1
|
Spanjersberg TCF, Oosterhoff LA, Kruitwagen HS, van den Dungen NAM, Vernooij JCM, Asselbergs FW, Mokry M, Spee B, Harakalova M, van Steenbeek FG. Locational memory of macrovessel vascular cells is transcriptionally imprinted. Sci Rep 2023; 13:13028. [PMID: 37563195 PMCID: PMC10415317 DOI: 10.1038/s41598-023-38880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
Vascular pathologies show locational predisposition throughout the body; further insights into the transcriptomics basis of this vascular heterogeneity are needed. We analyzed transcriptomes from cultured endothelial cells and vascular smooth muscle cells from nine adult canine macrovessels: the aorta, coronary artery, vena cava, portal vein, femoral artery, femoral vein, saphenous vein, pulmonary vein, and pulmonary artery. We observed that organ-specific expression patterns persist in vitro, indicating that these genes are not regulated by blood flow or surrounding cell types but are likely fixed in the epigenetic memory. We further demonstrated the preserved location-specific expression of GATA4 protein in cultured cells and in the primary adult vessel. On a functional level, arterial and venous endothelial cells differed in vascular network morphology as the arterial networks maintained a higher complexity. Our findings prompt the rethinking of the extrapolation of results from single-origin endothelial cell systems.
Collapse
Affiliation(s)
- Talitha C F Spanjersberg
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Loes A Oosterhoff
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
| | - Hedwig S Kruitwagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, The Netherlands
| | - Noortje A M van den Dungen
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Johannes C M Vernooij
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Michal Mokry
- Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, The Netherlands.
- Regenerative Medicine Centre Utrecht, University Medical Center Utrecht, Utrecht University, Uppsalalaan 8, Utrecht, The Netherlands.
- Division Heart and Lungs, Department of Cardiology, Circulatory Health Research Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Guebel DV, Torres NV, Acebes Á. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment. Biol Open 2021; 10:bio057950. [PMID: 34184731 PMCID: PMC8181899 DOI: 10.1242/bio.057950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Compromise of the vascular system has important consequences on cognitive abilities and neurodegeneration. The identification of the main molecular signatures present in the blood vessels of human hippocampus could provide the basis to understand and tackle these pathologies. As direct vascular experimentation in hippocampus is problematic, we achieved this information by computationally disaggregating publicly available whole microarrays data of human hippocampal homogenates. Three conditions were analyzed: 'Young Adults', 'Aged', and 'aged with Mild Cognitive Impairment' (MCI). The genes identified were contrasted against two independent data-sets. Here we show that the endothelial cells from the Younger Group appeared in an 'activated stage'. In turn, in the Aged Group, the endothelial cells showed a significant loss of response to shear stress, changes in cell adhesion molecules, increased inflammation, brain-insulin resistance, lipidic alterations, and changes in the extracellular matrix. Some specific changes in the MCI group were also detected. Noticeably, in this study the features arisen from the Aged Group (high tortuosity, increased bifurcations, and smooth muscle proliferation), pose the need for further experimental verification to discern between the occurrence of arteriogenesis and/or vascular remodeling by capillary arterialization. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel V. Guebel
- Program Agustín de Betancourt, Universidad de La Laguna, Tenerife 38200, Spain
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Néstor V. Torres
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
3
|
Shape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows. Proc Natl Acad Sci U S A 2021; 118:2022090118. [PMID: 33753497 PMCID: PMC8020797 DOI: 10.1073/pnas.2022090118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Surface microrollers are promising microrobotic systems for controlled navigation in the circulatory system thanks to their fast speeds and decreased flow velocities at the vessel walls. While surface propulsion on the vessel walls helps minimize the effect of strong fluidic forces, three-dimensional (3D) surface microtopography, comparable to the size scale of a microrobot, due to cellular morphology and organization emerges as a major challenge. Here, we show that microroller shape anisotropy determines the surface locomotion capability of microrollers on vessel-like 3D surface microtopographies against physiological flow conditions. The isotropic (single, 8.5 µm diameter spherical particle) and anisotropic (doublet, two 4 µm diameter spherical particle chain) magnetic microrollers generated similar translational velocities on flat surfaces, whereas the isotropic microrollers failed to translate on most of the 3D-printed vessel-like microtopographies. The computational fluid dynamics analyses revealed larger flow fields generated around isotropic microrollers causing larger resistive forces near the microtopographies, in comparison to anisotropic microrollers, and impairing their translation. The superior surface-rolling capability of the anisotropic doublet microrollers on microtopographical surfaces against the fluid flow was further validated in a vessel-on-a-chip system mimicking microvasculature. The findings reported here establish the design principles of surface microrollers for robust locomotion on vessel walls against physiological flows.
