1
|
Mahan VL. Heme oxygenase/carbon monoxide system and development of the heart. Med Gas Res 2025; 15:10-22. [PMID: 39324891 PMCID: PMC11515065 DOI: 10.4103/mgr.medgasres-d-24-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 09/27/2024] Open
Abstract
Progressive differentiation controlled by intercellular signaling between pharyngeal mesoderm, foregut endoderm, and neural crest-derived mesenchyme is required for normal embryonic and fetal development. Gasotransmitters (criteria: 1) a small gas molecule; 2) freely permeable across membranes; 3) endogenously and enzymatically produced and its production regulated; 4) well-defined and specific functions at physiologically relevant concentrations; 5) functions can be mimicked by exogenously applied counterpart; and 6) cellular effects may or may not be second messenger-mediated, but should have specific cellular and molecular targets) are integral to gametogenesis and subsequent embryogenesis, fetal development, and normal heart maturation. Important for in utero development, the heme oxygenase/carbon monoxide system is expressed during gametogenesis, by the placenta, during embryonic development, and by the fetus. Complex sequences of biochemical pathways result in the progressive maturation of the human heart in utero . The resulting myocardial architecture, consisting of working myocardium, coronary arteries and veins, epicardium, valves and cardiac skeleton, endocardial lining, and cardiac conduction system, determines function. Oxygen metabolism in normal and maldeveloping hearts, which develop under reduced and fluctuating oxygen concentrations, is poorly understood. "Normal" hypoxia is critical for heart formation, but "abnormal" hypoxia in utero affects cardiogenesis. The heme oxygenase/carbon monoxide system is important for in utero cardiac development, and other factors also result in alterations of the heme oxygenase/carbon monoxide system during in utero cardiac development. This review will address the role of the heme oxygenase/carbon monoxide system during cardiac development in embryo and fetal development.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Department of Surgery, Queen Elizabeth Central Hospital, Blantyre, Malawi
- Drexel University Medical School, Phildelphia, PA, USA
| |
Collapse
|
2
|
Alfieri M, Principi S, Barbarossa A, Stronati G, Antonicelli R, Casella M, Dello Russo A, Guerra F. How to Approach Left Ventricular Hypertrabeculation: A Practical Guide and Literature Review. J Clin Med 2025; 14:695. [PMID: 39941364 PMCID: PMC11818236 DOI: 10.3390/jcm14030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Left ventricular hypertrabeculation is one of the most debated conditions in modern cardiology. Many studies have tried to characterise this disease by addressing the various clinical risks and diagnostic tools, but its very nosological existence is currently being challenged. The latest ESC guidelines on cardiomyopathies state that it should be addressed as a morphologic trait rather than an intrinsic disease of the cardiac muscle. Despite the huge number of diagnostic criteria and possible phenocopies, no specific consensus identifies a specific flowchart regarding the management of patients with suspected hypertrabeculation. This review aims to provide a clinical approach for patients with a phenotypical appearance of excessive trabeculation.
Collapse
Affiliation(s)
- Michele Alfieri
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60131 Ancona, Italy; (M.A.); (G.S.); (M.C.); (A.D.R.)
- Cardiology Unit IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy;
| | - Samuele Principi
- Cardiology and Arrhythmology Clinic, Department of Cardiovascular Sciences, Marche University Hospital, 60126 Ancona, Italy (A.B.)
| | - Alessandro Barbarossa
- Cardiology and Arrhythmology Clinic, Department of Cardiovascular Sciences, Marche University Hospital, 60126 Ancona, Italy (A.B.)
| | - Giulia Stronati
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60131 Ancona, Italy; (M.A.); (G.S.); (M.C.); (A.D.R.)
- Cardiology Unit IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy;
| | | | - Michela Casella
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60131 Ancona, Italy; (M.A.); (G.S.); (M.C.); (A.D.R.)
- Department of Medical and Surgical Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Antonio Dello Russo
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60131 Ancona, Italy; (M.A.); (G.S.); (M.C.); (A.D.R.)
- Cardiology and Arrhythmology Clinic, Department of Cardiovascular Sciences, Marche University Hospital, 60126 Ancona, Italy (A.B.)
| | - Federico Guerra
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60131 Ancona, Italy; (M.A.); (G.S.); (M.C.); (A.D.R.)
- Cardiology Unit IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy;
- Cardiology and Arrhythmology Clinic, Department of Cardiovascular Sciences, Marche University Hospital, 60126 Ancona, Italy (A.B.)
| |
Collapse
|
3
|
Visoiu IS, Jensen B, Rimbas RC, Mihaila-Baldea S, Nicula AI, Vinereanu D. How the trabecular layer impacts on left ventricular function. J Cardiol 2025; 85:17-27. [PMID: 39214511 DOI: 10.1016/j.jjcc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The ventricular trabecular layer is crucial in embryonic life. In adults, the proportion of trabecular-to-compact myocardium varies substantially between individuals, within individuals over time, and yet exhibits almost no correlation to pump function since most individuals with excessive trabeculation are asymptomatic. The question of how functional is the myocardium of the trabecular layer, relative to the myocardium of the compact layer, has been difficult to answer but it is often assumed to be inferior. An answer is now emerging from recent advances and it can improve our understanding of how the trabecular layer impacts on pathogenicity. This narrative review concerns natural variation in trabeculation, tissue organization, transcriptomics, immunohistochemistry, vascularization, electrical propagation, diastolic function and compliance, systolic function, and ejection fraction. There are no overt transcriptional differences in the adult stage, and the myocardium is equally equipped with sarcomeric proteins, mitochondria, and vascular supply. The similar structural features are consistent with myocardium with a similar stroke work per gram tissue, along with a high ejection fraction of the trabecular layer. In conclusion, the myocardium of the trabecular and compact layers is highly similar and this offers a logical explanation for the reproducible observations that most individuals with excessive trabeculation are asymptomatic.
