1
|
Plasman M, Gonzalez-Voyer A, Bautista A, Díaz DE LA Vega-Pérez AH. Flexibility in thermal requirements: a comparative analysis of the wide-spread lizard genus Sceloporus. Integr Zool 2024. [PMID: 38880782 DOI: 10.1111/1749-4877.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Adaptation or acclimation of thermal requirements to environmental conditions can reduce thermoregulation costs and increase fitness, especially in ectotherms, which rely heavily on environmental temperatures for thermoregulation. Insight into how thermal niches have shaped thermal requirements across evolutionary history may help predict the survival of species during climate change. The lizard genus Sceloporus has a widespread distribution and inhabits an ample variety of habitats. We evaluated the effects of geographical gradients (i.e. elevation and latitude) and local environmental temperatures on thermal requirements (i.e. preferred body temperature, active body temperature in the field, and critical thermal limits) of Sceloporus species using published and field-collected data and performing phylogenetic comparative analyses. To contrast macro- and micro-evolutional patterns, we also performed intra-specific analyses when sufficient reports existed for a species. We found that preferred body temperature increased with elevation, whereas body temperature in the field decreased with elevation and increased with local environmental temperatures. Critical thermal limits were not related to the geographic gradient or environmental temperatures. The apparent lack of relation of thermal requirements to geographic gradient may increase vulnerability to extinction due to climate change. However, local and temporal variations in thermal landscape determine thermoregulation opportunities and may not be well represented by geographic gradient and mean environmental temperatures. Results showed that Sceloporus lizards are excellent thermoregulators, have wide thermal tolerance ranges, and the preferred temperature was labile. Our results suggest that Sceloporus lizards can adjust to different thermal landscapes, highlighting opportunities for continuous survival in changing thermal environments.
Collapse
Affiliation(s)
- Melissa Plasman
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Alejandro Gonzalez-Voyer
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Amando Bautista
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Aníbal H Díaz DE LA Vega-Pérez
- Consejo Nacional de Humanidades, Ciencias, y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
2
|
Haskett H, Gill L, Spicer JI, Truebano M. The embryonic thermal environment has positive but weak effects on thermal tolerance later in life in the aquatic invertebrate Gammarus chevreuxi. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106350. [PMID: 38219380 DOI: 10.1016/j.marenvres.2024.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Recent evidence suggests that the adult phenotype is influenced by temperatures experienced in early life. However, our understanding of the extent to which the embryonic environment can modulate thermal tolerance later in life is limited, owing to the paucity of studies with appropriate experimental designs to test for this form of developmental plasticity. We investigated whether the thermal environment experienced during embryonic development affects thermal limits in later life. Embryos of the estuarine amphipod Gammarus chevreuxi were incubated until hatching to 15 °C, 20 °C and 25 °C, then reared under a common temperature. Using thermal ramping assays, we determined upper thermal limits in juveniles, four weeks post-hatch. Individuals exposed to higher temperatures during embryonic development displayed greater thermal tolerance as juveniles (acclimation response ratio ≈ 0.10-0.25 for upper lethal temperature). However, we suggest that the degree of developmental plasticity observed is limited, and will provide little benefit under future climate change scenarios.
