1
|
Hines K, Sharan I, Schaefer J, Fayed I, Atik A, Matias CM, Wu C. Microelectrode Recording During Deep Brain Stimulation Does Not Consistently Represent Lead Trajectory. Oper Neurosurg (Hagerstown) 2025; 28:38-42. [PMID: 38888341 DOI: 10.1227/ons.0000000000001224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/04/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Long-term outcomes in deep brain stimulation (DBS) depend on accuracy of lead placement. Microelectrode recording (MER) is a long-used adjunct to leverage neurophysiological information to confirm satisfactory trajectory of implanted electrodes. The goal of this study was to evaluate the consistency in which electrodes are placed in sampled microelectrode trajectories. METHODS This is a retrospective study using intraoperative computed tomography to measure final electrode deviation from MER probe placement during the DBS insertion targeting subthalamic nucleus. Fifteen patients had 29 DBS leads placed using MER assistance. Radial distance between the probe and the lead were measured for each patient using intraoperative imaging. In addition, the preoperative target to final lead error was measured in 14 patients undergoing subthalamic nucleus implants without the use of MER and compared with the 15 patients in which MER was used as an adjunct. RESULTS There was no significant difference in the mean radial target error (1.2 vs 1.0 mm, P = .156) when comparing the leads placed with or without MER assistance, respectively. The mean difference in final position of microelectrode compared with DBS lead was 0.9 ± 0.1 (range 0.4-2.0 mm). Of all MER-assisted electrodes placed, 44.8% (13) of electrode final positions radially deviated 1.0 mm or more from the MER probe. CONCLUSION Electrode placement may deviate significantly from MER trajectories. Given the concern that physiological data may not be representative of the final electrode trajectory, surgeons should consider using intraoperative imaging or other adjunctive techniques during DBS to confirm accuracy and satisfactory trajectory of DBS leads.
Collapse
Affiliation(s)
- Kevin Hines
- Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia , Pennsylvania , USA
| | - Isha Sharan
- Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia , Pennsylvania , USA
| | - Joseph Schaefer
- Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia , Pennsylvania , USA
| | - Islam Fayed
- Department of Neurological Surgery, Cooper University Health Care, Camden , New Jersey , USA
| | - Ahmet Atik
- Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia , Pennsylvania , USA
| | - Caio M Matias
- Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia , Pennsylvania , USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia , Pennsylvania , USA
| |
Collapse
|
2
|
Hines K, Noecker AM, Frankemolle-Gilbert AM, Liang TW, Ratliff J, Heiry M, McIntyre CC, Wu C. Prospective Connectomic-Based Deep Brain Stimulation Programming for Parkinson's Disease. Mov Disord 2024; 39:2249-2258. [PMID: 39431498 DOI: 10.1002/mds.30026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Efficacy of deep brain stimulation (DBS) relies on accurate lead placement as well as optimization of the stimulation parameters. Although clinical software tools are now available, programming still largely relies on a monopolar review, a tedious process for both patients and programmers. OBJECTIVE This study investigates the safety and feasibility of prospective automated connectomic DBS programming (automated connectomic programming [ACP]), focusing on the recruitment of specific white matter pathways. METHODS After DBS implantation, a detailed connectomic DBS model in patient-specific space was developed for each study participant. A driving-force model was used to quantify pathway recruitment across 2400 different DBS settings. Optimization algorithms maximized recruitment of therapeutic pathways while minimizing recruitment of side-effect pathways. Thirteen subjects were enrolled in two study phases that compared DBS settings derived from ACP to standard clinical DBS settings. RESULTS Nine patients underwent reprogramming with ACP (5 globus pallidus interna [GPi], 4 subthalamic nucleus [STN]). Four patients underwent initial programming with ACP (3 GPi, 1 STN). All patients tolerated ACP without persistent side effects. In the reprogramming cohort, 3 patients preferred their ACP program, and 1 patient felt it was comparable to their clinical program. Unified Parkinson's Disease Rating Scale, Part III, scores for the initial ACP cohort (3 GPi, 1 STN) improved by an average of 43.5% (40.4-52.6 ± 5.6%). CONCLUSIONS ACP appeared clinically safe and feasible. It provided reasonable motor improvement, which can be further optimized with subsequent clinical adjustment. Additional investigation is required to refine the optimization algorithm and to quantify the clinical benefit of ACP in a larger cohort. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kevin Hines
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Angela M Noecker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Tsao-Wei Liang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jeffrey Ratliff
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Melissa Heiry
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Anderson W, Ponce FA, Kinsman MJ, Sani S, Hwang B, Ghinda D, Kogan M, Mahoney JM, Amin DB, Van Horn M, McGuckin JP, Razo-Castaneda D, Bucklen BS. Robotic-Assisted Navigation for Stereotactic Neurosurgery: A Cadaveric Investigation of Accuracy, Time, and Radiation. Oper Neurosurg (Hagerstown) 2023; 26:01787389-990000000-00991. [PMID: 38054727 PMCID: PMC11008650 DOI: 10.1227/ons.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Despite frequent use, stereotactic head frames require manual coordinate calculations and manual frame settings that are associated with human error. This study examines freestanding robot-assisted navigation (RAN) as a means to reduce the drawbacks of traditional cranial stereotaxy and improve targeting accuracy. METHODS Seven cadaveric human torsos with heads were tested with 8 anatomic coordinates selected for lead placement mirrored in each hemisphere. Right and left hemispheres of the brain were randomly assigned to either the traditional stereotactic arc-based (ARC) group or the RAN group. Both target accuracy and trajectory accuracy were measured. Procedural time and the radiation required for registration were also measured. RESULTS The accuracy of the RAN group was significantly greater than that of the ARC group in both target (1.2 ± 0.5 mm vs 1.7 ± 1.2 mm, P = .005) and trajectory (0.9 ± 0.6 mm vs 1.3 ± 0.9 mm, P = .004) measurements. Total procedural time was also significantly faster for the RAN group than for the ARC group (44.6 ± 7.7 minutes vs 86.0 ± 12.5 minutes, P < .001). The RAN group had significantly reduced time per electrode placement (2.9 ± 0.9 minutes vs 5.8 ± 2.0 minutes, P < .001) and significantly reduced radiation during registration (1.9 ± 1.1 mGy vs 76.2 ± 5.0 mGy, P < .001) compared with the ARC group. CONCLUSION In this cadaveric study, cranial leads were placed faster and with greater accuracy using RAN than those placed with conventional stereotactic arc-based technique. RAN also required significantly less radiation to register the specimen's coordinate system to the planned trajectories. Clinical testing should be performed to further investigate RAN for stereotactic cranial surgery.
Collapse
Affiliation(s)
- William Anderson
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Francisco A. Ponce
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael J. Kinsman
- Neurosurgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian Hwang
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
- Current Affiliation: Orange County Neurosurgical Associates, Laguna Hills, California, USA
| | - Diana Ghinda
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Michael Kogan
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Jonathan M. Mahoney
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| | - Dhara B. Amin
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| | - Margaret Van Horn
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| | - Joshua P. McGuckin
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| | - Dominic Razo-Castaneda
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Brandon S. Bucklen
- Musculoskeletal Education and Research Center, A Division of Globus Medical, Inc., Audubon, Pennsylvania, USA
| |
Collapse
|