Collapse
Affiliation(s)
- Ionela Simona Visoiu
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Roxana Cristina Rimbas
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Sorina Mihaila-Baldea
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Alina Ioana Nicula
- Department of Radiology, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| | - Dragos Vinereanu
- Department of Cardiology and Cardiovascular Surgery, SEARCH-VASC Center of Excellence, University of Medicine and Pharmacy Carol Davila, University and Emergency Hospital, Bucharest, Romania
| |
Collapse
|
4
|
Neradilova C, Gregorovicova M, Kovanda J, Kvasilova A, Melenovsky V, Nanka O, Sedmera D. "Form follows function": the developmental morphology of the cardiac atria. Physiol Res 2024; 73:S697-S714. [PMID: 39808172 PMCID: PMC11827060 DOI: 10.33549/physiolres.935503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/03/2024] [Indexed: 01/18/2025] Open
Abstract
Although the heart atria have a lesser functional importance than the ventricles, atria play an important role in the pathophysiology of heart failure and supraventricular arrhythmias, particularly atrial fibrillation. In addition, knowledge of atrial morphology recently became more relevant as cardiac electrophysiology and interventional procedures in the atria gained an increasingly significant role in the clinical management of patients with heart disease. The atrial chambers are thin-walled, and several vessels enter at the level of the atria. The left and right atrium have different structures and shape. In general, both atrial chambers have the venous part, the appendage, and the vestibule; different aspects of each part allow us to distinguish morphologically between the left and right atrium. The human atrial conduction system consists of the sinus node and the atrioventricular node with no histologically specialized conduction pathways in the atrial chamber and an interatrial connection. The data show that the propagation of the impulse depends mainly on the myocardial architecture in the atria and the orientation of the myocytes plays a significant role in conduction. To complete the picture, it is also important to know how the atria develop and what is the embryonic origin of its different structures, as this may play a role in the development of some pathological conditions such as atrial fibrillation or certain types of congenital heart defects. Functional impairment of the atria can in some situations severely compromise heart pumping function, and conversely, can support it if other areas are damaged, balancing the blood flow to the body for some time. Key words Morphology of atrial chambers, Pectinate muscles, Atrial function.
Collapse
Affiliation(s)
- C Neradilova
- Children's Heart Center, Second Faculty of Medicine, Charles University and Motol University Hospital, Praha, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
5
|
Sedmera D, Olejnickova V, Sankova B, Kolesova H, Bartos M, Kvasilova A, Phillips LC, Bamforth SD, Phillips HM. Morphological, electrophysiological, and molecular alterations in foetal noncompacted cardiomyopathy induced by disruption of ROCK signalling. Front Cell Dev Biol 2024; 12:1471751. [PMID: 39435333 PMCID: PMC11491540 DOI: 10.3389/fcell.2024.1471751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Left ventricular noncompaction cardiomyopathy is associated with heart failure, arrhythmia, and sudden cardiac death. The developmental mechanism underpinning noncompaction in the adult heart is still not fully understood, with lack of trabeculae compaction, hypertrabeculation, and loss of proliferation cited as possible causes. To study this, we utilised a mouse model of aberrant Rho kinase (ROCK) signalling in cardiomyocytes, which led to a noncompaction phenotype during embryogenesis, and monitored how this progressed after birth and into adulthood. The cause of the early noncompaction at E15.5 was attributed to a decrease in proliferation in the developing ventricular wall. By E18.5, the phenotype became patchy, with regions of noncompaction interspersed with thick compacted areas of ventricular wall. To study how this altered myoarchitecture of the heart influenced impulse propagation in the developing and adult heart, we used histology with immunohistochemistry for gap junction protein expression, optical mapping, and electrocardiography. At the prenatal stages, a clear reduction in left ventricular wall thickness, accompanied by abnormal conduction of the ectopically paced beat in that area, was observed in mutant hearts. This correlated with increased expression of connexin-40 and connexin-43 in noncompacted trabeculae. In postnatal stages, left ventricular noncompaction was resolved, but the right ventricular wall remained structurally abnormal through to adulthood with cardiomyocyte hypertrophy and retention of myocardial crypts. Thus, this is a novel model of self-correcting embryonic hypertrabeculation cardiomyopathy, but it highlights that remodelling potential differs between the left and right ventricles. We conclude that disruption of ROCK signalling induces both morphological and electrophysiological changes that evolve over time, highlighting the link between myocyte proliferation and noncompaction phenotypes and electrophysiological differentiation.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Bartos
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lauren C. Phillips
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D. Bamforth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M. Phillips
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Jensen B, Chang YH, Bamforth SD, Mohun T, Sedmera D, Bartos M, Anderson RH. The changing morphology of the ventricular walls of mouse and human with increasing gestation. J Anat 2024; 244:1040-1053. [PMID: 38284175 PMCID: PMC11095311 DOI: 10.1111/joa.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
| | - Yun Hee Chang
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
| | - Simon D. Bamforth
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | | | - David Sedmera
- Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Martin Bartos
- Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Institute of Dental Medicine, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Robert H. Anderson
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| |
Collapse
|
7
|
Luo Y, Safabakhsh S, Palumbo A, Fiset C, Shen C, Parker J, Foster LJ, Laksman Z. Sex-Based Mechanisms of Cardiac Development and Function: Applications for Induced-Pluripotent Stem Cell Derived-Cardiomyocytes. Int J Mol Sci 2024; 25:5964. [PMID: 38892161 PMCID: PMC11172775 DOI: 10.3390/ijms25115964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Males and females exhibit intrinsic differences in the structure and function of the heart, while the prevalence and severity of cardiovascular disease vary in the two sexes. However, the mechanisms of this sex-based dimorphism are yet to be elucidated. Sex chromosomes and sex hormones are the main contributors to sex-based differences in cardiac physiology and pathophysiology. In recent years, the advances in induced pluripotent stem cell-derived cardiac models and multi-omic approaches have enabled a more comprehensive understanding of the sex-specific differences in the human heart. Here, we provide an overview of the roles of these two factors throughout cardiac development and explore the sex hormone signaling pathways involved. We will also discuss how the employment of stem cell-based cardiac models and single-cell RNA sequencing help us further investigate sex differences in healthy and diseased hearts.