Collapse
Affiliation(s)
- Honor Haskett
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Luke Gill
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - John I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
3
|
Weaver SJ, McIntyre T, van Rossum T, Telemeco RS, Taylor EN. Hydration and evaporative water loss of lizards change in response to temperature and humidity acclimation. J Exp Biol 2023; 226:jeb246459. [PMID: 37767755 DOI: 10.1242/jeb.246459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Testing acclimation plasticity informs our understanding of organismal physiology and applies to conservation management amidst our rapidly changing climate. Although there is a wealth of research on the plasticity of thermal and hydric physiology in response to temperature acclimation, there is a comparative gap for research on acclimation to different hydric regimes, as well as the interaction between water and temperature. We sought to fill this gap by acclimating western fence lizards (Sceloporus occidentalis) to experimental climate conditions (crossed design of hot or cool, dry or humid) for 8 days, and measuring cutaneous evaporative water loss (CEWL), plasma osmolality, hematocrit and body mass before and after acclimation. CEWL changed plastically in response to the different climates, with lizards acclimated to hot humid conditions experiencing the greatest increase in CEWL. Change in CEWL among individuals was negatively related to treatment vapor pressure deficit and positively related to treatment water vapor pressure. Plasma osmolality, hematocrit and body mass all showed greater changes in response to temperature than to humidity or vapor pressure deficit. CEWL and plasma osmolality were positively related across treatment groups before acclimation and within treatment groups after acclimation, but the two variables showed different responses to acclimation, suggesting that they are interrelated but governed by different mechanisms. This study is among few that assess more than one metric of hydric physiology and that test the interactive effects of temperature and humidity. Such measurements will be essential for predictive models of activity and survival for animals under climate change.
Collapse
Affiliation(s)
- Savannah J Weaver
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Tess McIntyre
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Taylor van Rossum
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| | - Rory S Telemeco
- Department of Conservation Science, Fresno Chaffee Zoo, Fresno, CA 93728, USA
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 93740, USA
| | - Emily N Taylor
- Biological Sciences Department, Bailey College of Science and Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
4
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Consequences of Oviposition Site Choice for Geckos in Changing Environments. BIOLOGY 2022; 11:biology11091281. [PMID: 36138760 PMCID: PMC9495809 DOI: 10.3390/biology11091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Most lizards lay eggs inside nests where developing embryos experience large temperature fluctuations. As females do not incubate eggs, the embryos can experience lethally high temperatures during heatwaves. Thus, future changes in the frequency and intensity of summer heatwaves may threaten lizard populations. However, variation in female nest site choice might buffer the embryos in some nests from high temperatures. In this study, we incubated eggs of the velvet gecko under two fluctuating temperature regimes to mimic the temperatures experienced inside currently used sun-exposed (“warm”: mean = 25.4 °C; range = 16.5–35.5 °C) and shaded (“cold”: mean = 23.3 °C; 17.5–30.5 °C) communal nest sites. We found that warm-incubated hatchlings hatched 15 days earlier, on average, and were smaller than their cold-incubated clutch mates. We released the hatchlings to the wild, and monitored their survival over six months. Egg incubation treatment did not influence the survival of hatchlings. This result is reassuring, because even if air temperatures increase by 2 °C in future, some currently used shaded nests will provide thermal regimes that are suitable for embryonic development. Variation in female nest site choice may therefore allow some populations of velvet geckos to persist in changing environments. Abstract Most lizards lay eggs inside nests where embryos experience daily fluctuations in temperature. As embryos are sensitive to exposure to high temperatures, increases in nest temperatures may pose a risk to lizards. In the velvet gecko Amalosia lesueurii, nest temperatures are positively correlated with air temperatures, so nests may get hotter in future. However, maternal variation in oviposition site choice might buffer populations from future warming. To evaluate the consequences of oviposition site choice, we incubated eggs under two fluctuating temperature regimes that mimicked temperatures experienced inside sun-exposed (“warm”: mean = 25.4 °C; range = 16.5–35.5 °C) and shaded (“cold”: mean = 23.3 °C; 17.5–30.5 °C) communal nests. We measured the phenotypic traits of hatchlings, released them to the wild, and monitored their survival over 6 months. Warm-incubated hatchlings hatched 15 days earlier, on average, and were smaller than their cold-incubated clutch mates. Incubation treatment did not influence the apparent survival of hatchlings. Hence, even if air temperatures increase by 2 °C in future, thermal regimes inside some currently used shaded nests will be suitable for embryo development. Maternal variation in nest site choice may therefore allow southern populations of the velvet gecko to persist in changing environments.