Collapse
|
4
|
Long X, You G, Wu Q, Zhou Y, Yu F, Xiao Y, Deng S, Song F, Huang J, Tian M. Abnormal expression of homeobox c6 in the atherosclerotic aorta and its effect on proliferation and migration of rat vascular smooth muscle cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:935-943. [PMID: 32785574 DOI: 10.1093/abbs/gmaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 11/14/2022] Open
Abstract
Homeobox c6 (Hoxc6) affects the proliferation, migration, and infiltration of malignant tumor cells; however, the effect of Hoxc6 on atherosclerosis (AS) as well as the proliferation and migration of vascular smooth muscle cells (VSMCs), which play a role in promoting AS, has not yet been well clarified. In the present study, we tested the hypothesis that Hoxc6 affects the proliferation and migration of rat VSMCs, and hence is involved in AS. The results showed that the expression of Hoxc6 mRNA and protein was higher in normal rat aortic wall than in the myocardium. Subsequently, a rat model of AS was established by high-fat feeding for 2 months. The expression of Hoxc6 mRNA and protein was increased significantly in AS lesions, while the expression of p53 protein was decreased and that of proliferating cell nuclear antigen (PCNA) was increased. Moreover, not only the proliferation and mobility of cells in normal culture were decreased, but also the proliferation was stimulated by oxidized low-density lipoprotein, which was decreased after downregulation of Hoxc6 expression in VSMCs in rat. Consecutively, the expression of PCNA protein was decreased, while that of p53 was increased. These results indicated that Hoxc6 is probably involved in AS via p53 and PCNA by affecting the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- Xiangshu Long
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ganhua You
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yu Zhou
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fuxun Yu
- Department of Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yan Xiao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fang Song
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| |
Collapse
|
5
|
Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16:727-744. [PMID: 31243391 DOI: 10.1038/s41569-019-0227-9] [Citation(s) in RCA: 697] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are a major cell type present at all stages of an atherosclerotic plaque. According to the 'response to injury' and 'vulnerable plaque' hypotheses, contractile VSMCs recruited from the media undergo phenotypic conversion to proliferative synthetic cells that generate extracellular matrix to form the fibrous cap and hence stabilize plaques. However, lineage-tracing studies have highlighted flaws in the interpretation of former studies, revealing that these studies had underestimated both the content and functions of VSMCs in plaques and have thus challenged our view on the role of VSMCs in atherosclerosis. VSMCs are more plastic than previously recognized and can adopt alternative phenotypes, including phenotypes resembling foam cells, macrophages, mesenchymal stem cells and osteochondrogenic cells, which could contribute both positively and negatively to disease progression. In this Review, we present the evidence for VSMC plasticity and summarize the roles of VSMCs and VSMC-derived cells in atherosclerotic plaque development and progression. Correct attribution and spatiotemporal resolution of clinically beneficial and detrimental processes will underpin the success of any therapeutic intervention aimed at VSMCs and their derivatives.
Collapse
Affiliation(s)
- Gemma L Basatemur
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Helle F Jørgensen
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Murray C H Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK.
- INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
6
|
Nawrocki MJ, Perek B, Sujka-Kordowska P, Konwerska A, Kałużna S, Zawierucha P, Bruska M, Zabel M, Jemielity M, Nowicki M, Kempisty B, Malińska A. Differences in Expression of Genes Involved in Bone Development and Morphogenesis in the Walls of Internal Thoracic Artery and Saphenous Vein Conduits May Provide Markers Useful for Evaluation Graft Patency. Int J Mol Sci 2019; 20:ijms20194890. [PMID: 31581653 PMCID: PMC6801533 DOI: 10.3390/ijms20194890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/22/2023] Open
Abstract
Coronary artery bypass grafting (CABG) is one of the most efficient procedures for patients with advanced coronary artery disease. From all the blood vessels with the potential to be used in this procedure, the internal thoracic artery (ITA) and the saphenous vein (SV) are the most commonly applied as aortocoronary conduits. Nevertheless, in order to evaluate the graft patency and efficiency effectively, basic knowledge should be constantly expanding at the molecular level as well, as the understanding of predictive factors is still limited. In this study, we have employed the expressive microarray approach, validated with Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), to analyze the transcriptome of both venous and arterial grafts. Searching for potential molecular factors, we analyzed differentially expressed gene ontologies involved in bone development and morphogenesis, for the possibility of discovery of new markers for the evaluation of ITA and SV segment quality. Among three ontological groups of interest—“endochondral bone morphogenesis”, “ossification”, and “skeletal system development”—we found six genes common to all of them. BMP6, SHOX2, COL13A1, CSGALNACT1, RUNX2, and STC1 showed differential expression patterns in both analyzed vessels. STC1 and COL13A1 were upregulated in ITA samples, whereas others were upregulated in SV. With regard to the Runx2 protein function in osteogenic phenotype regulation, the RUNX2 gene seems to be of paramount importance in assessing the potential of ITA, SV, and other vessels used in the CABG procedure. Overall, the presented study provided valuable insight into the molecular background of conduit characterization, and thus indicated genes that may be the target of subsequent studies, also at the protein level. Moreover, it has been suggested that RUNX2 may be recognized as a molecular marker of osteogenic changes in human blood vessels.
Collapse
Affiliation(s)
- Mariusz J Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznań, Poland.
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Sandra Kałużna
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Piotr Zawierucha
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland.
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wrocław, Poland.
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznań, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic.
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland.
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland.
| |
Collapse
|
7
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
8
|
Sinha S, Santoro MM. New models to study vascular mural cell embryonic origin: implications in vascular diseases. Cardiovasc Res 2018; 114:481-491. [PMID: 29385541 DOI: 10.1093/cvr/cvy005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/23/2018] [Indexed: 02/15/2024] Open
Abstract
A key question in vascular biology is how the diversity of origin of vascular mural cells, namely smooth muscle cells (SMCs) and pericytes influences vessel properties, in particular the regional propensity to vascular diseases. This review therefore first describes the role and regulation of mural cells during vascular formation, with a focus on embryonic origin. We then consider the evidence that connects heterogeneities in SMC and pericyte origins with disease. Since this idea has major implications for understanding and modelling human disease, then there is a pressing need for new model systems to investigate mural cell development and the consequences of heterogeneity. Recent advances arising from in vitro strategies for deriving mural cells from human pluripotent stem cells as well as from the zebrafish model will be discussed and the medical relevance of these discoveries will be highlighted.
Collapse
Affiliation(s)
- Sanjay Sinha
- Anne McLaren Laboratory, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute, Forvie Site, University of Cambridge, Robinson Way, Cambridge CB2 0SZ, UK
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Redox Metabolism, Department of Biology, University of Padua, 35131 Padova, Italy
| |
Collapse
|
9
|
Bentzon JF, Majesky MW. Lineage tracking of origin and fate of smooth muscle cells in atherosclerosis. Cardiovasc Res 2018; 114:492-500. [PMID: 29293902 PMCID: PMC5852531 DOI: 10.1093/cvr/cvx251] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Advances in lineage-tracking techniques have provided new insights into the origins and fates of smooth muscle cells (SMCs) in atherosclerosis. Yet new tools present new challenges for data interpretation that require careful consideration of the strengths and weaknesses of the methods employed. At the same time, discoveries in other fields have introduced new perspectives on longstanding questions about steps in atherogenesis that remain poorly understood. In this article, we address both the challenges and opportunities for a better understanding of the mechanisms by which cells appearing as or deriving from SMCs accumulate in atherosclerosis.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Biomarkers/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Gene Expression Regulation, Developmental
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Physiologic
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Room 525, M/S C9S-5, Seattle, WA 98011, USA
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
11
|
Talaska K, Ferreira A. An Approach to Identifying Phenomena Accompanying Micro and Nanoparticles in Contact With Irregular Vessel Walls. IEEE Trans Nanobioscience 2017. [PMID: 28641266 DOI: 10.1109/tnb.2017.2717178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of this paper is to present the method for determining the nature and values of the forces needed to set micro and nanoparticles sitting immobile at the blood vessel wall in motion. The problem was tackled in two ways. Microparticles were examined as objects coming into contact with the wall with the actual large arteriole-type vessel structure. The forces acting on microparticles 10, 30, and [Formula: see text] in diameter were determined: drag force FD , lift force FL , electrostatic force FE , and gravity force FG . Fluid-structure interaction analysis was used to research the problem. However, nanoparticles were examined as objects coming into contact with the endothelial surface layer (ESL). Resistance forces during the movement of nanoparticles 20, 50, and 100 nm in diameter in the ESL were determined. The same was done for aggregates of nanoparticles 50 nm in diameter. Local irregularities in wall surface are important for microparticles. Small irregularities with the small values of electrostatic force FE can effectively stop the particle. In the case of nanoparticles, the key is the interaction of the particle with ESL. The research methodology presented can be used to better understand the particle-blood vessel wall interaction phenomena, leading to a more informed particle movement control. The new application of known calculation methods presented in this paper can be successfully used as an additional tool that simplifies planning and design of strategies for drug delivery by means of micro and nanoparticles.