Collapse
Affiliation(s)
- Yinhan Luo
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Sina Safabakhsh
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| | - Alessia Palumbo
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Céline Fiset
- Research Centre, Montreal Heart Institute, Faculty of Pharmacy, Université de Montréal, Montréal, QC H1T 1C8, Canada;
| | - Carol Shen
- Department of Integrated Sciences, University of British Columbia, Vancouver, BC V6T 1Z2, Canada;
| | - Jeremy Parker
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Leonard J. Foster
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Zachary Laksman
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| |
Collapse
|
8
|
Jensen B, Salvatori D, Schouten J, Meijborg VMF, Lauridsen H, Agger P. Trabeculations of the porcine and human cardiac ventricles are different in number but similar in total volume. Clin Anat 2024; 37:440-454. [PMID: 38217386 DOI: 10.1002/ca.24135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
An intricate meshwork of trabeculations lines the luminal side of cardiac ventricles. Compaction, a developmental process, is thought to reduce trabeculations by adding them to the neighboring compact wall which is then enlarged. When pig, a plausible cardiac donor for xenotransplantation, is compared to human, the ventricular walls appear to have fewer trabeculations. We hypothesized the trabecular volume is proportionally smaller in pig than in human. Macroscopically, we observed in 16 pig hearts that the ventricular walls harbor few but large trabeculations. Close inspection revealed a high number of tiny trabeculations, a few hundred, within the recesses of the large trabeculations. While tiny, these were still larger than embryonic trabeculations and even when considering their number, the total tally of trabeculations in pig was much fewer than in human. Volumetrics based on high-resolution MRI of additional six pig hearts compared to six human hearts, revealed the left ventricles were not significantly differently trabeculated (21.5 versus 22.8%, respectively), and the porcine right ventricles were only slightly less trabeculated (42.1 vs 49.3%, respectively). We then analyzed volumetrically 10 pig embryonic hearts from gestational day 14-35. The trabecular and compact layer always grew, as did the intertrabecular recesses, in contrast to what compaction predicts. The proportions of the trabecular and compact layers changed substantially, nonetheless, due to differences in their growth rate rather than compaction. In conclusion, processes that affect the trabecular morphology do not necessarily affect the proportion of trabecular-to-compact myocardium and they are then distinct from compaction.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniela Salvatori
- Department of Clinical Sciences, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacobine Schouten
- Department of Clinical Sciences, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Peter Agger
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
9
|
Nichting TJ, van Lier ZA, de Vet C, van der Ven M, van der Woude DAA, Clur SA, van Oostrum NHM, Oei SG, van Laar JOEH. Feasibility and reliability of fetal two dimensional speckle tracking echocardiography at 16 weeks gestational age: A pilot study. PLoS One 2024; 19:e0302123. [PMID: 38630708 PMCID: PMC11023584 DOI: 10.1371/journal.pone.0302123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Fetal two-dimensional speckle tracking echocardiography (2D-STE) is an emerging technique for assessing fetal cardiac function by measuring global longitudinal strain. Alterations in global longitudinal strain may serve as early indicator of pregnancy complications, making 2D-STE a potentially valuable tool for early detection. Early detection can facilitate timely interventions to reduce fetal and maternal morbidity and mortality. Therefore, the aim of this study was to investigate the feasibility of performing 2D-STE at 16 weeks gestational age. METHODS This pilot study utilized 50 ultrasound clips of the fetal four-chamber view recorded between 15+5 and 16+2 weeks gestational age from a prospective cohort study. A strict protocol assessed three parameters essential for 2D-STE analysis: fetal four-chamber view ultrasound clip quality, region of interest, and frame rates. Two independent researchers measured global longitudinal strain in all adequate fetal four-chamber view ultrasound clips to determine inter- and intra-operator reliability. RESULTS Out of the 50 ultrasound clips, 37 (74%) were feasible for 2D-STE analysis. The inter-operator reliability for global longitudinal strain measurements of the left and right ventricles was moderate (ICC of 0.64 and 0.74, respectively), while the intra-operator reliability was good (ICC of 0.76 and 0.79, respectively). CONCLUSIONS Our findings demonstrate that fetal 2D-STE analysis at 16 weeks gestational age is feasible when adhering to a strict protocol. However, further improvements are necessary to enhance the inter- and intra-operator reliability of 2D-STE at this gestational age.