Collapse
|
6
|
Pessato A, McKechnie AE, Mariette MM. A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird. Sci Rep 2022; 12:5842. [PMID: 35393484 PMCID: PMC8991222 DOI: 10.1038/s41598-022-09761-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding animal physiological adaptations for tolerating heat, and the causes of inter-individual variation, is key for predicting climate change impacts on biodiversity. Recently, a novel mechanism for transgenerational heat adaptation was identified in a desert-adapted bird, where parents acoustically signal hot conditions to embryos. Prenatal exposure to "heat-calls" adaptively alters zebra finch development and their thermal preferences in adulthood, suggesting a long-term shift towards a heat-adapted phenotype. However, whether such acoustic experience improves long-term thermoregulatory capacities is unknown. We measured metabolic rate (MR), evaporative water loss (EWL) and body temperature in adults exposed to a stepped profile of progressively higher air temperatures (Ta) between 27 and 44 °C. Remarkably, prenatal acoustic experience affected heat tolerance at adulthood, with heat-call exposed individuals more likely to reach the highest Ta in morning trials. This was despite MR and EWL reaching higher levels at the highest Ta in heat-call individuals, partly driven by a stronger metabolic effect of moderate activity. At lower Ta, however, heat-call exposed individuals had greater relative water economy, as expected. They also better recovered mass lost during morning trials. We therefore provide the first evidence that prenatal acoustic signals have long-term consequences for heat tolerance and physiological adaptation to heat.
Collapse
Affiliation(s)
- Anaïs Pessato
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, 3216, Australia.
| | - Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria, 0001, South Africa
- DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, 3216, Australia.
- Doñana Biological Station EBD-CSIC, 41092, Seville, Spain.
| |
Collapse
|
7
|
Abayarathna T, Webb JK. Do Incubation Temperatures Affect the Preferred Body Temperatures of Hatchling Velvet Geckos? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.727602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In many lizards, a mother’s choice of nest site can influence the thermal and hydric regimes experienced by developing embryos, which in turn can influence key traits putatively linked to fitness, such as body size, learning ability, and locomotor performance. Future increases in nest temperatures predicted under climate warming could potentially influence hatchling traits in many reptiles. In this study, we investigated whether future nest temperatures affected the thermal preferences of hatchling velvet geckos, Amalosia lesueurii. We incubated eggs under two fluctuating temperature treatments; the warm treatment mimicked temperatures of currently used communal nests (mean = 24.3°C, range 18.4–31.1°C), while the hot treatment (mean = 28.9°C, range 20.7–38.1°C) mimicked potential temperatures likely to occur during hot summers. We placed hatchlings inside a thermal gradient and measured their preferred body temperatures (Tbs) after they had access to food, and after they had fasted for 5 days. We found that hatchling feeding status significantly affected their preferred Tbs. Hatchlings maintained higher Tbs after feeding (mean = 30.6°C, interquartile range = 29.6–32.0°C) than when they had fasted for 5 d (mean = 25.8°C, interquartile range = 24.7–26.9°C). Surprisingly, we found that incubation temperatures did not influence the thermal preferences of hatchling velvet geckos. Hence, predicting how future changes in nest temperatures will affect reptiles will require a better understanding of how incubation and post-hatchling environments shape hatchling phenotypes.
