1
|
Du H, Wang R, Dai X, Yin Z, Liu Y, Su L, Chen H, Zhao S, Zheng L, Dong X, Zhai Y. Effect of Guanylate Cyclase-22-like on Ovarian Development of Orius nagaii (Hemiptera: Anthocoridae). INSECTS 2024; 15:110. [PMID: 38392529 PMCID: PMC10889437 DOI: 10.3390/insects15020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
This study identified and characterized the gene encoding recep tor-type guanylate cyclase-22-like (GCY-22; OnGCY) from the pirate bug Orius nagaii, an important biological control agent. The full-length cDNA of the GCY of O. nagaii was obtained by rapid amplification of cDNA ends (RACE); it had a total length of 4888 base pairs (bp), of which the open reading frame (ORF) was 3750 bp, encoding a polypeptide of 1249 amino acid residues. The physicochemical properties of OnGCY were predicted and analyzed by using relevant ExPASy software, revealing a molecular formula of C6502H10122N1698O1869S57, molecular weight of ~143,811.57 kDa, isoelectric point of 6.55, and fat index of 90.04. The resulting protein was also shown to have a signal peptide, two transmembrane regions, and a conserved tyrosine kinase (tyrkc). Silencing OnGCY by RNA interference significantly inhibited ovarian development and decreased fertility in female O. nagaii in the treated versus the control group. Additionally, OnGCY silencing significantly decreased the expression levels of other GCY and Vg genes. Thus, these results clarify the structure and biological function of OnGCY, which has an important role in insect fecundity. The results also provide a reference for agricultural pest control and future large-scale breeding of biological control agents.
Collapse
Affiliation(s)
- Huiling Du
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaolin Dong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
2
|
Kanoh H, Iwashita S, Kuraishi T, Goto A, Fuse N, Ueno H, Nimura M, Oyama T, Tang C, Watanabe R, Hori A, Momiuchi Y, Ishikawa H, Suzuki H, Nabe K, Takagaki T, Fukuzaki M, Tong LL, Yamada S, Oshima Y, Aigaki T, Dow JAT, Davies SA, Kurata S. cGMP signaling pathway that modulates NF-κB activation in innate immune responses. iScience 2021; 24:103473. [PMID: 34988396 PMCID: PMC8710550 DOI: 10.1016/j.isci.2021.103473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/09/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) pathway is an evolutionarily conserved signaling pathway that plays a central role in immune responses and inflammation. Here, we show that Drosophila NF-κB signaling is activated via a pathway in parallel with the Toll receptor by receptor-type guanylate cyclase, Gyc76C. Gyc76C produces cyclic guanosine monophosphate (cGMP) and modulates NF-κB signaling through the downstream Tollreceptor components dMyd88, Pelle, Tube, and Dif/Dorsal (NF-κB). The cGMP signaling pathway comprises a membrane-localized cGMP-dependent protein kinase (cGK) called DG2 and protein phosphatase 2A (PP2A) and is crucial for host survival against Gram-positive bacterial infections in Drosophila. A membrane-bound cGK, PRKG2, also modulates NF-κB activation via PP2A in human cells, indicating that modulation of NF-κB activation in innate immunity by the cGMP signaling pathway is evolutionarily conserved.
Collapse
Affiliation(s)
- Hirotaka Kanoh
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shinzo Iwashita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takayuki Kuraishi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo, Japan
| | - Akira Goto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haruna Ueno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Mariko Nimura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomohito Oyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Chang Tang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aki Hori
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiki Momiuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroki Ishikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kumiko Nabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takeshi Takagaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masataka Fukuzaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Li-Li Tong
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Sinya Yamada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
3
|
Knockdown of the neuronal gene Lim3 at the early stages of development affects mitochondrial function and lifespan in Drosophila. Mech Ageing Dev 2019; 181:29-41. [DOI: 10.1016/j.mad.2019.111121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023]
|
4
|
Myat MM, Patel U. Receptor-Type Guanylyl Cyclase at 76C (Gyc76C) Regulates De Novo Lumen Formation during Drosophila Tracheal Development. PLoS One 2016; 11:e0161865. [PMID: 27642749 PMCID: PMC5028017 DOI: 10.1371/journal.pone.0161865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/18/2016] [Indexed: 11/25/2022] Open
Abstract
Lumen formation and maintenance are important for the development and function of essential organs such as the lung, kidney and vasculature. In the Drosophila embryonic trachea, lumena form de novo to connect the different tracheal branches into an interconnected network of tubes. Here, we identify a novel role for the receptor type guanylyl cyclase at 76C (Gyc76C) in de novo lumen formation in the Drosophila trachea. We show that in embryos mutant for gyc76C or its downsteam effector protein kinase G (PKG) 1, tracheal lumena are disconnected. Dorsal trunk (DT) cells of gyc76C mutant embryos migrate to contact each other and complete the initial steps of lumen formation, such as the accumulation of E-cadherin (E-cad) and formation of an actin track at the site of lumen formation. However, the actin track and E-cad contact site of gyc76C mutant embryos did not mature to become a new lumen and DT lumena did not fuse. We also observed failure of the luminal protein Vermiform to be secreted into the site of new lumen formation in gyc76C mutant trachea. These DT lumen formation defects were accompanied by altered localization of the Arf-like 3 GTPase (Arl3), a known regulator of vesicle-vesicle and vesicle-membrane fusion. In addition to the DT lumen defect, lumena of gyc76C mutant terminal cells were shorter compared to wild-type cells. These studies show that Gyc76C and downstream PKG-dependent signaling regulate de novo lumen formation in the tracheal DT and terminal cells, most likely by affecting Arl3-mediated luminal secretion.