Collapse
Affiliation(s)
- Thomas J. Nichting
- Department of Gynaecology and Obstetrics, Máxima MC, Veldhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven MedTech Innovation Centre, Eindhoven, The Netherlands
| | - Zoé A. van Lier
- Department of Gynaecology and Obstetrics, Máxima MC, Veldhoven, The Netherlands
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Chantelle de Vet
- Department of Gynaecology and Obstetrics, Máxima MC, Veldhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven MedTech Innovation Centre, Eindhoven, The Netherlands
| | - Myrthe van der Ven
- Department of Gynaecology and Obstetrics, Máxima MC, Veldhoven, The Netherlands
- Eindhoven MedTech Innovation Centre, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Daisy A. A. van der Woude
- Department of Gynaecology and Obstetrics, Máxima MC, Veldhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven MedTech Innovation Centre, Eindhoven, The Netherlands
| | - Sally A. Clur
- Department of Pediatric Cardiology, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart–ERN GUARD-Heart, Amsterdam, The Netherlands
| | | | - S. Guid Oei
- Department of Gynaecology and Obstetrics, Máxima MC, Veldhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven MedTech Innovation Centre, Eindhoven, The Netherlands
| | - Judith O. E. H. van Laar
- Department of Gynaecology and Obstetrics, Máxima MC, Veldhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven MedTech Innovation Centre, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. Human Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:3-55. [PMID: 38884703 DOI: 10.1007/978-3-031-44087-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Many aspects of heart development are topographically complex and require three-dimensional (3D) reconstruction to understand the pertinent morphology. We have recently completed a comprehensive primer of human cardiac development that is based on firsthand segmentation of structures of interest in histological sections. We visualized the hearts of 12 human embryos between their first appearance at 3.5 weeks and the end of the embryonic period at 8 weeks. The models were presented as calibrated, interactive, 3D portable document format (PDF) files. We used them to describe the appearance and the subsequent remodeling of around 70 different structures incrementally for each of the reconstructed stages. In this chapter, we begin our account by describing the formation of the single heart tube, which occurs at the end of the fourth week subsequent to conception. We describe its looping in the fifth week, the formation of the cardiac compartments in the sixth week, and, finally, the septation of these compartments into the physically separated left- and right-sided circulations in the seventh and eighth weeks. The phases are successive, albeit partially overlapping. Thus, the basic cardiac layout is established between 26 and 32 days after fertilization and is described as Carnegie stages (CSs) 9 through 14, with development in the outlet component trailing that in the inlet parts. Septation at the venous pole is completed at CS17, equivalent to almost 6 weeks of development. During Carnegie stages 17 and 18, in the seventh week, the outflow tract and arterial pole undergo major remodeling, including incorporation of the proximal portion of the outflow tract into the ventricles and transfer of the spiraling course of the subaortic and subpulmonary channels to the intrapericardial arterial trunks. Remodeling of the interventricular foramen, with its eventual closure, is complete at CS20, which occurs at the end of the seventh week. We provide quantitative correlations between the age of human and mouse embryos as well as the Carnegie stages of development. We have also set our descriptions in the context of variations in the timing of developmental features.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Present address: Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Jensen B, Andelfinger GU, Postma AV. Molecular Pathways and Animal Models of Ebstein's Anomaly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:915-928. [PMID: 38884760 DOI: 10.1007/978-3-031-44087-8_58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ebstein's anomaly is a congenital malformation of the tricuspid valve characterized by abnormal attachment of the valve leaflets, resulting in varying degrees of valve dysfunction. The anatomic hallmarks of this entity are the downward displacement of the attachment of the septal and posterior leaflets of the tricuspid valve. Additional intracardiac malformations are common. From an embryological point of view, the cavity of the future right atrium does not have a direct orifice connected to the developing right ventricle. This chapter provides an overview of current insight into how this connection is formed and how malformations of the tricuspid valve arise from dysregulation of molecular and morphological events involved in this process. Furthermore, mouse models that show features of Ebstein's anomaly and the naturally occurring model of canine tricuspid valve malformation are described and compared to the human model. Although Ebstein's anomaly remains one of the least understood cardiac malformations to date, the studies summarized here provide, in aggregate, evidence for monogenic and oligogenic factors driving pathogenesis.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Gregor U Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte Justine, Université de Montréal, Montréal, QC, Canada
| | - Alex V Postma
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
- Department of Human Genetics, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Maas RGC, van den Dolder FW, Yuan Q, van der Velden J, Wu SM, Sluijter JPG, Buikema JW. Harnessing developmental cues for cardiomyocyte production. Development 2023; 150:dev201483. [PMID: 37560977 PMCID: PMC10445742 DOI: 10.1242/dev.201483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Developmental research has attempted to untangle the exact signals that control heart growth and size, with knockout studies in mice identifying pivotal roles for Wnt and Hippo signaling during embryonic and fetal heart growth. Despite this improved understanding, no clinically relevant therapies are yet available to compensate for the loss of functional adult myocardium and the absence of mature cardiomyocyte renewal that underlies cardiomyopathies of multiple origins. It remains of great interest to understand which mechanisms are responsible for the decline in proliferation in adult hearts and to elucidate new strategies for the stimulation of cardiac regeneration. Multiple signaling pathways have been identified that regulate the proliferation of cardiomyocytes in the embryonic heart and appear to be upregulated in postnatal injured hearts. In this Review, we highlight the interaction of signaling pathways in heart development and discuss how this knowledge has been translated into current technologies for cardiomyocyte production.
