the ipsilateral striatum. Rat motor function was serially evaluated and histological analysis was performed 5 weeks after transplantation. The results showed that BMSCs could proliferate well in the RCP sponge and the BMSC-RCP sponge significantly promoted functional recovery, compared with the vehicle group. Histological analysis revealed that the RCP sponge provoked few inflammatory reactions in the host brain. Moreover, some BMSCs migrated to the peri-infarct area and differentiated into neurons in the BMSC-RCP sponge group. These findings suggest that the RCP sponge may be a promising candidate for animal protein-free scaffolds in cell therapy for ischemic stroke in humans.
Collapse
|
7
|
Feng Y, Ju Y, Cui J, Wang L. Bone marrow stromal cells promote neuromotor functional recovery, via upregulation of neurotrophic factors and synapse proteins following traumatic brain injury in rats. Mol Med Rep 2017; 16:654-660. [PMID: 28560414 PMCID: PMC5482073 DOI: 10.3892/mmr.2017.6619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
It has previously been demonstrated that bone marrow stromal cells (BMSCs) exhibit great therapeutic potential in neuronal injuries; however, there is limited understanding of the precise underlying mechanisms that contribute to functional improvement following brain injury. The aim of the present study was to assess the effect of BMSC treatment on traumatic brain injury (TBI) in rats, and investigate if they migrate to injured areas and promote neuromotor functional recovery via upregulation of neurotrophic factors and synaptic proteins. BMSCs were cultured in vitro from female Sprague Dawley (SD) rat bone marrow and were subsequently infused into male adult SD rats via the tail vein, following induction of TBI. The results demonstrated that treatment with BMSCs significantly reduced TBI‑induced neuromotor impairment and neuronal loss, as assessed by rota rod testing, western blot analysis, modified neurological severity score and immunohistochemistry. The distribution of transplanted BMSCs was tracked by monitoring the expression of sex determining region Y (SRY) in rats. The number of cells double‑positive for SRY/neuronal nuclear antigen or SRY/glial fibrillary acidic protein was increased in the BMSC group, which demonstrated that BMSCs migrated to injured areas and differentiated into neurons and astrocytes, following TBI. Furthermore, administration of BMSCs increased expression of vascular endothelial growth factor and brain derived neurotrophic factor. Protein expression levels of synaptophysin were downregulated following TBI and this was reversed in part by treatment with BMSCs. These findings uncovered some underlying mechanisms of action of BMSCs, and may lead to their potential use as a future effective therapeutic agent for the treatment of TBI.
Collapse
Affiliation(s)
- Yan Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yaru Ju
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianzhong Cui
- Department of Neurosurgery, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Liqun Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
8
|
Cox CS, Hetz RA, Liao GP, Aertker BM, Ewing-Cobbs L, Juranek J, Savitz SI, Jackson ML, Romanowska-Pawliczek AM, Triolo F, Dash PK, Pedroza C, Lee DA, Worth L, Aisiku IP, Choi HA, Holcomb JB, Kitagawa RS. Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells. Stem Cells 2017; 35:1065-1079. [PMID: 27800660 PMCID: PMC5367945 DOI: 10.1002/stem.2538] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
Preclinical studies using bone marrow derived cells to treat traumatic brain injury have demonstrated efficacy in terms of blood-brain barrier preservation, neurogenesis, and functional outcomes. Phase 1 clinical trials using bone marrow mononuclear cells infused intravenously in children with severe traumatic brain injury demonstrated safety and potentially a central nervous system structural preservation treatment effect. This study sought to confirm the safety, logistic feasibility, and potential treatment effect size of structural preservation/inflammatory biomarker mitigation in adults to guide Phase 2 clinical trial design. Adults with severe traumatic brain injury (Glasgow Coma Scale 5-8) and without signs of irreversible brain injury were evaluated for entry into the trial. A dose escalation format was performed in 25 patients: 5 controls, followed 5 patients in each dosing cohort (6, 9, 12 ×106 cells/kg body weight), then 5 more controls. Bone marrow harvest, cell processing to isolate the mononuclear fraction, and re-infusion occurred within 48 hours after injury. Patients were monitored for harvest-related hemodynamic changes, infusional toxicity, and adverse events. Outcome measures included magnetic resonance imaging-based measurements of supratentorial and corpus callosal volumes as well as diffusion tensor imaging-based measurements of fractional anisotropy and mean diffusivity of the corpus callosum and the corticospinal tract at the level of the brainstem at 1 month and 6 months postinjury. Functional and neurocognitive outcomes were measured and correlated with imaging data. Inflammatory cytokine arrays were measured in the plasma pretreatment, posttreatment, and at 1 and 6 month follow-up. There were no serious adverse events. There was a mild pulmonary toxicity of the highest dose that was not clinically significant. Despite the treatment group having greater injury severity, there was structural preservation of critical regions of interest that correlated with functional outcomes. Key inflammatory cytokines were downregulated. Treatment of severe, adult traumatic brain injury using an intravenously delivered autologous bone marrow mononuclear cell infusion is safe and logistically feasible. There appears to be a treatment signal as evidenced by central nervous system structural preservation, consistent with previous pediatric trial data. Inflammatory biomarkers are downregulated after cell infusion. Stem Cells 2016 Video Highlight: https://youtu.be/UiCCPIe-IaQ Stem Cells 2017;35:1065-1079.
