1
|
Hambraeus M, Karlsson J, Kasselaki I, Hagerling C, Hagander L, Gisselsson D. Differential Activation of Immune Effector Processes in Mature Compared to Immature Sacrococcygeal Teratomas. Fetal Pediatr Pathol 2022; 41:413-425. [PMID: 33063585 DOI: 10.1080/15513815.2020.1831661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective: This study aims to characterize the molecular signatures of sacrococcygeal teratomas (SCTs). Methods: Three SCTs were analyzed with whole genome genotyping. RNA sequencing of 10 SCTs dominated by mature, immature and neuroglial elements was analyzed. Expression in SCT-samples with different elements were compared to each other and to a reference group of malignant pediatric tumors. Macrophages, T- and B-lymphocytes were detected by immunohistochemistry. Results: No chromosomal imbalances were detected. SCTs showed overexpression of genes involved in neurosignaling, DNA-binding molecules and pathways of early germ cells. Genes associated with immune effector processes were overexpressed in mature compared to immature SCTs, and immune cell infiltration was found predominantly around mature epithelial elements. Conclusion: The broad repertoire of histological elements in SCTs reflects differences in transcriptional regulation rather than differences in gene copy numbers. A paucity of immune response in immature SCTs may be a factor contributing to their uninhibited growth.
Collapse
Affiliation(s)
- Mette Hambraeus
- Department of Pediatric Surgery, Lund University Hospital, Lund, Sweden.,Department of Clinical Sciences, Section of Pediatrics, Lund University, Lund, Sweden
| | - Jenny Karlsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ioanna Kasselaki
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University Hospital, Lund, Sweden
| | - Catharina Hagerling
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lars Hagander
- Department of Pediatric Surgery, Lund University Hospital, Lund, Sweden.,Department of Clinical Sciences, Section of Pediatrics, Lund University, Lund, Sweden
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Division of Oncology and Pathology, Lund University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Mall EM, Lecanda A, Drexler HCA, Raz E, Schöler HR, Schlatt S. Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. PLoS One 2021; 16:e0258427. [PMID: 34653201 PMCID: PMC8519482 DOI: 10.1371/journal.pone.0258427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
The DND microRNA-mediated repression inhibitor 1 (DND1) is a conserved RNA binding protein (RBP) that plays important roles in survival and fate maintenance of primordial germ cells (PGCs) and in the development of the male germline in zebrafish and mice. Dead end was shown to be expressed in human pluripotent stem cells (PSCs), PGCs and spermatogonia, but little is known about its specific role concerning pluripotency and human germline development. Here we use CRISPR/Cas mediated knockout and PGC-like cell (PGCLC) differentiation in human iPSCs to determine if DND1 (1) plays a role in maintaining pluripotency and (2) in specification of PGCLCs. We generated several clonal lines carrying biallelic loss of function mutations and analysed their differentiation potential towards PGCLCs and their gene expression on RNA and protein levels via RNA sequencing and mass spectrometry. The generated knockout iPSCs showed no differences in pluripotency gene expression, proliferation, or trilineage differentiation potential, but yielded reduced numbers of PGCLCs as compared with their parental iPSCs. RNAseq analysis of mutated PGCLCs revealed that the overall gene expression remains like non-mutated PGCLCs. However, reduced expression of genes associated with PGC differentiation and maintenance (e.g., NANOS3, PRDM1) was observed. Together, we show that DND1 iPSCs maintain their pluripotency but exhibit a reduced differentiation to PGCLCs. This versatile model will allow further analysis of the specific mechanisms by which DND1 influences PGC differentiation and maintenance.