Collapse
Affiliation(s)
- Monn Monn Myat
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, United States of America
- Department of Biology, Medgar Evers College-City University of New York, Brooklyn, New York, United States of America
- * E-mail:
| | - Unisha Patel
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
5
|
Myat MM, Rashmi RN, Manna D, Xu N, Patel U, Galiano M, Zielinski K, Lam A, Welte MA. Drosophila KASH-domain protein Klarsicht regulates microtubule stability and integrin receptor localization during collective cell migration. Dev Biol 2015; 407:103-14. [PMID: 26247519 PMCID: PMC4785808 DOI: 10.1016/j.ydbio.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 12/28/2022]
Abstract
During collective migration of the Drosophila embryonic salivary gland, cells rearrange to form a tube of a distinct shape and size. Here, we report a novel role for the Drosophila Klarsicht-Anc-Syne Homology (KASH) domain protein Klarsicht (Klar) in the regulation of microtubule (MT) stability and integrin receptor localization during salivary gland migration. In wild-type salivary glands, MTs became progressively stabilized as gland migration progressed. In embryos specifically lacking the KASH domain containing isoforms of Klar, salivary gland cells failed to rearrange and migrate, and these defects were accompanied by decreased MT stability and altered integrin receptor localization. In muscles and photoreceptors, KASH isoforms of Klar work together with Klaroid (Koi), a SUN domain protein, to position nuclei; however, loss of Koi had no effect on salivary gland migration, suggesting that Klar controls gland migration through novel interactors. The disrupted cell rearrangement and integrin localization observed in klar mutants could be mimicked by overexpressing Spastin (Spas), a MT severing protein, in otherwise wild-type salivary glands. In turn, promoting MT stability by reducing spas gene dosage in klar mutant embryos rescued the integrin localization, cell rearrangement and gland migration defects. Klar genetically interacts with the Rho1 small GTPase in salivary gland migration and is required for the subcellular localization of Rho1. We also show that Klar binds tubulin directly in vitro. Our studies provide the first evidence that a KASH-domain protein regulates the MT cytoskeleton and integrin localization during collective cell migration.
Collapse
Affiliation(s)
- M M Myat
- Department of Biology, Medgar Evers College - CUNY, 1638 Bedford Avenue, Brooklyn, NY 11225, USA.
| | - R N Rashmi
- Department of Biology, Medgar Evers College - CUNY, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | - D Manna
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - N Xu
- Department of Natural Sciences, LaGuardia Community College - CUNY, Long Island City, NY 11101, USA
| | - U Patel
- Department of Biology, Medgar Evers College - CUNY, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | - M Galiano
- Department of Biology, Medgar Evers College - CUNY, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | - K Zielinski
- Department of Biology, Medgar Evers College - CUNY, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | - A Lam
- Department of Biology, Medgar Evers College - CUNY, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | - M A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
6
|
Schleede J, Blair SS. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster. PLoS Genet 2015; 11:e1005576. [PMID: 26440503 PMCID: PMC4595086 DOI: 10.1371/journal.pgen.1005576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues. Signaling between cells regulates many processes, including the choices cells make between different fates during development and regeneration, and misregulation of such signaling underlies many human pathologies. To understand how such signals control developmental decisions, it is necessary to elucidate both how cells regulate and respond to different levels of signaling, and how different types of signals combine and regulate each other. We have used genetic screening in the fruitfly Drosophila melanogaster to identify mutations that reduce or eliminate signals carried by Bone Morphogenetic Proteins (BMPs), and show that BMP signaling is sensitive Gyc76C, a peptide receptor that stimulates the production of cGMP in cells. We identify downstream intracellular effectors of this cGMP activity, but provide evidence that the effects on the BMP pathway are not mediated at the intracellular level, but rather through cGMP’s effects upon the extracellular matrix and matrix-remodeling proteinases, which in turn affects the activity of extracellular BMP-binding proteins. We discuss differences and parallels with other examples of cGMP activity in Drosophila melanogaster and mammals.
Collapse
Affiliation(s)
- Justin Schleede
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Seth S. Blair
- Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
7
|
Patel U, Myat MM. Receptor guanylyl cyclase Gyc76C is required for invagination, collective migration and lumen shape in the Drosophila embryonic salivary gland. Biol Open 2013; 2:711-7. [PMID: 23862019 PMCID: PMC3711039 DOI: 10.1242/bio.20134887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/25/2013] [Indexed: 01/02/2023] Open
Abstract
The Drosophila embryonic salivary gland is formed by the invagination and collective migration of cells. Here, we report on a novel developmental role for receptor-type guanylyl cyclase at 76C, Gyc76C, in morphogenesis of the salivary gland. We demonstrate that Gyc76C and downstream cGMP-dependent protein kinase 1 (DG1) function in the gland and surrounding mesoderm to control invagination, collective migration and lumen shape. Loss of gyc76C resulted in glands that failed to invaginate, complete posterior migration and had branched lumens. Salivary gland migration defects of gyc76C mutant embryos were rescued by expression of wild-type gyc76C specifically in the gland or surrounding mesoderm, whereas invagination defects were rescued primarily by expression in the gland. In migrating salivary glands of gyc76C mutant embryos, integrin subunits localized normally to gland-mesoderm contact sites but talin localization in the surrounding circular visceral mesoderm and fat body was altered. The extracellular matrix protein, laminin, also failed to accumulate around the migrating salivary gland of gyc76C mutant embryos, and gyc76C and laminin genetically interacted in gland migration. Our studies suggest that gyc76C controls salivary gland invagination, collective migration and lumen shape, in part by regulating the localization of talin and the laminin matrix.
Collapse
Affiliation(s)
| | - Monn Monn Myat
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|