Collapse
Affiliation(s)
- Charles S Cox
- Department of Pediatric Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Robert A Hetz
- Department of Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - George P Liao
- Department of Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Benjamin M Aertker
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Linda Ewing-Cobbs
- Department of Pediatrics, The University of Texas McGovern Medical School, Houston, Texas, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jenifer Juranek
- Department of Pediatrics, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sean I Savitz
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Margaret L Jackson
- Department of Pediatric Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | | | - Fabio Triolo
- Department of Pediatric Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Dean A Lee
- Department of Hematology and Oncology, Nationwide Children's, Columbus, Ohio, USA
| | - Laura Worth
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Imoigele P Aisiku
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Huimahn A Choi
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
- Department of Neurosurgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - John B Holcomb
- Department of Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
9
|
Jackson ML, Srivastava AK, Cox CS. Preclinical progenitor cell therapy in traumatic brain injury: a meta-analysis. J Surg Res 2017. [PMID: 28624058 DOI: 10.1016/j.jss.2017.02.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND No treatment is available to reverse injury associated with traumatic brain injury (TBI). Progenitor cell therapies show promise in both preclinical and clinical studies. We conducted a meta-analysis of preclinical studies using progenitor cells to treat TBI. METHODS EMBASE, MEDLINE, Cochrane Review, Biosis, and Google Scholar were searched for articles using prespecified search strategies. Studies meeting inclusion criteria underwent data extraction. Analysis was performed using Review Manager 5.3 according to a fixed-effects model, and all studies underwent quality scoring. RESULTS Of 430 abstracts identified, 38 met inclusion criteria and underwent analysis. Average quality score was 4.32 of 8 possible points. No study achieved a perfect score. Lesion volume (LV) and neurologic severity score (NSS) outcomes favored cell treatment with standard mean difference (SMD) of 0.86 (95% CI: 0.64-1.09) and 1.36 (95% CI: 1.11-1.60), respectively. Rotarod and Morris water maze outcomes also favored treatment with improvements in SMD of 0.34 (95% CI: 0.02-0.65) and 0.46 (95% CI: 0.17-74), respectively. Although LV and NSS were robust to publication bias assessments, rotarod and Morris water maze tests were not. Heterogeneity (I2) ranged from 74%-85% among the analyses, indicating a high amount of heterogeneity among studies. Precision as a function of quality score showed a statistically significant increase in the size of the confidence interval as quality improved. CONCLUSIONS Our meta-analysis study reveals an overall positive effect of progenitor cell therapies on LV and NSS with a trend toward improved motor function and spatial learning in different TBI animal models.
Collapse
Affiliation(s)
- Margaret L Jackson
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas.