Collapse
|
12
|
Liu X, Liu X, Liu W, Luo M, Tao H, Wu D, Zhao Y, Zou L. HOXA9 transcriptionally regulates the EPHB4 receptor to modulate trophoblast migration and invasion. Placenta 2017; 51:38-48. [PMID: 28292467 DOI: 10.1016/j.placenta.2017.01.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Functional placenta formation is crucially dependent on extravillous trophoblast migration and invasion. EPHB4 has been identified to play a negative but important role in regulating trophoblast biological function, whereas the upstream regulation mechanism remains unknown. As reported, there is a transcriptional stimulation of EPHB4 expression consequent to HOXA9 activation in endothelial cells (ECs). Therefore, this study is conducted to investigate the role of HOXA9 and its relationship with EPHB4 in trophoblast cells. METHOD Both mRNA and protein expression levels of HOXA9 and EPHB4 were measured in preeclamptic placenta (n = 15) and normal placenta (n = 15). Next, the expression and location of HOXA9 and EPHB4 in first-trimester villi were shown via immunohistochemistry. Trophoblast cell line HTR-8/SVneo was used to explore the effect of HOXA9 on EPHB4 expression and trophoblast bioactivity by gain- and loss-of function studies. In addition, chromatin immunoprecipitation (ChIP) and luciferase assays were conducted to clarify the regulation mechanism of HOXA9 on EPHB4 expression in HTR-8/SVneo. RESULT HOXA9 and EPHB4 expression were increased in preeclamptic placenta compared with normal placenta. HOXA9 could promote EPHB4 expression and impaired HTR-8/SVneo cells migration and invasion. ChIP and luciferase assays revealed that HOXA9 could directly bind to EPHB4 promoter and promoted its transcription. CONCLUSION HOXA9 transcriptionally regulated EPHB4 expression to modulate trophoblasts migration and invasion, which may suggest a contribution of HOXA9-EPHB4 in the poor placentation in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglian Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Wang J, Li J, Liu J, Xu M, Tong X, Wang J. Chlorogenic acid prevents isoproterenol-induced DNA damage in vascular smooth muscle cells. Mol Med Rep 2016; 14:4063-4068. [PMID: 27634104 PMCID: PMC5101879 DOI: 10.3892/mmr.2016.5743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Numerous clinical therapeutic agents have been identified as DNA damaging. The present study revealed that isoproterenol (Iso) resulted in DNA damage in vascular smooth muscle cells (VSMCs) and increased the levels of intracellular oxygen free radicals. Administration of chlorogenic acid (CGA) inhibited this effect. Pretreatment with CGA abrogated the increase in protein expression levels of γ-H2A histone family member X, phosphorylated ataxia telangiectasia mutated, phosphorylated Rad3-related protein, breast cancer 1 and C-terminal Src homologous kinase induced by Iso. In addition, the increase in levels of intracellular reactive oxygen species (ROS) induced by Iso was inhibited by CGA pretreatment in a dose-dependent manner. The results of the present study suggest that CGA may inhibit Iso-induced VSMC damage via the suppression of ROS generation. Therefore, CGA may be a novel agent for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jingshuai Wang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 201204, P.R. China
| | - Jiyang Li
- Department of General Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China
| | - Jie Liu
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Mengjiao Xu
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jianjun Wang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
14
|
Pfaltzgraff ER, Bader DM. Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease. Dev Dyn 2015; 244:410-6. [PMID: 25546231 DOI: 10.1002/dvdy.24247] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022] Open
Abstract
Regional differences in vascular physiology and disease response exist throughout the vascular tree. While these differences in physiology and disease correspond to regional vascular environmental conditions, there is also compelling evidence that the embryonic origins of the smooth muscle inherent to the vessels may play a role. Here, we review what is known regarding the role of embryonic origin of vascular smooth muscle cells during vascular development. The focus of this review is to highlight the heterogeneity in the origins of vascular smooth muscle cells and the resulting regional physiologies of the vessels. Our goal is to stimulate future investigation into this area and provide a better understanding of vascular organogenesis and disease. .
