1
|
Azadegan C, Santoro J, Whetstine JR. CONNECTING THE DOTS: EPIGENETIC REGULATION OF EXTRACHROMOSOMAL AND INHERITED DNA AMPLIFICATIONS. J Biol Chem 2025:108454. [PMID: 40154613 DOI: 10.1016/j.jbc.2025.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
DNA amplification has intrigued scientists for decades. Since its discovery, significant progress has been made in understanding the mechanisms promoting DNA amplification and their associated function(s). While DNA copy gains were once thought to be regulated purely by stochastic processes, recent findings have revealed the important role of epigenetic modifications in driving these amplifications and their integration into the genome. Furthermore, advances in genomic technology have enabled detailed characterization of these genomic events in terms of size, structure, formation, and regulation. This review highlights how our understanding of DNA amplifications has evolved over time, tracing its trajectory from initial discovery to the contemporary landscape. We describe how recent discoveries have started to uncover how these genomic events occur by controlled biological processes rather than stochastic mechanisms, presenting opportunities for therapeutic modulation.
Collapse
Affiliation(s)
- Chloe Azadegan
- Drexel University, College of Medicine, Philadelphia, PA, 19111; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia PA, 19111
| | - John Santoro
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia PA, 19111
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia PA, 19111.
| |
Collapse
|
2
|
Han QL, Zhang XL, Ren PX, Mei LH, Lin WH, Wang L, Cao Y, Li K, Bai F. Discovery, evaluation and mechanism study of WDR5-targeted small molecular inhibitors for neuroblastoma. Acta Pharmacol Sin 2023; 44:877-887. [PMID: 36207403 PMCID: PMC10043273 DOI: 10.1038/s41401-022-00999-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Neuroblastoma is the most common and deadliest tumor in infancy. WDR5 (WD Repeat Domain 5), a critical factor supporting an N-myc transcriptional complex via its WBM site and interacting with chromosome via its WIN site, promotes the progression of neuroblastoma, thus making it a potential anti-neuroblastoma drug target. So far, a few WIN site inhibitors have been reported, and the WBM site disruptors are rare to see. In this study we conducted virtual screening to identify candidate hit compounds targeting the WBM site of WDR5. As a result, 60 compounds were selected as candidate WBM site inhibitors. Cell proliferation assay demonstrated 6 structurally distinct WBM site inhibitors, numbering as compounds 4, 7, 11, 13, 19 and 22, which potently suppressed 3 neuroblastoma cell lines (MYCN-amplified IMR32 and LAN5 cell lines, and MYCN-unamplified SK-N-AS cell line). Among them, compound 19 suppressed the proliferation of IMR32 and LAN5 cells with EC50 values of 12.34 and 14.89 μM, respectively, and exerted a moderate inhibition on SK-N-AS cells, without affecting HEK293T cells at 20 μM. Analysis of high-resolution crystal complex structure of compound 19 against WDR5 revealed that it competitively occupied the hydrophobic pocket where V264 was located, which might disrupt the interaction of MYC with WDR5 and further MYC-medicated gene transcription. By performing RNA-seq analysis we demonstrated the differences in molecular action mechanisms of the compound 19 and a WIN site inhibitor OICR-9429. Most interestingly, we established the particularly high synergy rate by combining WBM site inhibitor 19 and the WIN site inhibitor OICR-9429, providing a novel therapeutic avenue for neuroblastoma.
Collapse
Affiliation(s)
- Qi-Lei Han
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xiang-Lei Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Peng-Xuan Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Liang-He Mei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei-Hong Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Cao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| |
Collapse
|
3
|
de La Roche Saint-André C, Géli V. Set1-dependent H3K4 methylation becomes critical for limiting DNA damage in response to changes in S-phase dynamics in Saccharomyces cerevisiae. DNA Repair (Amst) 2021; 105:103159. [PMID: 34174709 DOI: 10.1016/j.dnarep.2021.103159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
DNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S-phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. The opposite effects of the lack of RNase H activity and the reduction of histone levels on orc5-1 set1Δ viability are in agreement with their expected effects on replication fork progression. We propose that the role of H3K4 methylation during DNA replication becomes critical when the replication forks acceleration due to decreased origin firing in the orc5-1 background increases the risk for transcription replication conflicts. Furthermore, we show that an increase of reactive oxygen species levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.