| | - Amit K Srivastava
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| |
Collapse
|
10
|
Kuroda S. Current Opinion of Bone Marrow Stromal Cell Transplantation for Ischemic Stroke. Neurol Med Chir (Tokyo) 2016; 56:293-301. [PMID: 26984453 PMCID: PMC4908072 DOI: 10.2176/nmc.ra.2015-0349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article reviews recent advancement and perspective of bone marrow stromal cell (BMSC) transplantation for ischemic stroke, based on current information of basic and translational research. The author would like to emphasize that scientific approach would enable us to apply BMSC transplantation into clinical situation in near future.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama
| |
Collapse
|
11
|
Kim SM, Jeong CH, Woo JS, Ryu CH, Lee JH, Jeun SS. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells: tropism for brain tumors and biodistribution. Int J Nanomedicine 2015; 11:13-23. [PMID: 26719691 PMCID: PMC4690647 DOI: 10.2147/ijn.s97073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based gene therapy is a promising tool for the treatment of various neurological diseases, including brain tumors. However, the tracking of in vivo stem cell migration, distribution, and survival need to be defined for their clinical application. The systemic routes of stem cell delivery must be determined because direct intracerebral injection as a cure for brain tumors is an invasive method. In this study, we show for the first time that near-infrared (NIR) imaging can reveal the distribution and tumor tropism of intravenously injected MSCs in an intracranial xenograft glioma model. MSCs were labeled with NIR fluorescent nanoparticles, and the effects of the NIR dye on cell proliferation and migratory capacity were evaluated in vitro. We investigated the tumor-targeting properties and tissue distribution of labeled MSCs introduced by intravenous injection and followed by in vivo imaging analysis, histological analysis, and real-time quantitative polymerase chain reaction. We observed no cytotoxicity or change in the overall growth rate and characteristics of labeled MSCs compared with control MSCs. NIR fluorescent imaging showed the organ distribution and targeted tumor tropism of systemically injected human MSCs. A significant number of MSCs accumulated specifically at the tumor site in the mouse brain. These results suggest that NIR-based cell tracking is a potentially useful imaging technique to visualize cell survival, migration, and distribution for the application of MSC-mediated therapies in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Seong Muk Kim
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Hyun Jeong
- Department of Neurosurgery, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Ji Sun Woo
- Department of Neurosurgery, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chung Heon Ryu
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sin-Soo Jeun
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea ; Department of Neurosurgery, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
12
|
Gavins FNE, Smith HK. Cell tracking technologies for acute ischemic brain injury. J Cereb Blood Flow Metab 2015; 35:1090-9. [PMID: 25966948 PMCID: PMC4640284 DOI: 10.1038/jcbfm.2015.93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023]
Abstract
Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging.
Collapse
Affiliation(s)
- Felicity NE Gavins
- Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Helen K Smith
- Molecular and Cellular Physiology Department, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
13
|
Turtzo LC, Budde MD, Dean DD, Gold EM, Lewis BK, Janes L, Lescher J, Coppola T, Yarnell A, Grunberg NE, Frank JA. Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat. PLoS One 2015; 10:e0126551. [PMID: 25946089 PMCID: PMC4422703 DOI: 10.1371/journal.pone.0126551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/03/2015] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (<0.0005% of injected dose) were found within 3 days of last dosage at the site of injury after either delivery route, with no mesenchymal stromal cells being detectable in brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model.
Collapse
Affiliation(s)
- L. Christine Turtzo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Matthew D. Budde
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dana D. Dean
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric M. Gold
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bobbi K. Lewis
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lindsay Janes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacob Lescher
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiziana Coppola
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angela Yarnell
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joseph A. Frank
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
14
|
Hu X, Zhu J, Li X, Zhang X, Meng Q, Yuan L, Zhang J, Fu X, Duan X, Chen H, Ao Y. Dextran-coated fluorapatite crystals doped with Yb3+/Ho3+ for labeling and tracking chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. Biomaterials 2015; 52:441-51. [PMID: 25818450 DOI: 10.1016/j.biomaterials.2015.02.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/08/2023]
Abstract
Upconversion fluorescent nanoparticles are becoming more widely used as imaging contrast agents, owing to their high resolution and penetration depth, and avoidance of tissue auto-fluorescence and photodamage to cells. Here, we synthesized upconversion fluorescent crystals from rare-earth Yb3+ and Ho3+ co-doped fluorapatite (FA:Yb3+/Ho3+) suitable for long-term tracking and monitoring cartilage development (chondrogenesis) in bone marrow mesenchymal stem cells (BMSCs) in vitro and in vivo. We initially determined the structure, morphology and luminescence of the products using X-ray powder diffraction, transmission electron microscopy and two-photon confocal microscopy. When excited at 980 nm, FA:Yb3+/Ho3+ crystals exhibited distinct upconversion fluorescence peaks at 543 nm and 654 nm. We then conjugated FA:Yb3+/Ho3+ crystals with dextran to enhance hydrophilicity, biocompatibility and cell penetration. Next, we employed the dextran-coated FA:Yb3+/Ho3+ crystals in labeling and tracking chondrogenic differentiation processes in BMSCs stably expressing green fluorescent protein (BMSCsGFP) in vitro and in vivo. Labeled BMSCsGFP were shown to reproducibly exhibit chondrogenic differentiation potential in RT-PCR analysis, histological assessment and immunohistochemistry. We observed continuous luminescence from the FA:Yb3+/Ho3+ upconversion crystals at 4 weeks and 12 weeks post transplantation in BMSCsGFP, while GFP fluorescence in both control and crystal-treated groups significantly decreased at 12 weeks after BMSCsGFP transplantation. We therefore demonstrate the high biocompatibility and stability of FA:Yb3+/Ho3+ crystals in tracking and monitoring BMSCs chondrogenesis in vitro and in vivo, highlighting their excellent cell labeling potential in cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Jingxian Zhu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Xiyu Li
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Qingyang Meng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Lan Yuan
- Medical and Healthy Analysis Centre, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, People's Republic of China
| | - Jiying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Xin Fu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Xiaoning Duan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, People's Republic of China.