Collapse
Affiliation(s)
- Renee G. C. Maas
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Floor W. van den Dolder
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Qianliang Yuan
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sean M. Wu
- Department of Medicine, Division of Cardiovascular Medicine,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joost P. G. Sluijter
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jan W. Buikema
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
- Amsterdam Cardiovascular Sciences, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
13
|
Liu Y, Choy MK, Abraham S, Tenin G, Black GC, Keavney BD. Atrial Septal Defect (ASD) associated long non-coding RNA STX18-AS1 maintains time-course of in vitro cardiomyocyte differentiation. Genes Dis 2023; 10:1150-1153. [PMID: 37397526 PMCID: PMC10311013 DOI: 10.1016/j.gendis.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yingjuan Liu
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Mun-kit Choy
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Sabu Abraham
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gennadiy Tenin
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Graeme C. Black
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK
- Division of Evolution & Genomic Sciences, University of Manchester, Manchester M13 9WL, UK
| | - Bernard D. Keavney
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9NQ, UK
| |
Collapse
|
14
|
Petersen SE, Jensen B, Aung N, Friedrich MG, McMahon CJ, Mohiddin SA, Pignatelli RH, Ricci F, Anderson RH, Bluemke DA. Excessive Trabeculation of the Left Ventricle: JACC: Cardiovascular Imaging Expert Panel Paper. JACC Cardiovasc Imaging 2023; 16:408-425. [PMID: 36764891 PMCID: PMC9988693 DOI: 10.1016/j.jcmg.2022.12.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023]
Abstract
Excessive trabeculation, often referred to as "noncompacted" myocardium, has been described at all ages, from the fetus to the adult. Current evidence for myocardial development, however, does not support the formation of compact myocardium from noncompacted myocardium, nor the arrest of this process to result in so-called noncompaction. Excessive trabeculation is frequently observed by imaging studies in healthy individuals, as well as in association with pregnancy, athletic activity, and with cardiac diseases of inherited, acquired, developmental, or congenital origins. Adults with incidentally noted excessive trabeculation frequently require no further follow-up based on trabecular pattern alone. Patients with cardiomyopathy and excessive trabeculation are managed by cardiovascular symptoms rather than the trabecular pattern. To date, the prognostic role of excessive trabeculation in adults has not been shown to be independent of other myocardial disease. In neonates and children with excessive trabeculation and normal or abnormal function, clinical caution seems warranted because of the reported association with genetic and neuromuscular disorders. This report summarizes the evidence concerning the etiology, pathophysiology, and clinical relevance of excessive trabeculation. Gaps in current knowledge of the clinical relevance of excessive trabeculation are indicated, with priorities suggested for future research and improved diagnosis in adults and children.
Collapse
Affiliation(s)
- Steffen E Petersen
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom.
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nay Aung
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom
| | - Matthias G Friedrich
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Diagnostic Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Saidi A Mohiddin
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom
| | - Ricardo H Pignatelli
- Department of Pediatric Cardiology, Texas Children's Hospital, Houston, Texas, USA
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging, and Clinical Sciences, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - David A Bluemke
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Meyer S, Lauridsen H, Pedersen K, Andersson SA, van Ooij P, Willems T, Berger RMF, Ebels T, Jensen B. Opportunities and short-comings of the axolotl salamander heart as a model system of human single ventricle and excessive trabeculation. Sci Rep 2022; 12:20491. [PMID: 36443330 PMCID: PMC9705478 DOI: 10.1038/s41598-022-24442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Few experimental model systems are available for the rare congenital heart diseases of double inlet left ventricle (DILV), a subgroup of univentricular hearts, and excessive trabeculation (ET), or noncompaction. Here, we explore the heart of the axolotl salamander (Ambystoma mexicanum, Shaw 1789) as model system of these diseases. Using micro-echocardiography, we assessed the form and function of the heart of the axolotl, an amphibian, and compared this to human DILV (n = 3). The main finding was that both in the axolotl and DILV, blood flows of disparate oxygen saturation can stay separated in a single ventricle. In the axolotl there is a solitary ventricular inlet and outlet, whereas in DILV there are two separate inlets and outlets. Axolotls had a lower resting heart rate compared to DILV (22 vs. 72 beats per minute), lower ejection fraction (47 vs. 58%), and their oxygen consumption at rest was higher than peak oxygen consumption in DILV (30 vs. 17 ml min-1 kg-1). Concerning the ventricular myocardial organization, histology showed trabeculations in ET (n = 5) are much closer to the normal human setting than to the axolotl setting. We conclude that the axolotl heart resembles some aspects of DILV and ET albeit substantial species differences exist.
Collapse
Affiliation(s)
- Sophie Meyer
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Kathrine Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Tineke Willems
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Tjark Ebels
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Imaging fetal anatomy. Semin Cell Dev Biol 2022; 131:78-92. [PMID: 35282997 DOI: 10.1016/j.semcdb.2022.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Due to advancements in ultrasound techniques, the focus of antenatal ultrasound screening is moving towards the first trimester of pregnancy. The early first trimester however remains in part, a 'black box', due to the size of the developing embryo and the limitations of contemporary scanning techniques. Therefore there is a need for images of early anatomical developmental to improve our understanding of this area. By using new imaging techniques, we can not only obtain better images to further our knowledge of early embryonic development, but clear images of embryonic and fetal development can also be used in training for e.g. sonographers and fetal surgeons, or to educate parents expecting a child with a fetal anomaly. The aim of this review is to provide an overview of the past, present and future techniques used to capture images of the developing human embryo and fetus and provide the reader newest insights in upcoming and promising imaging techniques. The reader is taken from the earliest drawings of da Vinci, along the advancements in the fields of in utero ultrasound and MR imaging techniques towards high-resolution ex utero imaging using Micro-CT and ultra-high field MRI. Finally, a future perspective is given about the use of artificial intelligence in ultrasound and new potential imaging techniques such as synchrotron radiation-based CT to increase our knowledge regarding human development.
