1
|
Elsangeedy E, Yamaleyeva DN, Edenhoffer NP, Deak A, Soloshenko A, Ray J, Sun X, Shaltout OH, Cruz-Diaz N, Westwood B, Kim-Shapiro D, Diz DI, Soker S, Pulgar VM, Ronca A, Willey JS, Yamaleyeva LM. Sex-specific cardiovascular adaptations to simulated microgravity in Sprague-Dawley rats. NPJ Microgravity 2024; 10:110. [PMID: 39702444 DOI: 10.1038/s41526-024-00450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8). HLU had no effect on aortic PWV in males (n = 5-6). Aortic α smooth muscle actin, myosin, collagen, elastin, and collagen-to-elastin ratio were not different in rats of either sex following HLU. The levels of G protein-coupled estrogen receptor (GPER) were lower in the aorta of SD females exposed to HLU compared with female controls but were not altered in males. HLU females also had lower aortic PPARγ, increased oxidative stress markers, and diastolic dysfunction compared with control females. GPER agonist G1 prevented the increase in PWV and 8-hydroxy-2'-deoxyguanosine without altering PPARγ or p47phox in HLU females (n = 4 in each group) suggesting that lower GPER may contribute to arterial stiffening in the setting of simulated microgravity. This study highlights sex-specific vascular adaptations to the state of simulated microgravity.
Collapse
Affiliation(s)
- Ebrahim Elsangeedy
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dina N Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas P Edenhoffer
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson Deak
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anna Soloshenko
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jonathan Ray
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xuming Sun
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Omar H Shaltout
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nildris Cruz-Diaz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian Westwood
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Debra I Diz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Victor M Pulgar
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmaceutical & Clinical Sciences, Campbell University, Buies Creek, NC, USA
| | - April Ronca
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Liliya M Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Bonetto V, Magnelli V, Sabbatini M, Caprì F, van Loon JJWA, Tavella S, Masini MA. The importance of gravity vector on adult mammalian organisms: Effects of hypergravity on mouse testis. PLoS One 2023; 18:e0282625. [PMID: 37773950 PMCID: PMC10540970 DOI: 10.1371/journal.pone.0282625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/17/2023] [Indexed: 10/01/2023] Open
Abstract
In the age of space exploration, the effect of hypergravity on human physiology is a relatively neglected topic. However, astronauts have several experiences of hypergravity during their missions. The main disturbance of altered gravity can be imputed to cell cytoskeleton alteration and physiologic homeostasis of the body. Testis has proved to be a particularly sensible organ, subject to environmental alteration and physiological disturbance. This makes testis an organ eligible for investigating the alteration following exposure to altered gravity. In our study, mice were exposed to hypergravity (3g for 14 days) in the Large Diameter Centrifuge machine (ESA, Netherland). We have observed a morphological alteration of the regular architecture of the seminiferous tubules of testis as well as an altered expression of factors involved in the junctional complexes of Sertoli cells, responsible for ensuring the morpho-functional integrity of the organ. The expression of key receptors in physiological performance, such as Androgen Receptors and Interstitial Cells Stimulating Hormone receptors, was found lower expressed. All these findings indicate the occurrence of altered physiological organ performance such as the reduction of the spermatozoa number and altered endocrine parameters following hypergravity exposure.
Collapse
Affiliation(s)
- Valentina Bonetto
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| | - Valeria Magnelli
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| | - Maurizio Sabbatini
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| | - Flavia Caprì
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| | - Jack J. W. A. van Loon
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam UMC Location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- Life Support and Physical Sciences Section (TEC-MMG), European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), Noordwijk, The Netherland
| | - Sara Tavella
- Department of Experimental Medicine, University of Genoa, Genoa (GE), Italy
| | - Maria Angela Masini
- Department of Science and Technology Innovation, University of Eastern Piedmont (UPO), Alessandria (AL), Italy
| |
Collapse
|
3
|
Patel OV, Casey T, Plaut K. Profiling solute-carrier transporters in key metabolic tissues during the postpartum evolution of mammary epithelial cells from nonsecretory to secretory. Physiol Genomics 2019; 51:539-552. [PMID: 31545931 DOI: 10.1152/physiolgenomics.00058.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modifications in the abundance of solute-carrier (SLC) transcripts in tandem with adjustments in genes-associated with energy homeostasis during the postpartum transition of the mammary epithelial cells (MEC) from nonsecretory to secretory is pivotal for supporting milk synthesis. The goal of this study was to identify differentially expressed SLC genes across key metabolic tissues between late pregnancy and onset of lactation. Total RNA was isolated from the mammary, liver, and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured with Rat 230 2.0 Affymetrix GeneChips. LIMMA was utilized to identify the differential gene expression patterns between P20 and L1 tissues. Transcripts engaged in conveying anions, cations, carboxylates, sugars, amino acids, metals, nucleosides, vitamins, and fatty acids were significantly increased (P < 0.05) in MEC during the P20 to L1 shift. Downregulated (P < 0.05) genes in the mammary during the physiological transition included GLUT8 and SLC45a3. In the liver, SLC genes encoding for anion, carbonyl, and nucleotide sugar transporters were upregulated (P < 0.05) at L1. while genes facilitating transportation of anions and hexose were increased (P < 0.05), from P20 to L1 in the adipose tissue. GLUT1 and GLUT4 in the liver, along with GLUT4 and SGLT2 in the adipose tissue, were repressed (P < 0.05) at L1. Our results illustrate that MEC exhibit dynamic molecular plasticity during the nonsecretory to secretory transition and increase biosynthetic capacity through a coordinated tissue specific SLC transcriptome modification to facilitate substrate transfer.