Collapse
Affiliation(s)
- Elise R Pfaltzgraff
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
15
|
Visconti RP, Awgulewitsch A. Topographic patterns of vascular disease: HOX proteins as determining factors? World J Biol Chem 2015; 6:65-70. [PMID: 26322165 PMCID: PMC4549770 DOI: 10.4331/wjbc.v6.i3.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/23/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023] Open
Abstract
Steadily increasing evidence supports the idea that genetic diversities in the vascular bed are, in addition to hemodynamic influences, a major contributing factor in determining region-specific cardiovascular disease susceptibility. Members of the phylogenetically highly conserved Hox gene family of developmental regulators have to be viewed as prime candidates for determining these regional genetic differences in the vasculature. During embryonic patterning, the regionally distinct and precisely choreographed expression patterns of HOX transcription factors are essential for the correct specification of positional identities. Apparently, these topographic patterns are to some degree retained in certain adult tissues, including the circulatory system. While an understanding of the functional significance of these localized Hox activities in adult blood vessels is only beginning to emerge, an argument can be made for a role of Hox genes in the maintenance of vessel wall homeostasis and functional integrity on the one hand, and in regulating the development and progression of regionally restricted vascular pathologies, on the other. Initial functional studies in animal models, as well as data from clinical studies provide some level of support for this view. The data suggest that putative genetic regulatory networks of Hox-dependent cardiovascular disease processes include genes of diverse functional categories (extracellular matrix remodeling, transmembrane signaling, cell cycle control, inflammatory response, transcriptional control, etc.), as potential targets in both vascular smooth muscle and endothelial cells, as well as cell populations residing in the adventitia.
Collapse
Affiliation(s)
- Richard P Visconti
- Richard P Visconti, Alexander Awgulewitsch, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Alexander Awgulewitsch
- Richard P Visconti, Alexander Awgulewitsch, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
16
|
Amato B, Compagna R, Amato M, Grande R, Butrico L, Rossi A, Naso A, Ruggiero M, de Franciscis S, Serra R. Adult vascular wall resident multipotent vascular stem cells, matrix metalloproteinases, and arterial aneurysms. Stem Cells Int 2015; 2015:434962. [PMID: 25866513 PMCID: PMC4381852 DOI: 10.1155/2015/434962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Alessio Rossi
- Department of Medicine and Health Sciences, University of Molise, 88100 Campobasso, Italy
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Ruggiero
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
17
|
Rana AA, Callery EM. Applications of nuclear reprogramming and directed differentiation in vascular regenerative medicine. N Biotechnol 2015; 32:191-8. [PMID: 25064145 DOI: 10.1016/j.nbt.2014.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
As vertebrates proceed through embryonic development the growing organism cannot survive on diffusion of oxygen and nutrients alone and establishment of vascular system is fundamental for embryonic development to proceed. Dysfunction of the vascular system in adults is at the heart of many disease states such as hypertension and atherosclerosis. In this review we will focus on attempts to generate the key cells of the vascular system, the endothelial and smooth muscle cells, using human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs). Regardless of their origin, be it embryonic or via somatic cell reprogramming, pluripotent stem cells provide limitlessly self-renewing populations of material suitable for the generation of multi-lineage isogenic vascular cells-types that can be used as tools to study normal cell and tissue biology, model disease states and also as tools for drug screening and future cell therapies.