Collapse
|
17
|
Wang Y, Liu H, Hu X, Hu X, Zhang J, Zhang H, Wang J, Su S, Wang Y, Lyu Z. The effect of gestational diabetes mellitus on fetal right heart growth in late-term pregnancy: A prospective study. Echocardiography 2022; 39:1101-1112. [PMID: 35861350 DOI: 10.1111/echo.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a complication of pregnancy strongly associated with an increased risk of structural fetal abnormalities. As the fetal heart grows quickly during the late-term pregnancy period, it is important to understand fetal heart growth before birth. This study explored how GDM affects fetal heart growth by evaluating basic echocardiography indicators during late pregnancy. METHODS This prospective, longitudinal study included 63 GDM patients (GDM group) and 67 healthy pregnant women (control group). All subjects underwent fetal echocardiography scans at gestational weeks 28-32, 32-36, and 36-40. Twelve echocardiographic indicators were assessed at each observation and analyzed by using a mixed model. RESULTS The left atrial diameter (LA) and left ventricular end-diastolic diameter (LV) similarly increased from the first to the third observation. The right ventricular end-diastolic diameter (RV) was significantly different between the groups, and a group × time interaction was detected. The tricuspid annular peak systolic velocity (s') increased more rapidly in the GDM than the control group during the first to second observations, and the group × time interaction was significant. The increase in the tricuspid annular plane systolic excursion (TAPSE) of the GDM group was "slow-fast", while that of the control group was "fast-slow", during three observations. After adjusting covariates, the group difference and interaction effect of TAPSE and RV remained significant. CONCLUSIONS The differences in fetal right heart indicators between the GDM and control groups suggest that GDM may affect the structure and functional growth of the fetal right heart during late-term pregnancy.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongzhou Liu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology, First Hospital of Handan City, Handan, Hebei Province, China
| | - Xiaona Hu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaodong Hu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiamei Zhang
- Department of Ultrasound Diagnosis, The Second Hospital of Hebei Medical University, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Han Zhang
- Department of Ultrasound Diagnosis, The Second Hospital of Hebei Medical University, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Jincheng Wang
- Department of Radiology, Peking University Cancer Hospital, Haidian District, Beijing, China
| | - Shan Su
- Department of Ultrasound, Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing, China
| | - Yueheng Wang
- Department of Ultrasound Diagnosis, The Second Hospital of Hebei Medical University, Xinhua District, Shijiazhuang, Hebei Province, China
| | - Zhaohui Lyu
- Department of Endocrinology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Esteban I, Schmidt P, Desgrange A, Raiola M, Temiño S, Meilhac SM, Kobbelt L, Torres M. Pseudodynamic analysis of heart tube formation in the mouse reveals strong regional variability and early left-right asymmetry. NATURE CARDIOVASCULAR RESEARCH 2022; 1:504-517. [PMID: 39195950 PMCID: PMC11357989 DOI: 10.1038/s44161-022-00065-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/06/2022] [Indexed: 08/29/2024]
Abstract
Understanding organ morphogenesis requires a precise geometrical description of the tissues involved in the process. The high morphological variability in mammalian embryos hinders the quantitative analysis of organogenesis. In particular, the study of early heart development in mammals remains a challenging problem due to imaging limitations and complexity. Here, we provide a complete morphological description of mammalian heart tube formation based on detailed imaging of a temporally dense collection of mouse embryonic hearts. We develop strategies for morphometric staging and quantification of local morphological variations between specimens. We identify hot spots of regionalized variability and identify Nodal-controlled left-right asymmetry of the inflow tracts as the earliest signs of organ left-right asymmetry in the mammalian embryo. Finally, we generate a three-dimensional+t digital model that allows co-representation of data from different sources and provides a framework for the computer modeling of heart tube formation.