Collapse
Affiliation(s)
- Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
4
|
de Souza TAJ, Pereira TC. Caenorhabditis elegans Tolerates Hyperaccelerations up to 400,000 x g. ASTROBIOLOGY 2018; 18:825-833. [PMID: 29746159 DOI: 10.1089/ast.2017.1802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One of the most important laboratory animal species is the nematode Caenorhabditis elegans, which has been used in a range of research fields such as neurobiology, body development, and molecular biology. The scientific progress obtained by employing C. elegans as a model in these areas has encouraged its use in new fields. One of the new potential applications concerns the biological responses to hyperacceleration stress (g-force), but only a few studies have evaluated the response of multicellular organisms to extreme hypergravity conditions at the order of magnitude 105 x g, which is the theorized force experienced by rocks ejected from Mars (or similar planets). Therefore, we subjected the nematode C. elegans to 400,000 x g (equivalent to that force) and evaluated viability, general morphology, and behavior of C. elegans after exposure to this stress. The metabolic activity of this nematode in response to the gravitational spectrum of 50-400,000 x g was also evaluated by means of the MTT assay. Surprisingly, we found that this organism showed no decrease in viability, no changes in behavior and development, and no drastic metabolic depression after hyperacceleration. Thus, we demonstrated for the first time that this multicellular research model can withstand extremely high g-forces, which prompts the use of C. elegans as a new model for extreme hypergravity. Key Words: Caenorhabditis elegans-Hypergravity-Ultracentrifugation-Acceleration-Panspermia-Astrobiology. Astrobiology 18, 825-833.
Collapse
Affiliation(s)
- Tiago Alves Jorge de Souza
- 1 Department of Genetics, Graduate Program in Genetics, FMRP, University of São Paulo , Ribeirao Preto, Brazil
- 2 Department of Biology, FFCLRP, University of São Paulo , Ribeirao Preto, Brazil
| | - Tiago Campos Pereira
- 1 Department of Genetics, Graduate Program in Genetics, FMRP, University of São Paulo , Ribeirao Preto, Brazil
- 2 Department of Biology, FFCLRP, University of São Paulo , Ribeirao Preto, Brazil
| |
Collapse
|
5
|
Pulga A, Porte Y, Morel JL. Changes in C57BL6 Mouse Hippocampal Transcriptome Induced by Hypergravity Mimic Acute Corticosterone-Induced Stress. Front Mol Neurosci 2016; 9:153. [PMID: 28082866 PMCID: PMC5183579 DOI: 10.3389/fnmol.2016.00153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/06/2016] [Indexed: 02/05/2023] Open
Abstract
Centrifugation is a widely used procedure to study the impact of altered gravity on Earth, as observed during spaceflights, allowing us to understand how a long-term physical constraint can condition the mammalian physiology. It is known that mice, placed in classical cages and maintained during 21 days in a centrifuge at 3G gravity level, undergo physiological adaptations due to hypergravity, and/or stress. Indeed, an increase of corticosterone levels has been previously measured in the plasma of 3G-exposed mice. Corticosterone is known to modify neuronal activity during memory processes. Although learning and memory performances cannot be assessed during the centrifugation, literature largely described a large panel of proteins (channels, second messengers, transcription factors, structural proteins) which expressions are modified during memory processing. Thus, we used the Illumina technology to compare the whole hippocampal transcriptome of three groups of C57Bl6/J mice, in order to gain insights into the effects of hypergravity on cerebral functions. Namely, a group of 21 days 3G-centrifuged mice was compared to (1) a group subjected to an acute corticosterone injection, (2) a group receiving a transdermal chronic administration of corticosterone during 21 days, and (3) aged mice because aging could be characterized by a decrease of hippocampus functions and memory impairment. Our results suggest that hypergravity stress induced by corticosterone administration and aging modulate the expression of genes in the hippocampus. However, the modulations of the transcriptome observed in these conditions are not identical. Hypergravity affects per-se the hippocampus transcriptome and probably modifies its activity. Hypergravity induced changes in hippocampal transcriptome were more similar to acute injection than chronic diffusion of corticosterone or aging.