Collapse
Affiliation(s)
- Christophe de La Roche Saint-André
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, France.
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
4
|
Inhibiting MLL1-WDR5 interaction ameliorates neuropathic allodynia by attenuating histone H3 lysine 4 trimethylation-dependent spinal mGluR5 transcription. Pain 2021; 161:1995-2009. [PMID: 32345914 DOI: 10.1097/j.pain.0000000000001898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/20/2020] [Indexed: 01/24/2023]
Abstract
ABSTRACT Mixed lineage leukemia 1 (MLL1)-mediated histone H3 lysine 4 trimethylation (H3K4me3) of a subset of genes has been linked to the transcriptional activation critical for synaptic plasticity, but its potential contribution to neuropathic allodynia development remains poorly explored. Here, we show that MLL1, which is induced in dorsal horn neuron after spinal nerve ligation (SNL), is responsible for mechanical allodynia and increased H3K4me3 at metabotropic glutamate receptor subtype 5 (mGluR5) promoter. Moreover, SNL induced WD (Trp-Asp) repeat domain 5 subunit (WDR5) expression as well as the MLL1-WDR5 interaction accompany with H3K4me3 enrichment and transcription of mGluR5 gene in the dorsal horn in neuropathic allodynia progression. Conversely, WDR5-0103, a novel inhibitor of the MLL1-WDR5 interaction, reversed SNL-induced allodynia and inhibited SNL-enhanced mGluR5 transcription/expression as well as MLL1, WDR5, and H3K4me3 at the mGluR5 promoter in the dorsal horn. Furthermore, disrupting the expression of MLL1 or WDR5 using small interfering RNA attenuated mechanical allodynia and reversed protein transcription/expression and complex localizing at mGluR5 promoter in the dorsal horn induced by SNL. This finding revealed that MLL1-WDR5 complex integrity regulates MLL1 and WDR5 recruitment to H3K4me3 enrichment at mGluR5 promoter in the dorsal horn underlying neuropathic allodynia. Collectively, our findings indicated that SNL enhances the MLL1-WDR5 complex, which facilitates MLL1 and WDR5 recruitment to H3K4me3 enrichment at mGluR5 promoter in spinal plasticity contributing to neuropathic allodynia pathogenesis.
Collapse
|
5
|
Chen J, Feng J, Fang Z, Ye J, Chen Q, Chen Q, Chen K, Xiong X, Li G, Song H, Xu B. Anlotinib suppresses MLL-rearranged acute myeloid leukemia cell growth by inhibiting SETD1A/AKT-mediated DNA damage response. Am J Transl Res 2021; 13:1494-1504. [PMID: 33841673 PMCID: PMC8014360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Leukemias driven by chromosomal translocation of the mixed-lineage leukemia (MLL) gene are highly prevalent in hematological malignancy. The poor survival rate and lack of effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The present study aimed to investigate the potential effectiveness and mechanism of Anlotinib, a novel receptor tyrosine kinase inhibitor, in MLL-r acute myeloid leukemia (AML). The findings revealed that Anlotinib significantly inhibited the growth of MLL-r AML cells in both in vivo and a murine xenograft model. RNA sequencing identified that multiple genes involved in DNA damage response were responsible for Anlotinib activity. To further elucidate the correlation between the DNA damage response induced by Anlotinib and MLL fusion, Gene Expression Profiling Interactive Analysis (GEPIA) was conducted. It revealed that Anlotinib impaired DNA damage response via inhibiting SETD1A and AKT. In conclusion, Anlotinib exerts anti-leukemia function by inhibiting SETD1A/AKT-mediated DNA damage response and highlights a novel mechanism underlying Anlotinib in the treatment of MLL-r AML.