Collapse
Affiliation(s)
- Isaac Esteban
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Patrick Schmidt
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Audrey Desgrange
- Unit of Heart Morphogenesis, Université de Paris, Imagine - Institut Pasteur, INSERM UMR1163, Paris, France
| | - Morena Raiola
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Susana Temiño
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sigolène M Meilhac
- Unit of Heart Morphogenesis, Université de Paris, Imagine - Institut Pasteur, INSERM UMR1163, Paris, France
| | - Leif Kobbelt
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
19
|
Faber JW, Buijtendijk MFJ, Klarenberg H, Vink AS, Coolen BF, Moorman AFM, Christoffels VM, Clur SA, Jensen B. Fetal Tricuspid Valve Agenesis/Atresia: Testing Predictions of the Embryonic Etiology. Pediatr Cardiol 2022; 43:796-806. [PMID: 34988599 DOI: 10.1007/s00246-021-02789-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/20/2021] [Indexed: 11/28/2022]
Abstract
Tricuspid valve agenesis/atresia (TVA) is a congenital cardiac malformation where the tricuspid valve is not formed. It is hypothesized that TVA results from a failure of the normal rightward expansion of the atrioventricular canal (AVC). We tested predictions of this hypothesis by morphometric analyses of the AVC in fetal hearts. We used high-resolution MRI and ultrasonography on a post-mortem fetal heart with TVA and with tricuspid valve stenosis (TVS) to validate the position of measurement landmarks that were to be applied to clinical echocardiograms. This revealed a much deeper right atrioventricular sulcus in TVA than in TVS. Subsequently, serial echocardiograms of in utero fetuses between 12 and 38 weeks of gestation were included (n = 23 TVA, n = 16 TVS, and n = 74 controls) to establish changes in AVC width and ventricular dimensions over time. Ventricular length and width and estimated fetal weight all increased significantly with age, irrespective of diagnosis. Heart rate did not differ between groups. However, in the second trimester, in TVA, the ratio of AVC to ventricular width was significantly lower compared to TVS and controls. This finding supports the hypothesis that TVA is due to a failed rightward expansion of the AVC. Notably, we found in the third trimester that the AVC to ventricular width normalized in TVA fetuses as their mitral valve area was greater than in controls. Hence, TVA associates with a quantifiable under-development of the AVC. This under-development is obscured in the third trimester, likely because of adaptational growth that allows for increased stroke volume of the left ventricle.
Collapse
Affiliation(s)
- Jaeike W Faber
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, 1105 AZ, Amsterdam, The Netherlands
| | - Marieke F J Buijtendijk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, 1105 AZ, Amsterdam, The Netherlands
| | - Hugo Klarenberg
- Department of Biomedical Engineering & Physics, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Arja Suzanne Vink
- Department of Cardiology, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Department of Paediatric Cardiology, Emma Children's Hospital, Academic Medical Centre, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering & Physics, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Antoon F M Moorman
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, 1105 AZ, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, 1105 AZ, Amsterdam, The Netherlands
| | - Sally-Ann Clur
- Department of Paediatric Cardiology, Emma Children's Hospital, Academic Medical Centre, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Hikspoors JPJM, Kruepunga N, Mommen GMC, Köhler SE, Anderson RH, Lamers WH. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development. Commun Biol 2022; 5:226. [PMID: 35277594 PMCID: PMC8917235 DOI: 10.1038/s42003-022-03153-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is topographically complex and requires visualization to understand its progression. No comprehensive 3-dimensional primer of human cardiac development is currently available. We prepared detailed reconstructions of 12 hearts between 3.5 and 8 weeks post fertilization, using Amira® 3D-reconstruction and Cinema4D®-remodeling software. The models were visualized as calibrated interactive 3D-PDFs. We describe the developmental appearance and subsequent remodeling of 70 different structures incrementally, using sequential segmental analysis. Pictorial timelines of structures highlight age-dependent events, while graphs visualize growth and spiraling of the wall of the heart tube. The basic cardiac layout is established between 3.5 and 4.5 weeks. Septation at the venous pole is completed at 6 weeks. Between 5.5 and 6.5 weeks, as the outflow tract becomes incorporated in the ventricles, the spiraling course of its subaortic and subpulmonary channels is transferred to the intrapericardial arterial trunks. The remodeling of the interventricular foramen is complete at 7 weeks.
Collapse
Affiliation(s)
- Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| | - Nutmethee Kruepunga
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Greet M C Mommen
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Chang YH, Sheftel BI, Jensen B. Anatomy of the heart with the highest heart rate. J Anat 2022; 241:173-190. [PMID: 35128670 PMCID: PMC9178362 DOI: 10.1111/joa.13640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
Shrews occupy the lower extreme of the seven orders of magnitude mammals range in size. Their hearts are large relative to body weight and heart rate can exceed a thousand beats a minute. It is not known whether traits typical of mammal hearts scale to these extremes. We assessed the heart of three species of shrew (genus Sorex) following the sequential segmental analysis developed for human hearts. Using micro‐computed tomography, we describe the overall structure and find, in agreement with previous studies, a large and elongate ventricle. The atrial and ventricular septums and the atrioventricular (AV) and arterial valves are typically mammalian. The ventricular walls comprise mostly compact myocardium and especially the right ventricle has few trabeculations on the luminal side. A developmental process of compaction is thought to reduce trabeculations in mammals, but in embryonic shrews the volume of trabeculations increase for every gestational stage, only slower than the compact volume. By expression of Hcn4, we identify a sinus node and an AV conduction axis which is continuous with the ventricular septal crest. Outstanding traits include pulmonary venous sleeve myocardium that reaches farther into the lungs than in any other mammals. Typical proportions of coronary arteries‐to‐aorta do not scale and the shrew coronary arteries are proportionally enormous, presumably to avoid the high resistance to blood flow of narrow vessels. In conclusion, most cardiac traits do scale to the miniscule shrews. The shrew heart, nevertheless, stands out by its relative size, elongation, proportionally large coronary vessels, and extent of pulmonary venous myocardium.