Collapse
Affiliation(s)
- Eva M. Mall
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Centre of Reproductive Medicine and Andrology, Münster, Germany
| | - Aaron Lecanda
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, Münster, Germany
| | - Hans R. Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Münster, Germany
| |
Collapse
|
3
|
Zhang Y, Godavarthi JD, Williams-Villalobo A, Polk S, Matin A. The Role of DND1 in Cancers. Cancers (Basel) 2021; 13:cancers13153679. [PMID: 34359581 PMCID: PMC8345090 DOI: 10.3390/cancers13153679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The Ter mutation in Dead-End 1 (Dnd1), Dnd1Ter, which leads to a premature stop codon, has been determined to be the cause for primordial germ cell deficiency, accompanied with a high incidence of congenital testicular germ cell tumors (TGCTs) or teratomas in the 129/Sv-Ter mice. As an RNA-binding protein, DND1 can bind the 3'-untranslated region (3'-UTR) of mRNAs and function in translational regulation. DND1 can block microRNA (miRNA) access to the 3'-UTR of target mRNAs, thus inhibiting miRNA-mediated mRNA degradation and up-regulating translation or can also function to degrade or repress mRNAs. Other mechanisms of DND1 activity include promoting translation initiation and modifying target protein activity. Although Dnd1Ter mutation causes spontaneous TGCT only in male 129 mice, it can also cause ovarian teratomas in mice when combined with other genetic defects or cause germ cell teratomas in both genders in the WKY/Ztm rat strain. Furthermore, studies on human cell lines, patient cancer tissues, and the use of human cancer genome analysis indicate that DND1 may possess either tumor-suppressive or -promoting functions in a variety of somatic cancers. Here we review the involvement of DND1 in cancers, including what appears to be its emerging role in somatic cancers.
Collapse
Affiliation(s)
- Yun Zhang
- Correspondence: (Y.Z.); (A.M.); Tel.: +1-713-313-7557 (Y.Z.); +1-713-313-7160 (A.M.)
| | | | | | | | - Angabin Matin
- Correspondence: (Y.Z.); (A.M.); Tel.: +1-713-313-7557 (Y.Z.); +1-713-313-7160 (A.M.)
| |
Collapse
|
4
|
To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm. Int J Mol Sci 2021; 22:ijms22115982. [PMID: 34205983 PMCID: PMC8199495 DOI: 10.3390/ijms22115982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
In the human embryo, the genetic program that orchestrates germ cell specification involves the activation of epigenetic and transcriptional mechanisms that make the germline a unique cell population continuously poised between germness and pluripotency. Germ cell tumors, neoplasias originating from fetal or neonatal germ cells, maintain such dichotomy and can adopt either pluripotent features (embryonal carcinomas) or germness features (seminomas) with a wide range of phenotypes in between these histotypes. Here, we review the basic concepts of cell specification, migration and gonadal colonization of human primordial germ cells (hPGCs) highlighting the analogies of transcriptional/epigenetic programs between these two cell types.
Collapse
|
5
|
Ruthig VA, Yokonishi T, Friedersdorf MB, Batchvarova S, Hardy J, Garness JA, Keene JD, Capel B. A transgenic DND1GFP fusion allele reports in vivo expression and RNA-binding targets in undifferentiated mouse germ cells†. Biol Reprod 2021; 104:861-874. [PMID: 33394034 PMCID: PMC8324984 DOI: 10.1093/biolre/ioaa233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
In vertebrates, the RNA-binding protein (RBP) dead end 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the premeiotic spermatogonial population. Utilizing the GFP tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Sofia Batchvarova
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Gross-Thebing T, Raz E. Dead end and Detour: The function of the RNA-binding protein Dnd in posttranscriptional regulation in the germline. Curr Top Dev Biol 2020; 140:181-208. [DOI: 10.1016/bs.ctdb.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Nunez L, Mokkapati S, Yu C, Deng JM, Behringer RR, Matin A. Generation of a novel mouse strain with conditional, cell-type specific, expression of DND1. Genesis 2019; 57:e23335. [PMID: 31513344 DOI: 10.1002/dvg.23335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023]
Abstract
Dead-End 1 (DND1) encodes an RNA binding protein critical for viable primordial germ cells in vertebrates. When introduced into cancer cell lines, DND1 suppresses cell proliferation and enhances apoptosis. However, the molecular function of mammalian wild-type DND1 has mostly been studied in cell lines and not verified in the organism. To facilitate study of wild-type DND1 function in mammalian systems, we generated a novel transgenic mouse line, LSL-FM-DND1 flox/+ , which conditionally expresses genetically engineered, FLAG-tagged and myc-tagged DND1 in a cell type-specific manner. We report that FLAG-myc-DND1 is indeed expressed in specific tissues of the mouse when LSL-FM-DND1 flox/+ is combined with mouse strains expressing Cre-recombinase. LSL-FM-DND1 flox/+ mice are fertile with no overt health effects. We expressed FLAG-myc-DND1 in the pancreas and found that chronic, ectopic expression of FLAG-myc-DND1 led to increase in fasting glucose levels in older mice. Thus, this novel LSL-FM-DND1 flox/+ mouse strain will facilitate studies on the biological and molecular function of wild-type DND1.
