1
|
Xu Y, Sun H, Chen J, Qin L, Wu M, Zhong Z, Zhang X. Loss of SIL1 Affects Actin Dynamics and Leads to Abnormal Neural Migration. Mol Neurobiol 2025; 62:335-350. [PMID: 38850350 DOI: 10.1007/s12035-024-04272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
SIL1 is a nucleotide exchange factor for the molecular chaperone protein Bip in the endoplasmic reticulum that plays a crucial role in protein folding. The Sil1 gene is currently the only known causative gene of Marinesco-Sjögren syndrome (MSS). Intellectual developmental disability is the main symptom of MSS, and its mechanism has not been fully elucidated. Studies have shown that mutations in the Sil1 gene can delay neuronal migration during cortical development, but the underlying molecular mechanisms remain unclear. To further identify potential molecules involved in the regulation of central nervous system development by SIL1, we established a cortical neuron model with SIL1 protein deficiency and used proteomic analysis to screen for differentially expressed proteins after Sil1 silencing, followed by GO functional enrichment and protein‒protein interaction (PPI) network analysis. We identified 68 upregulated and 137 downregulated proteins in total, and among them, 10 upregulated and 3 downregulated proteins were mainly related to actin cytoskeleton dynamics. We further validated the differential changes in actin-related molecules using qRT‒PCR and Western blotting of a Sil1 gene knockout (Sil1-/-) mouse model. The results showed that the protein levels of ACTN1 and VIM decreased, while their mRNA levels increased as a compensatory response to protein deficiency. The mRNA and protein levels of IQGAP1 both showed a secondary increase. In conclusion, we identified ACTN1 and VIM as the key molecules regulated by SIL1 that are involved in neuronal migration during cortical development.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Hongji Sun
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Junyang Chen
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Liuting Qin
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Mengxue Wu
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Zhaoming Zhong
- Department of Medical Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Xiaomin Zhang
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Alcaide Eligio M, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. J Cell Biol 2024; 223:e202305065. [PMID: 38787349 PMCID: PMC11117073 DOI: 10.1083/jcb.202305065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (capping protein, CP). We explore IQGAP1's roles in regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF, we show that IQGAP1's displacement activity extends to formin-CP "decision complexes," promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L. Pimm
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Brian K. Haarer
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander D. Nobles
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura M. Haney
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexandra G. Marcin
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Marcela Alcaide Eligio, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.04.539490. [PMID: 37205555 PMCID: PMC10187324 DOI: 10.1101/2023.05.04.539490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (Capping Protein, CPz). We explore IQGAP1's roles regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF we show that IQGAP1's displacement activity extends to formin-CPz 'decision complexes', promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Brian K Haarer
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexander D Nobles
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura M Haney
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexandra G Marcin
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jessica L Henty-Ridilla
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
4
|
Trenton NJ, McLaughlin RT, Bellamkonda SK, Tsao DS, Rodzinski A, Mace EM, Orange JS, Schweikhard V, Diehl MR. Membrane and Actin Tethering Transitions Help IQGAP1 Coordinate GTPase and Lipid Messenger Signaling. Biophys J 2020; 118:586-599. [PMID: 31952801 PMCID: PMC7002982 DOI: 10.1016/j.bpj.2019.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
The coordination of lipid messenger signaling with cytoskeletal regulation is central to many organelle-specific regulatory processes. This coupling often depends on the function of multidomain scaffolds that orchestrate transient interactions among multiple signaling intermediates and regulatory proteins on organelles. The number of possible scaffold interaction partners and the ability for these interactions to occur at different timescales makes investigations of scaffold functions challenging. This work employs live cell imaging to probe how the multidomain scaffold IQ motif containing GTPase activating protein 1 (IQGAP1) coordinates the activities of proteins affecting local actin polymerization, membrane processing, and phosphoinositide signaling. Using endosomes that are confined by a local actin network as a model system, we demonstrate that IQGAP1 can transition between different actin and endosomal membrane tethered states. Fast scaffold binding/disassociation transitions are shown to be driven by interactions between C-terminal scaffold domains and Rho GTPases at the membrane. Fluctuations in these binding modes are linked to negative regulation of actin polymerization. Although this control governs core elements of IQGAP1 dynamics, actin binding by the N-terminal calponin homology domain of the scaffold is shown to help the scaffold track the temporal development of endosome membrane markers, implying actin associations bolster membrane and actin coordination. Importantly, these effects are not easily distilled purely through standard (static) co-localization analyses or traditional pathway perturbations methods and were resolved by performing dynamic correlation and multiple regression analyses of IQGAP1 scaffold mutants. Using these capabilities with pharmacological inhibition, we provide evidence that membrane tethering is dependent on the activities of the lipid kinase phosphoinositide 3-kinase in addition to the Rho GTPases Rac1 and Cdc42. Overall, these methods and results point to a scaffold tethering mechanism that allows IQGAP1 to help control the amplitude of phosphoinositide lipid messenger signaling by coordinating signaling intermediate activities with the development and disassembly of local actin cytoskeletal networks.
Collapse
Affiliation(s)
| | - R Tyler McLaughlin
- Department of Bioengineering, Rice University, Houston, Texas; Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, Texas
| | | | - David S Tsao
- Department of Bioengineering, Rice University, Houston, Texas
| | | | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Michael R Diehl
- Department of Bioengineering, Rice University, Houston, Texas; Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, Texas; Department of Chemistry, Rice University, Houston, Texas.
| |
Collapse
|