Collapse
Affiliation(s)
- Jinzhu Chen
- Department of Hematology, The First Hospital of Longhai 363199Fujian, P. R. China
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Juan Feng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Jing Ye
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Qiuling Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| | - Kai Chen
- The First People’s Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-sen University)Foshan 528000, Guangdong, P. R. China
| | - Xiaoming Xiong
- Department of Hematology, The First Hospital of Longhai 363199Fujian, P. R. China
| | - Guowei Li
- Department of Hematology, Huizhou Municipal Central HospitalHuizhou 516001, P. R. China
| | - Haihan Song
- Department of Immunology, DICAT Biomedical Computation CentreVancouver, BC, Canada
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen UniversityXiamen 361003, P. R. China
- Key laboratory of Xiamen for Diagnosis and Treatment of Hematological MalignancyXiamen 361003, P. R. China
| |
Collapse
|
6
|
Wu X, Yu M, Zhang Z, Leng F, Ma Y, Xie N, Lu F. DDB2 regulates DNA replication through PCNA-independent degradation of CDT2. Cell Biosci 2021; 11:34. [PMID: 33557942 PMCID: PMC7869461 DOI: 10.1186/s13578-021-00540-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/15/2021] [Indexed: 01/28/2023] Open
Abstract
Background Targeting ubiquitin-dependent proteolysis is one of the strategies in cancer therapy. CRLCDT2 and CRLDDB2 are two key E3 ubiquitin ligases involved in DNA replication and DNA damage repair. But CDT2 and DDB2 are opposite prognostic factors in kinds of cancers, and the underlining mechanism needs to be elucidated. Methods Small interfering RNAs were used to determine the function of target genes. Co-immunoprecipitation (Co-IP) was performed to detect the interaction between DDB2 and CDT2. Immunofluorescence assays and fluorescence activating cell sorting (FACS) were used to measure the change of DNA content. In vivo ubiquitination assay was carried out to clarify the ubiquitination of CDT2 mediated by DDB2. Cell synchronization was performed to arrest cells at G1/S and S phase. The mechanism involved in DDB2-mediated CDT2 degradation was investigated by constructing plasmids with mutant variants and measured by Western blot. Immunohistochemistry was performed to determine the relationship between DDB2 and CDT2. Paired two-side Student’s t-test was used to measure the significance of the difference between control group and experimental group. Results Knockdown of DDB2 stabilized CDT2, while over-expression of DDB2 enhanced ubiquitination of CDT2, and subsequentially degradation of CDT2. Although both DDB2 and CDT2 contain PIP (PCNA-interacting protein) box, PIP box is dispensable for DDB2-mediated CDT2 degradation. Knockdown of PCNA had negligible effects on the stability of CDT2, but promoted accumulation of CDT1, p21 and SET8. Silencing of DDB2 arrested cell cycle in G1 phase, destabilized CDT1 and reduced the chromatin loading of MCMs, thereby blocked the formation of polyploidy induced by ablation of CDT2. In breast cancer and ovarian teratoma tissues, high level of DDB2 was along with lower level of CDT2. Conclusions We found that CRL4DDB2 is the novel E3 ubiquitin ligases of CDT2, and DDB2 regulates DNA replication through indirectly regulates CDT1 protein stability by degrading CDT2 and promotes the assembly of pre-replication complex. Our results broaden the horizon for understanding the opposite function of CDT2 and DDB2 in tumorigenesis, and may provide clues for drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Min Yu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.,Research Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Zhuxia Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Feng Leng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, 518035, Shenzhen, China.