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, People's Republic of China.
| |
Collapse
|
15
|
Chen BK, Staff NP, Knight AM, Nesbitt JJ, Butler GW, Padley DJ, Parisi JE, Dietz AB, Windebank AJ. A safety study on intrathecal delivery of autologous mesenchymal stromal cells in rabbits directly supporting Phase I human trials. Transfusion 2014; 55:1013-20. [PMID: 25413276 DOI: 10.1111/trf.12938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND There are no effective treatments that slow the progression of neurodegenerative diseases. A major challenge of treatment in neurodegenerative diseases is appropriate delivery of pharmaceuticals into the cerebrospinal fluid (CSF) of affected individuals. Mesenchymal stromal cells (MSCs-either naïve or modified) are a promising therapy in neurodegenerative diseases and may be delivered directly into the CSF where they can reside for months. In this preclinical study, we evaluated the safety of intrathecal autologous MSCs in a rabbit model. STUDY DESIGN AND METHODS Autologous adipose-derived MSCs (or artificial CSF) were delivered intrathecally, either with single or with repeated injections into the foramen magnum of healthy rabbits and monitored for 4 and 12 weeks, respectively. RESULTS Rabbits tolerated injections well and no definitive MSC-related side effects were observed apart from three rabbits that had delayed death secondary to traumatic foramen magnum puncture. Functional assessments and body weights were equivalent between groups. Gross pathology and histology did not reveal any abnormalities or tumor growth. Complete blood count data were normal and there were no differences in CSF interleukin-6 levels in all groups tested. CONCLUSION Our data suggest that intrathecal delivery of autologous MSCs is safe in a rabbit model. Data from this study have supported two successful investigational new drug applications to the Food and Drug Administration, resulting in the initiation of two clinical trials using autologous MSCs in amyotrophic lateral sclerosis and multiple system atrophy.
Collapse
Affiliation(s)
- Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Nathan P Staff
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Greg W Butler
- Human Cell Therapy Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Douglas J Padley
- Human Cell Therapy Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Allan B Dietz
- Human Cell Therapy Laboratory, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
16
|
Upadhyay G, Shankar S, Srivastava RK. Stem Cells in Neurological Disorders: Emerging Therapy with Stunning Hopes. Mol Neurobiol 2014; 52:610-25. [DOI: 10.1007/s12035-014-8883-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
|
17
|
Ito M, Shichinohe H, Houkin K, Kuroda S. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct. J Tissue Eng Regen Med 2014; 11:375-381. [DOI: 10.1002/term.1920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 02/26/2014] [Accepted: 04/24/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Masaki Ito
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Hideo Shichinohe
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Satoshi Kuroda
- Department of Neurosurgery; Hokkaido University Graduate School of Medicine; Sapporo Japan
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama Japan
| |
Collapse
|
18
|
Investigation on the structure and upconversion fluorescence of Yb³⁺/Ho³⁺ co-doped fluorapatite crystals for potential biomedical applications. Sci Rep 2014; 4:4446. [PMID: 24658285 PMCID: PMC3963035 DOI: 10.1038/srep04446] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/07/2014] [Indexed: 11/12/2022] Open
Abstract
Rare-earth Yb3+ and Ho3+ co-doped fluorapatite (FA:Yb3+/Ho3+) crystals were prepared by hydrothermal synthesis, and their structure, upconversion properties, cell proliferation and imaging were investigated. The synthesized crystals, with a size of 16 by 286 nm, have a hexagonal crystal structure of classic FA and a Ca/Yb/Ho molar ratio of 100/16/2.1. Several reasonable Yb3+/Ho3+ -embedding lattice models along the fluorine channel of the FA crystal cell are proposed for the first time, such as models for (Ca7YbHo©)(PO4)6F2 and (Ca6YbHoNa2)(PO4)6F2. The activated FA:Yb3+/Ho3+ crystals were found to exhibit distinct upconversion fluorescence. The 543- and 654-nm signals in the emission spectra could be assigned, respectively, to the 5F4 (5S2) - 5I8 and 5F5 - 5I8 transitions of holmium via 980-nm near-infrared excitation and the energy transfer of ytterbium. After the surfaces were grafted with hydrophilic dextran, the crystals displayed clear fluorescent cell imaging. Thus, the prepared novel FA:Yb3+/Ho3+ upconversion fluorescent crystals have potential applications in the biomedical field.