Collapse
Affiliation(s)
- Lisa Nunez
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas
| | - Sharada Mokkapati
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chengtai Yu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Jian M Deng
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angabin Matin
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas
| |
Collapse
|
8
|
Liu DW, Zhang JH, Liu FX, Wang XT, Pan SK, Jiang DK, Zhao ZH, Liu ZS. Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in diabetic nephropathy by upregulating FOXA1. Exp Mol Med 2019; 51:1-15. [PMID: 31371698 PMCID: PMC6802617 DOI: 10.1038/s12276-019-0259-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
The number of patients with diabetic nephropathy (DN) is still on the rise worldwide, and this requires the development of new therapeutic strategies. Recent reports have highlighted genetic factors in the treatment of DN. Herein, we aimed to study the roles of long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) and histone 3 lysine 27 trimethylation (H3K27me3) in DN. A model of DN was established by inducing diabetes in mice with streptozotocin. Mouse podocyte clone 5 (MPC5) podocytes and primary podocytes were cultured in normal and high glucose media to observe cell morphology and to quantify PVT1 expression. The roles of PVT1 and enhancer of zeste homolog 2 (EZH2) were validated via loss-of-function and gain-of-function in vitro experiments to identify the interactions among PVT1, EZH2, and forkhead box A1 (FOXA1). The podocyte damage and apoptosis due to PVT1 and FOXA1 were verified with in vivo experiments. PVT1 was highly expressed in MPC5 and primary podocytes in DN patients and in cultures grown in high glucose medium. A large number of CpG (C-phosphate-G) island sites were predicted at the FOXA1 promoter region, where PVT1 recruited EZH2 to promote the recruitment of H3K27me3. The silencing of PVT1 or the overexpression of FOXA1 relieved the damage and inhibited the apoptosis of podocytes in DN, as was evidenced by the upregulated expression of synaptopodin and podocin, higher expression of Bcl-2, and lower expression of Bax and cleaved caspase-3. The key findings of this study collectively indicate that the suppression of lncRNA PVT1 exerts inhibitory effects on podocyte damage and apoptosis via FOXA1 in DN, which is of clinical significance. Targeting an RNA molecule responsible for disrupting metabolic protein levels in diabetic kidney disease may improve treatment. Diabetic nephropathy (DN) can affect people with type I or type II diabetes, and results in functional deterioration and the need for regular dialysis. DN incidence is rising worldwide, but existing treatments are only partially effective. Zhang-Suo Liu at Zhengzhou University, China, and co-workers examined the role of a long noncoding RNA molecule known as PVT1, which has been recently associated with kidney disease. The team collected serum samples from 32 patients with DN, and also generated a DN mouse model. They found that PVT1 expression was significantly higher in DN, and that this inhibited the expression of a key metabolic protein, FOXA1. Silencing PVT1 restored FOXA1 levels, limiting damage and cell death in kidney cells.