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
7
|
Leng F, Saxena L, Hoang N, Zhang C, Lee L, Li W, Gong X, Lu F, Sun H, Zhang H. Proliferating cell nuclear antigen interacts with the CRL4 ubiquitin ligase subunit CDT2 in DNA synthesis-induced degradation of CDT1. J Biol Chem 2018; 293:18879-18889. [PMID: 30301766 DOI: 10.1074/jbc.ra118.003049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/01/2018] [Indexed: 12/29/2022] Open
Abstract
During DNA replication or repair, the DNA polymerase cofactor, proliferating cell nuclear antigen (PCNA), homotrimerizes and encircles the replicating DNA, thereby acting as a DNA clamp that promotes DNA polymerase processivity. The formation of the PCNA trimer is also essential for targeting the replication-licensing protein, chromatin-licensing, and DNA replication factor 1 (CDT1), for ubiquitin-dependent proteolysis to prevent chromosomal DNA re-replication. CDT1 uses its PCNA-interacting peptide box (PIP box) to interact with PCNA, and the CRL4 E3 ubiquitin ligase subunit CDT2 is recruited through the formation of PCNA-CDT1 complexes. However, it remains unclear how CDT1 and many other PIP box-containing proteins are marked for degradation by the CRL4CDT2 ubiquitin ligase during DNA replication or damage. Here, using recombinant protein expression coupled with site-directed mutagenesis, we report that CDT2 and PCNA directly interact and this interaction depends on the presence of a highly conserved, C-terminal PIP box-like region in CDT2. Deletion or mutation of this region abolished the CDT2-PCNA interaction between CDT2 and PCNA both in vitro and in vivo Moreover, PCNA-dependent CDT1 degradation in response to DNA damage and replication during the cell cycle requires an intact PIP box in CDT2. The requirement of the PIP boxes in both CDT2 and its substrate CDT1 suggests that the formation of the PCNA trimeric clamp around DNA during DNA replication and repair may bring together CDT1 and CRL4CDT2 ubiquitin E3 ligase to target CDT1 for proteolysis in a DNA synthesis-dependent manner.
Collapse
Affiliation(s)
- Feng Leng
- From the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China and.,the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Lovely Saxena
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Nam Hoang
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Chunxiao Zhang
- From the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China and.,the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Logan Lee
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Wenjing Li
- From the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China and.,the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Xiaoshan Gong
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Fei Lu
- From the School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China and
| | - Hong Sun
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| | - Hui Zhang
- the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154
| |
Collapse
|
8
|
Mishra S, Van Rechem C, Pal S, Clarke TL, Chakraborty D, Mahan SD, Black JC, Murphy SE, Lawrence MS, Daniels DL, Whetstine JR. Cross-talk between Lysine-Modifying Enzymes Controls Site-Specific DNA Amplifications. Cell 2018; 174:803-817.e16. [PMID: 30057114 PMCID: PMC6212369 DOI: 10.1016/j.cell.2018.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/02/2018] [Accepted: 06/08/2018] [Indexed: 12/28/2022]
Abstract
Acquired chromosomal DNA amplifications are features of many tumors. Although overexpression and stabilization of the histone H3 lysine 9/36 (H3K9/36) tri-demethylase KDM4A generates transient site-specific copy number gains (TSSGs), additional mechanisms directly controlling site-specific DNA copy gains are not well defined. In this study, we uncover a collection of H3K4-modifying chromatin regulators that function with H3K9 and H3K36 regulators to orchestrate TSSGs. Specifically, the H3K4 tri-demethylase KDM5A and specific COMPASS/KMT2 H3K4 methyltransferases modulate different TSSG loci through H3K4 methylation states and KDM4A recruitment. Furthermore, a distinct chromatin modifier network, MLL1-KDM4B-KDM5B, controls copy number regulation at a specific genomic locus in a KDM4A-independent manner. These pathways comprise an epigenetic addressing system for defining site-specific DNA rereplication and amplifications.
Collapse
Affiliation(s)
- Sweta Mishra
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Sangita Pal
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Thomas L Clarke
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Damayanti Chakraborty
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Sarah D Mahan
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Sedona E Murphy
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Department of Pathology, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA.