Collapse
Affiliation(s)
- Amer A Rana
- Division of Respiratory Medicine, Department of Medicine, Box 157, 5th Floor, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Elizabeth M Callery
- Division of Respiratory Medicine, Department of Medicine, Box 157, 5th Floor, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
18
|
Matsuda R, Hosono C, Saigo K, Samakovlis C. The intersection of the extrinsic hedgehog and WNT/wingless signals with the intrinsic Hox code underpins branching pattern and tube shape diversity in the drosophila airways. PLoS Genet 2015; 11:e1004929. [PMID: 25615601 PMCID: PMC4304712 DOI: 10.1371/journal.pgen.1004929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/28/2014] [Indexed: 01/04/2023] Open
Abstract
The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. Tubes are common structural elements of many internal organs,
facilitating fluid flow and material exchange. To meet the local needs of diverse tissues, the branching patterns and tube shapes vary regionally. Diametric tapering and specialized branch targeting to the brain represent two common examples of variations with organismal benefits in the Drosophila airways and our vascular system. Several extrinsic signals instruct tube diversifications but the impact of intrinsic factors remains underexplored. Here, we show that the local, tube-intrinsic Hox code instructs the pattern and shape of the dorsal trunk (DT), the main Drosophila airway. In the cephalic part (DT1), where Bithorax Complex (BX-C) Hox genes are not expressed, the extrinsic Hedgehog signal is epistatic to WNT/Wingless signals. Hedgehog instructs anterior DT1 cells to take a long and narrow tube fate targeting the brain. In more posterior metameres, BX-C genes make the extrinsic WNT/Wingless signals epistatic over Hedgehog. There, WNT/Wingless instruct all DT cells to take the thick and short tube fate. Moreover, BX-C genes modulate the outputs of WNT/wingless signaling, making the DT tubes thicker in more posterior metameres. We provide a model for how intrinsic factors modify extrinsic signaling to control regional tube morphologies in a network.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ECCPS, University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
19
|
Abstract
The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.
Collapse
Affiliation(s)
- Shane C Quinonez
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA.
| | - Jeffrey W Innis
- University of Michigan, Department of Pediatrics, Division of Pediatric Genetics, 1500 East Medical Center Drive, D5240 MPB/Box 5718, Ann Arbor, MI 48109-5718, USA; University of Michigan, Department of Human Genetics, 1241 E. Catherine, 4909 Buhl Building, Ann Arbor, MI 48109-5618, USA.
| |
Collapse
|
20
|
Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci Rep 2013; 3:2178. [PMID: 24145756 PMCID: PMC3804857 DOI: 10.1038/srep02178] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/02/2013] [Indexed: 01/10/2023] Open
Abstract
Human vascular wall-resident CD44+ multipotent stem cells (VW-MPSCs) within the vascular adventitia are capable to differentiate into pericytes and smooth muscle cells (SMC). This study demonstrates HOX-dependent differentiation of CD44(+) VW-MPSCs into SMC that involves epigenetic modification of transgelin as a down-stream regulated gene. First, HOXB7, HOXC6 and HOXC8 were identified to be differentially expressed in VW-MPSCs as compared to terminal differentiated human aortic SMC, endothelial cells and undifferentiated pluripotent embryonic stem cells. Silencing these HOX genes in VW-MPSCs significantly reduced their sprouting capacity and increased expression of the SMC markers transgelin and calponin and the histone gene histone H1. Furthermore, the methylation pattern of the TAGLN promoter was altered. In summary, our findings suggest a role for certain HOX genes in regulating differentiation of human VW-MPSC into SMCs that involves epigenetic mechanisms. This is critical for understanding VW-MPSC-dependent vascular disease processes such as neointima formation and tumor vascularization.
Collapse
|
21
|
Awgulewitsch A, Majesky MW. Interpreting inflammation: smooth muscle positional identity and nuclear factor-κB signaling. Arterioscler Thromb Vasc Biol 2013; 33:1113-5. [PMID: 23677878 DOI: 10.1161/atvbaha.113.301407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|