Collapse
|
8
|
Nest site selection in a southern and northern population of the velvet gecko (Amalosia lesueurii). J Therm Biol 2021; 102:103121. [PMID: 34863484 DOI: 10.1016/j.jtherbio.2021.103121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
In many oviparous reptiles, thermal conditions inside nests influence phenotypic traits of hatchlings that are linked to survival. Maternal nest-site selection can therefore have long-term implications for offspring and maternal fitness. We studied nest-site selection in a nocturnal lizard (Amalosia lesueurii) from south eastern Australia. Females of this species lay their eggs communally inside rock crevices, and previous studies have shown that maximum daily nest temperatures are positively correlated with maximum daily air temperatures. The incubation period extends for up to 100 d, so during hot summers, embryos may be exposed to stressful thermal conditions. Potentially, mothers could buffer their eggs from thermal extremes via careful selection of nest sites. To evaluate this, we studied nest site selection in a southern population (Morton) and a northern population (Yengo) that experience mild and hot summers respectively. In the field, we measured the physical characteristics, orientation, canopy cover and incident radiation load, and thermal regimes of nest sites and randomly available crevices during one of the hottest Australian summers on record (2018-2019). We found strong inter population differences in the degree of canopy cover and solar radiation loads above nest sites. Nest sites from Morton were more open, and received higher radiation loads, than nest sites from Yengo. Mean nest temperatures were similar in Morton and Yengo, but nests from Yengo experienced higher daily temperatures than those from Morton. During heatwaves, temperatures in some nests exceeded the species critical thermal maximum (39.9 °C) for several hours each day. Our results show that females can adjust nest-site choice to match local environments, but future research is necessary to clarify whether exposure to high temperatures influences hatching success or offspring phenotypes in this species.
Collapse
|
9
|
Correspondence between thermal biology and locomotor performance in a liolaemid lizard from the southeastern coastal Pampas of Argentina. J Therm Biol 2021; 105:103173. [DOI: 10.1016/j.jtherbio.2021.103173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
|
10
|
Kang CQ, Meng QY, Dang W, Lu HL. Divergent incubation temperature effects on thermal sensitivity of hatchling performance in two different latitudinal populations of an invasive turtle. J Therm Biol 2021; 100:103079. [PMID: 34503815 DOI: 10.1016/j.jtherbio.2021.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
The incubation temperature for embryonic development affects several aspects of hatchling performance, but its impact on the thermal sensitivity of performance attributes remains poorly investigated. In the present study, Trachemys scripta elegans hatchlings from two different latitudinal populations were collected to assess the effects of different incubation temperatures on the locomotor (swimming speed) and physiological (heart rate) performances, and the thermal sensitivity of these two attributes. The incubation temperature significantly affected the examined physiological traits. Hatchling turtles produced at low incubation temperature exhibited relatively higher cold tolerance (lower body temperatures at which the animals lose the ability to escape from the lethal conditions), and reduced heart rate and swimming speed. Furthermore, the effect of incubation temperature on the thermal sensitivity of swimming speed differed between the low- and high-latitude populations. At relatively high incubation temperatures, the high-latitude hatchling turtles exhibited reduced thermal sensitivities of swimming speed than those of the low-latitude ones. Reduced thermal sensitivity of locomotor performance together with high cold tolerance, exhibited by the high-latitude hatchling turtles potentially reflected local adaptation to relatively colder and more thermally-variable environments.
Collapse
Affiliation(s)
- Chun-Quan Kang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qin-Yuan Meng
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wei Dang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
11
|
Lapwong Y, Dejtaradol A, Webb JK. Plasticity in thermal hardening of the invasive Asian house gecko. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10116-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Gatto CR, Matthews B, Reina RD. Role of incubation environment in determining thermal tolerance of sea turtle hatchlings. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Warming global temperatures are predicted to reduce population viability in many oviparous ectothermic taxa, with increased embryonic mortality likely to be a main cause. While research on embryonic upper thermal limits is extensive, sea turtle hatchling thermal tolerance has received less attention and our understanding of how incubation conditions influence hatchling thermal tolerance is limited. Here, we report green turtle Chelonia mydas hatchling hydration and thermal tolerance following incubation in dry and wet conditions. We used packed cell volume and total protein as indicators of hydration and measured the critical thermal maximum (CTmax) of hatchlings in air. Neither hydration nor thermal tolerance was directly influenced by moisture treatment. However, hatchlings from moister nests had longer incubation durations (wet: 60.11 d vs. dry: 54.86 d), and, using incubation duration as a proxy for incubation temperature, hatchlings from cooler nests had significantly lower CTmax (wet: 39.84°C vs. dry: 40.51°C). Thus, despite not directly influencing thermal tolerance, moisture treatment influenced nest temperature indirectly; hatchlings that experienced warmer conditions in dry nests had a higher thermal tolerance than hatchlings from cooler and wetter nests. Ectothermic neonates may have greater plasticity in their thermal tolerance than previously thought, but their ability to adapt to increasing temperature is likely limited. Additionally, common management techniques to reduce nest temperatures, such as watering and shading nests, may only reduce embryonic mortality at the cost of decreased hatchling thermal tolerance and increased hatchling mortality during emergence. Nesting-site management interventions designed to reduce embryonic mortality will need to consider mitigation of the possible effects of those interventions on hatchling mortality.