Collapse
Affiliation(s)
- Yun Hee Chang
- Department of Medical Biology University of Amsterdam, Amsterdam, Cardiovascular Sciences, Amsterdam UMC Amsterdam The Netherlands
| | - Boris I. Sheftel
- A.N. Severtsov Institute of Ecology and Evolution RAS (Russian Academy of Sciences) Moscow Russian Federation
| | - Bjarke Jensen
- Department of Medical Biology University of Amsterdam, Amsterdam, Cardiovascular Sciences, Amsterdam UMC Amsterdam The Netherlands
| |
Collapse
|
22
|
Riekerk HCE, Coolen BF, J Strijkers G, van der Wal AC, Petersen SE, Sheppard MN, Oostra RJ, Christoffels VM, Jensen B. Higher spatial resolution improves the interpretation of the extent of ventricular trabeculation. J Anat 2021; 240:357-375. [PMID: 34569075 PMCID: PMC8742974 DOI: 10.1111/joa.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The ventricular walls of the human heart comprise an outer compact layer and an inner trabecular layer. In the context of an increased pre-test probability, diagnosis left ventricular noncompaction cardiomyopathy is given when the left ventricle is excessively trabeculated in volume (trabecular vol >25% of total LV wall volume) or thickness (trabecular/compact (T/C) >2.3). Here, we investigated whether higher spatial resolution affects the detection of trabeculation and thus the assessment of normal and excessively trabeculated wall morphology. First, we screened left ventricles in 1112 post-natal autopsy hearts. We identified five excessively trabeculated hearts and this low prevalence of excessive trabeculation is in agreement with pathology reports but contrasts the prevalence of approximately 10% of the population found by in vivo non-invasive imaging. Using macroscopy, histology and low- and high-resolution MRI, the five excessively trabeculated hearts were compared with six normal hearts and seven abnormally trabeculated and excessive trabeculation-negative hearts. Some abnormally trabeculated hearts could be considered excessively trabeculated macroscopically because of a trabecular outflow or an excessive number of trabeculations, but they were excessive trabeculation-negative when assessed with MRI-based measurements (T/C <2.3 and vol <25%). The number of detected trabeculations and T/C ratio were positively correlated with higher spatial resolution. Using measurements on high resolution MRI and with histological validation, we could not replicate the correlation between trabeculations of the left and right ventricle that has been previously reported. In conclusion, higher spatial resolution may affect the sensitivity of diagnostic measurements and in addition could allow for novel measurements such as counting of trabeculations.
Collapse
Affiliation(s)
- Hanne C E Riekerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Allard C van der Wal
- Department of Pathology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK.,Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Mary N Sheppard
- Department of Cardiovascular Pathology, Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Roelof-Jan Oostra
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Maturation of human pluripotent stem cell derived cardiomyocytes in vitro and in vivo. Semin Cell Dev Biol 2021; 118:163-171. [PMID: 34053865 DOI: 10.1016/j.semcdb.2021.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
Human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) represent an inexhaustible cell source for in vitro disease modeling, drug discovery and toxicity screening, and potential therapeutic applications. However, currently available differentiation protocols yield populations of hPSC-CMs with an immature phenotype similar to cardiomyocytes in the early fetal heart. In this review, we consider the developmental processes and signaling cues involved in normal human cardiac maturation, as well as how these insights might be applied to the specific maturation of hPSC-CMs. We summarize the state-of-the-art and relative merits of reported hPSC-CM maturation strategies including prolonged duration in culture, metabolic manipulation, treatment with soluble or substrate-based cues, and tissue engineering approaches. Finally, we review the evidence that hPSC-CMs mature after implantation in injured hearts as such in vivo remodeling will likely affect the safety and efficacy of a potential hPSC-based cardiac therapy.
Collapse
|
24
|
Faber JW, D'Silva A, Christoffels VM, Jensen B. Lack of morphometric evidence for ventricular compaction in humans. J Cardiol 2021; 78:397-405. [PMID: 33840532 DOI: 10.1016/j.jjcc.2021.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
The remodeling of the compact wall by incorporation of trabecular myocardium, referred to as compaction, receives much attention because it is thought that its failure causes left ventricular non-compaction cardiomyopathy (LVNC). Although the notion of compaction is broadly accepted, the nature and strength of the evidence supporting this process is underexposed. Here, we review the literature that quantitatively investigated the development of the ventricular wall to understand the extent of compaction in humans, mice, and chickens. We queried PubMed using several search terms, screened 1127 records, and selected 56 publications containing quantitative data on ventricular growth. For humans, only 34 studies quantified wall development. The key premise of compaction, namely a reduction of the trabecular layer, was never documented. Instead, the trabecular layer grows slower than the compact wall in later development and this changes wall architecture. There were no reports of a sudden enlargement of the compact layer (from incorporated trabeculae), be it in thickness, area, or volume. Therefore, no evidence for compaction was found. Only in chickens, a sudden increase in compact myocardial thickness layer was reported coinciding with a decrease in trabecular thickness. In mice, morphometric and lineage tracing investigations have yielded conflicting results that allow for limited compaction to occur. In conclusion, compaction in human development is not supported while rapid intrinsic growth of the compact wall is supported in all species. If compaction takes place, it likely plays a much smaller role in determining wall architecture than intrinsic growth of the compact wall.
Collapse
Affiliation(s)
- Jaeike W Faber
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, the Netherlands.
| | - Andrew D'Silva
- Department of Cardiology and Division of Cardiovascular Sciences, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, United Kingdom; Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, the Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
First person – Jaeike Faber. Biol Open 2021. [PMCID: PMC7904000 DOI: 10.1242/bio.058592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Biology Open, helping early-career researchers promote themselves alongside their papers. Jaeike Faber is first author on ‘Quantified growth of the human embryonic heart’, published in BiO. Jaeike is a PhD student in the lab of Vincent Christoffels in the Department of Medical Biology and Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, The Netherlands, investigating evolution and development.
Collapse
|