| |
Collapse
|
9
|
Xu W, Zhou B, Zhao X, Zhu L, Xu J, Jiang Z, Chen D, Wei Q, Han M, Feng L, Wang S, Wang X, Zhou J, Jin H. KDM5B demethylates H3K4 to recruit XRCC1 and promote chemoresistance. Int J Biol Sci 2018; 14:1122-1132. [PMID: 29989047 PMCID: PMC6036731 DOI: 10.7150/ijbs.25881] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022] Open
Abstract
Chemotherapy is the main treatment for human cancers including gastric cancer. However, in response to chemotherapeutic drugs, tumor cells can develop drug resistance by reprogramming intracellular metabolic and epigenetic networks to maintain their intrinsic homeostasis. Previously, we have established cisplatin-resistant gastric cancer cells as a drug resistant model, and elucidated the XRCC1 as the core DNA repair mechanism of drug resistance. This study investigated the regulation of XRCC1 by lysine demethylase 5B (KDM5B) in drug resistance. We found that the methylation level of H3K4 decreased significantly in drug-resistant cells. The chemical inhibitor of H3K4 demethylases, JIB-04, restored the methylation of H3K4 and blocked the co-localization of XRCC1 and γH2AX, eventually improved drug sensitivity. We further found that the expression level of KDM5B increased significantly in drug-resistant cells. Knockdown of KDM5B increased the methylation level of H3K4 and blocked the localization of XRCC1 to the DNA damage site, leads to increased drug sensitivity. In the sensitive cells, overexpression of KDM5B suppressed H3K4 methylation levels, which resulted to resistance to cisplatin. Moreover, we found that the posttranslational modification of KDM5B is responsible for its high expression in drug-resistant cells. Through mass spectrometry screening and co-immunoprecipitation validation, we found that the molecular chaperone HSP90 forms a complex with KDM5B in drug resistance cells. Interestingly, HSP90 inhibitor 17-AAG induced KDM5B degradation in a time-and-dose-dependent manner, indicating that HSP90 protected KDM5B from protein degradation. Targeting inhibition of HSP90 and KDM5B reversed drug resistance both in vitro and in vivo. Taken together, molecular chaperon HSP90 interacted with KDM5B to protect it from ubiquitin-dependent proteasomal degradation. Increased KDM5B demethylated H3K4 and facilitated the recruitment of XRCC1 to repair damaged DNA. Therefore, inhibition of HSP90 or KDM5B represented a novel approach to reverse chemoresistance in human cancers.
Collapse
Affiliation(s)
- Wenxia Xu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Bingluo Zhou
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Xiaoya Zhao
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Jinye Xu
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Dingwei Chen
- Department of general surgery, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Qi Wei
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Mengjiao Han
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw hospital, Medical School of Zhejiang University, China
| |
Collapse
|
10
|
Wang Q, Lu F, Lan R. RNA-sequencing dissects the transcriptome of polyploid cancer cells that are resistant to combined treatments of cisplatin with paclitaxel and docetaxel. MOLECULAR BIOSYSTEMS 2018; 13:2125-2134. [PMID: 28825433 DOI: 10.1039/c7mb00334j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Overcoming chemoresistance will prevent cancer relapse and contribute to clinical chemotherapy. In order to explore the underlying mechanism of chemoresistance, we firstly incubated cancer cells with a combination of cisplatin + paclitaxel (C + P) or cisplatin + paclitaxel + docetaxel (C + P + D) to mimic the treatment of cancer therapy in the laboratory. We found that polyploidy is a recurring strategy that cells adopt in response to cisplatin-based treatments. RNA-sequencing was performed to identify differentially expressed genes (DEGs) that may contribute to drug resistance. 4830 and 5518 DEGs were discovered in C + P and C + P + D resistant cells, respectively, and 4384 (73.40%) genes were shared. Possible drug resistance genes like Atg14, Abcb1b, Tbx2, Slc2a9, Slc10a3 and Slc22a18 were up-regulated while Foxm1, Bcl2, Brca1, Chek1, Hiatl1 and Abcb9 were down regulated. Genes involved in the pathways of p53 signaling, lysosomes and apoptosis were up-regulated, and in contrast, genes in the cell cycle, DNA replication, and mismatch repair pathways were down-regulated. Moreover, representative proteins relative to DEGs were examined to validate the results of RNA-seq and RT-PCR. Taken together, these results will contribute to revealing the mechanism of chemoresistance and discovering potential prognostic factors for cancer medication.