Collapse
Affiliation(s)
- CR Gatto
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - B Matthews
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - RD Reina
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Deery SW, Rej JE, Haro D, Gunderson AR. Heat hardening in a pair of Anolis lizards: constraints, dynamics and ecological consequences. J Exp Biol 2021; 224:238102. [PMID: 34424976 DOI: 10.1242/jeb.240994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 01/19/2023]
Abstract
Heat tolerance plasticity is predicted to be an important buffer against global warming. Nonetheless, basal heat tolerance often correlates negatively with tolerance plasticity ('trade-off hypothesis'), a constraint that could limit plasticity benefits. We tested the trade-off hypothesis at the individual level with respect to heat hardening in two lizard species, Anolis carolinensis and Anolis sagrei. Heat hardening is a rapid increase in heat tolerance after heat shock that is rarely measured in reptiles but is generally considered to be a first line of physiological defense against heat. We also employed a biophysical model of operative habitat temperatures to estimate the performance consequences of hardening under ecologically relevant conditions. Anolis carolinensis hardened by 2 h post-heat shock and maintained hardening for several hours. However, A. sagrei did not harden. Biophysical models showed that hardening in A. carolinensis reduces their overheating risk in the field. Therefore, while not all lizards heat harden, hardening has benefits for species that can. We initially found a negative relationship between basal tolerance and hardening within both species, consistent with the trade-off hypothesis. However, permutation analyses showed that the apparent trade-offs could not be differentiated from statistical artifact. We found the same result when we re-analyzed published data supporting the trade-off hypothesis in another lizard species. Our results show that false positives may be common when testing the trade-off hypothesis. Statistical approaches that account for this are critical to ensure that the hypothesis, which has broad implications for thermal adaptation and responses to warming, is assessed appropriately.
Collapse
Affiliation(s)
- Sean W Deery
- Department of Ecology & Evolutionary Biology, Tulane University, 6823 St Charles Avenue, Lindy Boggs Building Room 400, New Orleans, LA 70118-5698, USA
| | - Julie E Rej
- Department of Ecology & Evolutionary Biology, Tulane University, 6823 St Charles Avenue, Lindy Boggs Building Room 400, New Orleans, LA 70118-5698, USA
| | - Daniel Haro
- Department of Ecology & Evolutionary Biology, Tulane University, 6823 St Charles Avenue, Lindy Boggs Building Room 400, New Orleans, LA 70118-5698, USA
| | - Alex R Gunderson
- Department of Ecology & Evolutionary Biology, Tulane University, 6823 St Charles Avenue, Lindy Boggs Building Room 400, New Orleans, LA 70118-5698, USA
| |
Collapse
|
14
|
Temporal variation in thermal plasticity in a free-ranging subalpine lizard. J Therm Biol 2020; 91:102623. [PMID: 32716872 DOI: 10.1016/j.jtherbio.2020.102623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
Abstract
Thermally variable environments are particularly challenging for ectotherms as physiological functions are thermo-dependent. As a consequence, ectotherms in highly seasonal environments are predicted to have greater thermal plasticity. However, much of our understanding of thermal plasticity comes from controlled experiments in a laboratory setting. Relatively fewer studies investigate thermal plasticity in free-ranging animals living in their natural environment. We investigated the presence of thermal plasticity within a single activity season in adult males of a natural high elevation population of White's skink (Liopholis whitii) in south-eastern Australia. This species lives in a permanent home site (rock crevice and/or burrow), facilitating the repeated capture of the same individuals across the activity season. We monitored the thermal variation across the field site and over the activity season, and tested thermal tolerances and performance of male L. whitii on three occasions across their activity season. Maximum and average temperatures varied across the field site, and temperatures gradually increased across the study period. Evidence of temporal plasticity was identified in the critical thermal minimum and thermal tolerance breadth, but not in the critical thermal maximum. Thermal performance was also found to be plastic, but no temporal patterns were evident. Our temporal plasticity results are consistent which much of the previous literature, but this is one of the first studies to identify these patterns in a free-ranging population. In addition, our results indicate that performance may be more plastic than previous literature suggests. Overall, our study highlights the need to pair laboratory and field studies in order to understand thermal plasticity in an ecologically relevant context.