Collapse
Affiliation(s)
- Alice Pulga
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Yves Porte
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Jean-Luc Morel
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
- Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| |
Collapse
|
6
|
Ranieri D, Cucina A, Bizzarri M, Alimandi M, Torrisi MR. Microgravity influences circadian clock oscillation in human keratinocytes. FEBS Open Bio 2015; 5:717-23. [PMID: 26448904 PMCID: PMC4571538 DOI: 10.1016/j.fob.2015.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/31/2015] [Accepted: 08/22/2015] [Indexed: 11/30/2022] Open
Abstract
Changes of gravitational forces affect oscillations of circadian clock genes. The effects of microgravity on the circadian clock persist during the recovery process from microgravity. Linking of mechanotransduction to circadian rhythms reveals changes in physiology.
Microgravity and sudden changes of gravitational forces exert numerous effects on tissues, organs and apparatus. Responses to these forces variably applied to cells indicate the existence of mechanotransduction pathways able to modulate transcription. Oscillation of circadian clocks similarly influences many cellular and metabolic processes. Here we hypothesized that signals derived from changes of gravitational forces applied to epidermal cells might influence their physiology in harmony with the oscillation of the molecular clock. In this study, we describe amplified oscillations of Bmal1 circadian clock gene in human keratinocytes exposed to short simulated microgravity and to rapid variation of gravitational forces. We found that exposure to microgravity enhances the amplitude of the Bmal1 feedback loop sustained by an apparently lower variability of Rev-erbα transcription, while recovery from microgravity is characterized by increased amplitude of Bmal1 expression and elongation of the oscillatory periods of Bmal1 and Rev-erbα. These data highlight the existence of integrated signaling network connecting mechanosensitive pathways to circadian gene regulation.
Collapse
Affiliation(s)
- Danilo Ranieri
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Italy
| | - Alessandra Cucina
- Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Italy
| | - Mariano Bizzarri
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Italy
| | - Maurizio Alimandi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Italy
| | - Maria Rosaria Torrisi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Italy ; Azienda Ospedaliera S. Andrea, Rome, Italy
| |
Collapse
|
7
|
Ma L, Ma J, Xu K. Effect of spaceflight on the circadian rhythm, lifespan and gene expression of Drosophila melanogaster. PLoS One 2015; 10:e0121600. [PMID: 25798821 PMCID: PMC4370389 DOI: 10.1371/journal.pone.0121600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/16/2015] [Indexed: 12/20/2022] Open
Abstract
Space travelers are reported to experience circadian rhythm disruption during spaceflight. However, how the space environment affects circadian rhythm is yet to be determined. The major focus of this study was to investigate the effect of spaceflight on the Drosophila circadian clock at both the behavioral and molecular level. We used China's Shenzhou-9 spaceship to carry Drosophila. After 13 days of spaceflight, behavior tests showed that the flies maintained normal locomotor activity rhythm and sleep pattern. The expression level and rhythm of major clock genes were also unaffected. However, expression profiling showed differentially regulated output genes of the circadian clock system between space flown and control flies, suggesting that spaceflight affected the circadian output pathway. We also investigated other physiological effects of spaceflight such as lipid metabolism and lifespan, and searched genes significantly affected by spaceflight using microarray analysis. These results provide new information on the effects of spaceflight on circadian rhythm, lipid metabolism and lifespan. Furthermore, we showed that studying the effect of spaceflight on gene expression using samples collected at different Zeitgeber time could obtain different results, suggesting the importance of appropriate sampling procedures in studies on the effects of spaceflight.