Collapse
Affiliation(s)
- Dong-Wei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, 450052, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, 450052, Zhengzhou, China
| | - Jia-Hui Zhang
- Research Institute of Nephrology, Zhengzhou University, 450052, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, 450052, Zhengzhou, China
| | - Feng-Xun Liu
- Research Institute of Nephrology, Zhengzhou University, 450052, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, 450052, Zhengzhou, China
| | - Xu-Tong Wang
- Research Institute of Nephrology, Zhengzhou University, 450052, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, 450052, Zhengzhou, China
| | - Shao-Kang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, 450052, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, 450052, Zhengzhou, China
| | - Deng-Ke Jiang
- Research Institute of Nephrology, Zhengzhou University, 450052, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, 450052, Zhengzhou, China
| | - Zi-Hao Zhao
- Research Institute of Nephrology, Zhengzhou University, 450052, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, 450052, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China. .,Research Institute of Nephrology, Zhengzhou University, 450052, Zhengzhou, China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, 450052, Zhengzhou, China. .,Core Unit of National Clinical Medical Research Center of Kidney Disease, 450052, Zhengzhou, China.
| |
Collapse
|
9
|
Ruthig VA, Friedersdorf MB, Garness JA, Munger SC, Bunce C, Keene JD, Capel B. The RNA-binding protein DND1 acts sequentially as a negative regulator of pluripotency and a positive regulator of epigenetic modifiers required for germ cell reprogramming. Development 2019; 146:dev175950. [PMID: 31253634 PMCID: PMC6803376 DOI: 10.1242/dev.175950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
The adult spermatogonial stem cell population arises from pluripotent primordial germ cells (PGCs) that enter the fetal testis around embryonic day (E)10.5. PGCs undergo rapid mitotic proliferation, then enter prolonged cell cycle arrest (G1/G0), during which they transition to pro-spermatogonia. In mice homozygous for the Ter mutation in the RNA-binding protein Dnd1 (Dnd1Ter/Ter ), many male germ cells (MGCs) fail to enter G1/G0 and instead form teratomas: tumors containing many embryonic cell types. To investigate the origin of these tumors, we sequenced the MGC transcriptome in Dnd1Ter/Ter mutants at E12.5, E13.5 and E14.5, immediately prior to teratoma formation, and correlated this information with DO-RIP-Seq-identified DND1 direct targets. Consistent with previous results, we found DND1 controls downregulation of many genes associated with pluripotency and active cell cycle, including mTor, Hippo and Bmp/Nodal signaling pathway elements. However, DND1 targets also include genes associated with male differentiation, including a large group of chromatin regulators activated in wild-type but not mutant MGCs during the E13.5 and E14.5 transition. Results suggest multiple DND1 functions and link DND1 to initiation of epigenetic modifications in MGCs.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Takehara A, Matsui Y. Shortened G1 phase of cell cycle and decreased histone H3K27 methylation are associated with AKT-induced enhancement of primordial germ cell reprogramming. Dev Growth Differ 2019; 61:357-364. [PMID: 31199000 DOI: 10.1111/dgd.12621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/15/2023]
Abstract
Primordial germ cells (PGCs) are reprogrammed into pluripotent embryonic germ cells (EGCs) under specific culture conditions, but the detailed mechanisms of PGC reprogramming have not yet been fully clarified. Previous studies have demonstrated that AKT, an important intracellular signaling molecule, promotes reprogramming of PGCs into EGCs. Because AKT likely inhibits p53 functions to enhance PGC reprogramming, and p53 negatively regulates cell cycle progression, we analyzed cell cycle changes in PGCs following AKT activation and found that the ratio of PGCs in the G1/G0 phase was decreased while that of PGCs in the G2/M phase was increased after AKT activation.