Collapse
|
19
|
Sun L, Gao J, Zhao M, Jing X, Cui Y, Xu X, Wang K, Zhang W, Cui J. The effects of BMSCs transplantation on autophagy by CX43 in the hippocampus following traumatic brain injury in rats. Neurol Sci 2013; 35:677-82. [PMID: 24221859 DOI: 10.1007/s10072-013-1575-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/05/2013] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) can initiate a series of complicated pathological events, and induce various types of neuronal cell death including autophagy and apoptosis. Currently, the treatment of TBI is one of the main challenges in neurobiology. In this regard, the administration of bone marrow stromal cells (BMSCs) represents a novel treatment modality for TBI. However, the protective mechanism of BMSCs was unknown in the TBI. The aim of the present study was to assess the effects of BMSCs on connexin 43(CX43) and autophagy in the hippocampus following TBI in rats. A rat model of TBI was created using a modified weight-drop device. Double-membrane structures in the process of autophagy formation were frequently observed in injured brain by electron microscopy. The levels of autophagic pathway associated proteins and CX43 were also detected by western blot analysis. Specifically, immunoblotting results showed that BMSCs treatment after TBI could down-regulate light chain 3 (LC3), Beclin-1 and CX43 expression in the hippocampus. Taken together, our results demonstrated that BMSCs were able to significantly suppress TBI-induced autophagy activity, and the potential mechanism by regulating CX43 levels.
Collapse
Affiliation(s)
- Liqian Sun
- Department of Neurosurgery, Tangshan Gongren Hospital, No. 27 Wen Hua Road, Tangshan, 063000, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Greggio S, de Paula S, Azevedo PN, Venturin GT, Dacosta JC. Intra-arterial transplantation of human umbilical cord blood mononuclear cells in neonatal hypoxic-ischemic rats. Life Sci 2013; 96:33-9. [PMID: 24177600 DOI: 10.1016/j.lfs.2013.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Based on preclinical findings, cellular therapy has become a promising therapeutic approach for neonatal hypoxia-ischemia (HI). However, before translation into the clinical setting, new and effective routes of cell delivery must be determined. Intra-arterial (IA) delivery is an attractive route of cellular administration but has never been used in neonatal HI rats. AIMS In this study, we investigated the feasibility of IA transplantation of human umbilical cord blood (HUCB) mononuclear cells for the treatment of long-term behavior dysfunction and brain lesion after neonatal HI. MAIN METHODS Seven-day-old rats were subjected to a HI model and the animals received HUCB mononuclear cells into the left common carotid artery 24 h after HI insult. KEY FINDINGS At 9 weeks post-HI, intra-arterially transplanted HUCB mononuclear cells significantly improved learning and long-term spatial memory impairments when evaluated by the Morris water maze paradigm. There was no effect of neonatal HI insult or IA procedure on body weight and on motor coordination and balance when evaluated by the accelerating rotarod test. Cellular transplantation by the IA route did not restore neonatal HI-induced brain damage according to stereological volume assessment. Furthermore, HUCB mononuclear cells were tracked in the injured brain and peripheral organs of HI transplanted-rats by nested polymerase chain reaction analysis at different time points. SIGNIFICANCE Our findings contribute to the translational knowledge of cell based-therapy in neonatal HI and demonstrate for the first time that IA transplantation into rat pups is a feasible route for cellular delivery and prevents long-term cognitive deficits induced by experimental neonatal HI.