Collapse
Affiliation(s)
- Lingling Ma
- Laboratory of Space Microbiology, Shenzhou Space Biotechnology Group, China Academy of Space Technology, Beijing, China
| | - Jun Ma
- Laboratory of Space Microbiology, Shenzhou Space Biotechnology Group, China Academy of Space Technology, Beijing, China
| | - Kanyan Xu
- Laboratory of Space Microbiology, Shenzhou Space Biotechnology Group, China Academy of Space Technology, Beijing, China
- * E-mail:
| |
Collapse
|
8
|
Casey T, Patel OV, Plaut K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change. Physiol Genomics 2015; 47:113-28. [PMID: 25649141 DOI: 10.1152/physiolgenomics.00117.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| | - Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| |
Collapse
|
9
|
Casey TM, Crodian J, Erickson E, Kuropatwinski KK, Gleiberman AS, Antoch MP. Tissue-specific changes in molecular clocks during the transition from pregnancy to lactation in mice. Biol Reprod 2014; 90:127. [PMID: 24759789 PMCID: PMC4094001 DOI: 10.1095/biolreprod.113.116137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/02/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks regulate homeostasis and mediate responses to stressors. Lactation is one of the most energetically demanding periods of an adult female's life. Peripartum changes occur in almost every organ so the dam can support neonatal growth through milk production while homeostasis is maintained. How circadian clocks are involved in adaptation to lactation is currently unknown. The abundance and temporal pattern of core clock genes' expression were measured in suprachiasmatic nucleus, liver, and mammary from late pregnant and early lactation mice. Tissue-specific changes in molecular clocks occurred between physiological states. Amplitude and robustness of rhythms increased in suprachiasmatic nucleus and liver. Mammary rhythms of core molecular clock genes were suppressed. Attenuated rhythms appeared to be a physiological adaptation of mammary to lactation, because manipulation of timing of suckling resulting in significant differences in plasma prolactin and corticosterone had no effect on amplitude. Analysis of core clock proteins revealed that the stoichiometric relationship between positive (CLOCK) and negative (PER2) components remained 1:1 in liver but was increased to 4:1 in mammary during physiological transition. Induction of differentiation of mammary epithelial cell line HC11 with dexamethasone, insulin, and prolactin resulted in similar stoichiometric changes among positive and negative clock regulators, and prolactin induced phase shifts in HC11 Arntl expression rhythm. Data support that distinct mechanisms drive periparturient changes in mammary clock. Stoichiometric change in clock regulators occurs with gland differentiation. Suppression of mammary clock gene expression rhythms represents a physiological adaptation to suckling cues. Adaptations in mammary clock are likely needed in part to support suckling demands of neonates.
Collapse
Affiliation(s)
- Theresa M Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Jennifer Crodian
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Emily Erickson
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Karen K Kuropatwinski
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Marina P Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
10
|
Raven LA, Cocks BG, Hayes BJ. Multibreed genome wide association can improve precision of mapping causative variants underlying milk production in dairy cattle. BMC Genomics 2014; 15:62. [PMID: 24456127 PMCID: PMC3905911 DOI: 10.1186/1471-2164-15-62] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/18/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genome wide association studies (GWAS) in most cattle breeds result in large genomic intervals of significant associations making it difficult to identify causal mutations. This is due to the extensive, low-level linkage disequilibrium within a cattle breed. As there is less linkage disequilibrium across breeds, multibreed GWAS may improve precision of causal variant mapping. Here we test this hypothesis in a Holstein and Jersey cattle data set with 17,925 individuals with records for production and functional traits and 632,003 SNP markers. RESULTS By using a cross validation strategy within the Holstein and Jersey data sets, we were able to identify and confirm a large number of QTL. As expected, the precision of mapping these QTL within the breeds was limited. In the multibreed analysis, we found that many loci were not segregating in both breeds. This was partly an artefact of power of the experiments, with the number of QTL shared between the breeds generally increasing with trait heritability. False discovery rates suggest that the multibreed analysis was less powerful than between breed analyses, in terms of how much genetic variance was explained by the detected QTL. However, the multibreed analysis could more accurately pinpoint the location of the well-described mutations affecting milk production such as DGAT1. Further, the significant SNP in the multibreed analysis were significantly enriched in genes regions, to a considerably greater extent than was observed in the single breed analyses. In addition, we have refined QTL on BTA5 and BTA19 to very small intervals and identified a small number of potential candidate genes in these, as well as in a number of other regions. CONCLUSION Where QTL are segregating across breed, multibreed GWAS can refine these to reasonably small genomic intervals. However, such QTL appear to represent only a fraction of the genetic variation. Our results suggest a significant proportion of QTL affecting milk production segregate within rather than across breeds, at least for Holstein and Jersey cattle.
Collapse
Affiliation(s)
- Lesley-Ann Raven
- Biosciences Research Division, Department of Primary Industries Victoria, 5 Ring Road, Bundoora 3086, Australia.
| | | | | |
Collapse
|