Collapse
Affiliation(s)
- Qianqian Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | | | | |
Collapse
|
11
|
Zhang C, Hoang N, Leng F, Saxena L, Lee L, Alejo S, Qi D, Khal A, Sun H, Lu F, Zhang H. LSD1 demethylase and the methyl-binding protein PHF20L1 prevent SET7 methyltransferase-dependent proteolysis of the stem-cell protein SOX2. J Biol Chem 2018; 293:3663-3674. [PMID: 29358331 DOI: 10.1074/jbc.ra117.000342] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/12/2018] [Indexed: 11/06/2022] Open
Abstract
The pluripotency-controlling stem-cell protein SRY-box 2 (SOX2) plays a pivotal role in maintaining the self-renewal and pluripotency of embryonic stem cells and also of teratocarcinoma or embryonic carcinoma cells. SOX2 is monomethylated at lysine 119 (Lys-119) in mouse embryonic stem cells by the SET7 methyltransferase, and this methylation triggers ubiquitin-dependent SOX2 proteolysis. However, the molecular regulators and mechanisms controlling SET7-induced SOX2 proteolysis are unknown. Here, we report that in human ovarian teratocarcinoma PA-1 cells, methylation-dependent SOX2 proteolysis is dynamically regulated by the LSD1 lysine demethylase and a methyl-binding protein, PHD finger protein 20-like 1 (PHF20L1). We found that LSD1 not only removes the methyl group from monomethylated Lys-117 (equivalent to Lys-119 in mouse SOX2), but it also demethylates monomethylated Lys-42 in SOX2, a reaction that SET7 also regulated and that also triggered SOX2 proteolysis. Our studies further revealed that PHF20L1 binds both monomethylated Lys-42 and Lys-117 in SOX2 and thereby prevents SOX2 proteolysis. Down-regulation of either LSD1 or PHF20L1 promoted SOX2 proteolysis, which was prevented by SET7 inactivation in both PA-1 and mouse embryonic stem cells. Our studies also disclosed that LSD1 and PHF20L1 normally regulate the growth of pluripotent mouse embryonic stem cells and PA-1 cells by preventing methylation-dependent SOX2 proteolysis. In conclusion, our findings reveal an important mechanism by which the stability of the pluripotency-controlling stem-cell protein SOX2 is dynamically regulated by the activities of SET7, LSD1, and PHF20L1 in pluripotent stem cells.
Collapse
Affiliation(s)
- Chunxiao Zhang
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and.,the Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nam Hoang
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Feng Leng
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and.,the Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lovely Saxena
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Logan Lee
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Salvador Alejo
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Dandan Qi
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and.,the Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Anthony Khal
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Hong Sun
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| | - Fei Lu
- the Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hui Zhang
- From the Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154 and
| |
Collapse
|
12
|
Xie Q, Li Z, Chen J. WDR5 positively regulates p53 stability by inhibiting p53 ubiquitination. Biochem Biophys Res Commun 2017; 487:333-338. [PMID: 28412363 DOI: 10.1016/j.bbrc.2017.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
WD40 repeat protein WDR5 is a core component of the Set/MLL histone methyltransferase complex which catalyzes histone H3 Lys4 trimethylation and activates gene transcription in human cells. WDR5 promotes Set/MLL complex assembly and mediates the complex binding to Lys4-dimethylated histone H3 tail. Most earlier studies report that WDR5 exerts profound effects on various cellular and organismal processes mainly through epigenetic regulation of gene transcription. However, the functions of WDR5 in lung cancer remain largely unknown. Here, we report that WDR5 positively regulates p53 stability by inhibiting p53 ubiquitination in human lung cancer A549 cells. Overexpression of WDR5 dramatically increases p53 protein levels and its half-life in A549 cells, while depletion of WDR5 with WDR5-specific siRNAs significantly decreases p53 protein levels. We also observe that WDR5 is required for p53 induction in response to cisplatin treatment. Mechanistically, WDR5 colocalizes with p53 and inhibits p53 ubiquitination, resulting in p53 stabilization. Consequently, overexpression of WDR5 induces G1 phase arrest in A549 cells, and knocking down WDR5 by siRNAs reduces the population at G1 phase. Furthermore, p53 expression levels is at least in part determined by the p53 positive regulator WDR5 in some cancer cells. Taken together, these data suggest that WDR5 is directly involved in p53 signaling pathway. Our studies provide a new insight into WDR5 functions in A549 cells.
Collapse
Affiliation(s)
- Qingqing Xie
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zengpeng Li
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| |
Collapse
|