Collapse
Affiliation(s)
- Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Pediatria e Saúde da Criança, Laboratório de Neurociências e Sinalização Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Simone de Paula
- Programa de Pós-Graduação em Pediatria e Saúde da Criança, Laboratório de Neurociências e Sinalização Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Pâmella Nunes Azevedo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Laboratório de Neurociências e Sinalização Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gianina Teribele Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Laboratório de Neurociências e Sinalização Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Jaderson Costa Dacosta
- Programa de Pós-Graduação em Pediatria e Saúde da Criança, Laboratório de Neurociências e Sinalização Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde, Laboratório de Neurociências e Sinalização Celular, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
ZHAO MANMAN, CUI JIANZHONG, CUI YING, LI RAN, TIAN YANXIA, SONG SIXIN, ZHANG JUAN, GAO JUNLING. Therapeutic effect of exogenous bone marrow-derived mesenchymal stem cell transplantation on silicosis via paracrine mechanisms in rats. Mol Med Rep 2013; 8:741-6. [DOI: 10.3892/mmr.2013.1580] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/09/2013] [Indexed: 01/08/2023] Open
|
22
|
Long course hyperbaric oxygen stimulates neurogenesis and attenuates inflammation after ischemic stroke. Mediators Inflamm 2013; 2013:512978. [PMID: 23533308 PMCID: PMC3595722 DOI: 10.1155/2013/512978] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 12/31/2022] Open
Abstract
Several studies have provided evidence with regard to the neuroprotection benefits of hyperbaric oxygen (HBO) therapy in cases of stroke, and HBO also promotes bone marrow stem cells (BMSCs) proliferation and mobilization. This study investigates the influence of HBO therapy on the migration of BMSCs, neurogenesis, gliosis, and inflammation after stroke. Rats that sustained transient middle cerebral artery occlusion (MCAO) were treated with HBO three weeks or two days. The results were examined using a behavior test (modified neurological severity score, mNSS) and immunostaining to evaluate the effects of HBO therapy on migration of BMSCs, neurogenesis, and gliosis, and expression of neurotrophic factors was also evaluated. There was a lower mNSS score in the three-week HBO group when compared with the two-day HBO group. Mobilization of BMSCs to an ischemic area was more improved in long course HBO treatments, suggesting the duration of therapy is crucial for promoting the homing of BMSCs to ischemic brain by HBO therapies. HBO also can stimulate expression of trophic factors and improve neurogenesis and gliosis. These effects may help in neuronal repair after ischemic stroke, and increasing the course of HBO therapy might enhance therapeutic effects on ischemic stroke.
Collapse
|
23
|
Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. J Cereb Blood Flow Metab 2012; 32:1317-31. [PMID: 22252239 PMCID: PMC3390814 DOI: 10.1038/jcbfm.2011.187] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent stem cell technology provides a strong therapeutic potential not only for acute ischemic stroke but also for chronic progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis with neuroregenerative neural cell replenishment and replacement. In addition to resident neural stem cell activation in the brain by neurotrophic factors, bone marrow stem cells (BMSCs) can be mobilized by granulocyte-colony stimulating factor for homing into the brain for both neurorepair and neuroregeneration in acute stroke and neurodegenerative diseases in both basic science and clinical settings. Exogenous stem cell transplantation is also emerging into a clinical scene from bench side experiments. Early clinical trials of intravenous transplantation of autologous BMSCs are showing safe and effective results in stroke patients. Further basic sciences of stem cell therapy on a neurovascular unit and neuroregeneration, and further clinical advancements on scaffold technology for supporting stem cells and stem cell tracking technology such as magnetic resonance imaging, single photon emission tomography or optical imaging with near-infrared could allow stem cell therapy to be applied in daily clinical applications in the near future.
Collapse
Affiliation(s)
- Koji Abe
- Department of Neurology, Okayama University Medical School, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Kawabori M, Kuroda S, Ito M, Shichinohe H, Houkin K, Kuge Y, Tamaki N. Timing and cell dose determine therapeutic effects of bone marrow stromal cell transplantation in rat model of cerebral infarct. Neuropathology 2012; 33:140-8. [DOI: 10.1111/j.1440-1789.2012.01335.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|