We also showed that the expression of the CDK inhibitor p27kip1, which prevents the G1‐S transition and is transcriptionally activated by p53, was significantly downregulated by AKT activation. The results suggested that the characteristic cell cycle changes of PGCs by AKT activation are, at least in part, due to decreased expression of p27kip1 . We also investigated changes in histone H3K27 tri-methylation (H3K27me3) by AKT activation in PGCs, because we previously found that decreased H3K27me3 was involved in PGC reprogramming via upregulation of cyclin D1. We observed that AKT activation in PGCs resulted in H3K27 hypomethylation. In addition, DZNeP, an inhibitor of the H3K27 trimethyl transferase Ezh2, stimulated EGC formation. These results together suggested that AKT activation promotes G1-S transition and downregulates H3K27me3 to enhance PGC reprogramming.
Collapse
Affiliation(s)
- Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
An Y, Sekinaka T, Tando Y, Okamura D, Tanaka K, Ito-Matsuoka Y, Takehara A, Yaegashi N, Matsui Y. Derivation of pluripotent stem cells from nascent undifferentiated teratoma. Dev Biol 2018; 446:43-55. [PMID: 30529251 DOI: 10.1016/j.ydbio.2018.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023]
Abstract
Teratomas are tumors consisting of components of the three germ layers that differentiate from pluripotent stem cells derived from germ cells. In the normal mouse testis, teratomas rarely form, but a deficiency in Dead-end1 (Dnd1) in mice with a 129/Sv genetic background greatly enhances teratoma formation. Thus, DND1 is crucial for suppression of teratoma development from germ cells. In the Dnd1 mutant testis, nascent teratoma cells emerge at E15.5. To understand the nature of early teratoma cells, we established cell lines in the presence of serum and leukemia inhibitory factor (LIF) from teratoma-forming cells in neonatal Dnd1 mutant testis. These cells, which we designated cultured Dnd1 mutant germ cells (CDGCs), were morphologically similar to embryonic stem cells (ESCs) and could be maintained in the naïve pluripotent condition. In addition, the cells expressed pluripotency genes including Oct4, Nanog, and Sox2; differentiated into cells of the three germ layers in culture; and contributed to chimeric mice. The expression levels of pluripotency genes and global transcriptomes in CDGCs as well as these cells' adaption to culture conditions for primed pluripotency suggested that their pluripotent status is intermediate between naïve and primed pluripotency. In addition, the teratoma-forming cells in the neonatal testis from which CDGCs were derived also showed gene expression profiles intermediate between naïve and primed pluripotency. The results suggested that germ cells in embryonic testes of Dnd1 mutants acquire the intermediate pluripotent status during the course of conversion into teratoma cells.
Collapse
Affiliation(s)
- Yuri An
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tamotsu Sekinaka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Keiko Tanaka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
| |
Collapse
|
12
|
Identification of KLF9 and BCL3 as transcription factors that enhance reprogramming of primordial germ cells. PLoS One 2018; 13:e0205004. [PMID: 30286177 PMCID: PMC6171932 DOI: 10.1371/journal.pone.0205004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of eggs and sperm. Although PGCs are unipotent cells in vivo, they are reprogrammed into pluripotent stem cells (PSCs), also known as embryonic germ cells (EGCs), in the presence of leukemia inhibitory factor and basic fibroblast growth factor (bFGF) in vitro. However, the molecular mechanisms responsible for their reprogramming are not fully understood. Here we show identification of transcription factors that mediate PGC reprogramming. We selected genes encoding transcription factors or epigenetic regulatory factors whose expression was significantly different between PGCs and PSCs with in silico analysis and RT-qPCR. Among the candidate genes, over-expression (OE) of Bcl3 or Klf9 significantly enhanced PGC reprogramming. Notably, EGC formation was stimulated by Klf9-OE even without bFGF. G-protein-coupled receptor signaling-related pathways, which are involved in PGC reprogramming, were enriched among genes down-regulated by Klf9-OE, and forskolin which activate adenylate cyclase, rescued repressed EGC formation by knock-down of Klf9, suggesting a molecular linkage between KLF9 and such signaling.
Collapse
|