Collapse
|
15
|
Taylor EN, Diele‐Viegas LM, Gangloff EJ, Hall JM, Halpern B, Massey MD, Rödder D, Rollinson N, Spears S, Sun B, Telemeco RS. The thermal ecology and physiology of reptiles and amphibians: A user's guide. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:13-44. [DOI: 10.1002/jez.2396] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Emily N. Taylor
- Biological Sciences Department California Polytechnic State University San Luis Obispo California
| | | | | | - Joshua M. Hall
- Department of Biological Sciences Auburn University Auburn Alabama
| | | | - Melanie D. Massey
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
| | - Dennis Rödder
- Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology University of Toronto St. Toronto Ontario Canada
- School of the Environment University of Toronto Toronto Ontario Canada
| | - Sierra Spears
- Department of Zoology Ohio Wesleyan University Delaware Ohio
| | - Bao‐jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Rory S. Telemeco
- Department of Biology California State University Fresno California
| |
Collapse
|
16
|
Abayarathna T, Webb JK. Effects of incubation temperatures on learning abilities of hatchling velvet geckos. Anim Cogn 2020; 23:613-620. [DOI: 10.1007/s10071-020-01365-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
|
17
|
Gunderson AR, Fargevieille A, Warner DA. Egg incubation temperature does not influence adult heat tolerance in the lizard Anolis sagrei. Biol Lett 2020; 16:20190716. [PMID: 31937216 DOI: 10.1098/rsbl.2019.0716] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extreme heat events are becoming more common as a result of anthropogenic global change. Developmental plasticity in physiological thermal limits could help mitigate the consequences of thermal extremes, but data on the effects of early temperature exposure on thermal limits later in life are rare, especially for vertebrate ectotherms. We conducted an experiment that to our knowledge is the first to isolate the effect of egg (i.e. embryonic) thermal conditions on adult heat tolerance in a reptile. Eggs of the lizard Anolis sagrei were incubated under one of three fluctuating thermal regimes that mimicked natural nest environments and differed in mean and maximum temperatures. After emergence, all hatchlings were raised under common garden conditions until reproductive maturity, at which point heat tolerance was measured. Egg mortality was highest in the warmest treatment, and hatchlings from the warmest treatment tended to have greater mortality than those from the cooler treatments. Despite evidence that incubation temperatures were stressful, we found no evidence that incubation treatment influenced adult heat tolerance. Our results are consistent with a low capacity for organisms to increase their physiological heat tolerance via plasticity, and emphasize the importance of behavioural and evolutionary processes as mechanisms of resilience to extreme heat.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | | | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
18
|
First person – Theja Abayarathna. Biol Open 2019. [PMCID: PMC6504005 DOI: 10.1242/bio.044032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Theja Abayarathna is first author on ‘ Higher incubation temperatures produce long-lasting upward shifts in cold tolerance, but not heat tolerance, of hatchling geckos’, published in BiO. Theja is a PhD student in the lab of Associate Professor Jonathan Webb at the University of Technology Sydney, Australia, investigating the effects of climate change on geckos.
Collapse
|