1
|
Shi J, Zhang M, Hu Y, Liu J, Li K, Sun X, Chen S, Liu J, Ye L, Fan J, Jia J. Differences in transcriptome characteristics and drug repositioning of Alzheimer's disease according to sex. Neurobiol Dis 2025; 210:106909. [PMID: 40220916 DOI: 10.1016/j.nbd.2025.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Previous studies have shown significant sex differences in AD with regarding its epidemiology, pathophysiology, clinical presentation, and treatment response. However, the transcriptome variances associated with sex in AD remain unclear. METHODS RNA sequencing (RNA-seq) and transcriptomic analyses were performed on peripheral blood samples from total of 54 patients, including male AD patients (n = 15), female AD patients (n = 10), male MCI patients (n = 7), female MCI patients (n = 11), male healthy controls (n = 6), female healthy controls (n = 5). The snRNA-seq dataset (GSE167494, GSE157827) of prefrontal cortex tissues was obtained from the Gene Expression Omnibus (GEO). We conducted an investigation into differentially expressed genes and pathways in the peripheral blood cells as well as prefrontal cortex tissues of both male and female AD patients with consideration to sex-related factors. Additionally, we analyzed the distribution and characteristics of cells in the cerebral cortex as well as the interaction and communication between cells of male and female AD patients. Connectivity Map (CMap) was utilized for predicting and screening potential sex-specific drugs for AD. RESULTS The transcriptome profile and associated biological processes in the peripheral blood of male and female AD and MCI patients exhibit discernible differences, including upregulation of BASP1 in AD male patients and arousing TNS1 in AD female patients. The distribution of various cell types in the prefrontal cortex tissues differs between male and female AD patients, like neuron and oligodendrocyte decreased and endothelial cell and astrocyte increased in female compared with male, while a multitude of genes exhibit significant differential expression. The results of cell communication analysis, such as collagen signaling pathway, suggest that sex disparities impact intercellular interactions within prefrontal cortex tissues among individuals with AD. By drug repositioning, several drugs, including torin-2 and YM-298198, might have the potential to therapeutic value of MCI or AD, while drugs like homoharringtonine and teniposide have potential opposite effects in different sexes. CONCLUSION The characteristics of the transcriptome in peripheral blood and single-cell transcriptome in the prefrontal cortex exhibit significant differences between male and female patients with AD, which providing a basis for future sex stratified treatment of AD.
Collapse
Affiliation(s)
- Jingqi Shi
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Minghua Zhang
- Medical Supplies Center of PLA General Hospital, Beijing 100853, China
| | - Yazhuo Hu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ke Li
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuan Sun
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Geriatric Neurological Department of the Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianwei Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Ling Ye
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China.
| | - Jianjun Jia
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Furuta R, Miyake A. Fibroblast growth factor 22. Differentiation 2025; 143:100860. [PMID: 40139106 DOI: 10.1016/j.diff.2025.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Fibroblast growth factor 22 (FGF22) is a member of the FGF7 subfamily that functions as a paracrine factor and was identified in the human placenta in 2001. The FGF22 gene is located on human chromosome 19p13.3, mouse chromosome 10, and zebrafish chromosome 22 and is closely linked to the BSG, HCN2, and POLRMT genes. The gene is composed of three exons, which are common in humans, mice, and zebrafish. However, in humans and mice, FGF22 is produced as two isoforms by alternative splicing, whereas no isoforms have been reported in zebrafish. In humans, FGF22 is expressed in the skin, brain, and ovaries, whereas in mice, it is expressed in the skin, brain, retina, spinal cord, and cochlea. Various abnormalities have been reported in these regions in Fgf22 mutant mice. In zebrafish, fgf22 is expressed in the forebrain, midbrain, and otic vesicles during embryogenesis, and an analysis of knockdown zebrafish models revealed an important role for fgf22 in the process of brain formation. As expected from the results of these functional analyses, FGF22 is also associated with human diseases such as depression, spinal cord injury, hearing loss, and cancer.
Collapse
Affiliation(s)
- Rise Furuta
- Department of Molecular Biology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama 640-8156, Japan
| | - Ayumi Miyake
- Department of Molecular Biology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama 640-8156, Japan.
| |
Collapse
|
3
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single-cell sequencing provides clues about the developmental genetic basis of evolutionary adaptations in syngnathid fishes. eLife 2025; 13:RP97764. [PMID: 39898521 PMCID: PMC11790252 DOI: 10.7554/elife.97764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Clayton M Small
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- School of Computer and Data Science, University of OregonEugeneUnited States
| | - Susan Bassham
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - Micah A Woods
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
| | - William A Cresko
- Institute of Ecology and Evolution, University of OregonEugeneUnited States
- Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| |
Collapse
|
4
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|
5
|
Miyake A, Ohmori T, Murakawa Y. Fgf22 and Fgfr2b are required for neurogenesis and gliogenesis in the zebrafish forebrain. Biochem Biophys Res Commun 2023; 681:212-217. [PMID: 37783119 DOI: 10.1016/j.bbrc.2023.09.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factors (Fgfs) play crucial roles in various developmental processes including brain development. We previously identified Fgf22 in zebrafish and found that fgf22 is involved in midbrain patterning during embryogenesis. Here, we investigated the role of Fgf22 in the formation of the zebrafish forebrain. We found that fgf22 was essential for determining the ventral properties of the telencephalon and diencephalon but not for cell proliferation. In addition, the knockdown of fgf22 inhibited the generation of glutamatergic neurons, γ-aminobutyric acid (GABA)ergic interneurons and astrocytes. Recently, Fgf signaling has received much attention because of its importance in the pathogenesis of multiple sclerosis, in which oligodendrocytes and myelin are destroyed. However, the effects of each Fgf on oligodendrocytes remain largely unknown. Therefore, we also investigated the role of Fgf22 in oligodendrocyte development and explored whether there is a difference between Fgf22 and other Fgfs. Knockdown of fgf22 promoted the generation of oligodendrocytes. Conversely, overexpression of fgf22 inhibited the generation of oligodendrocytes. Furthermore, the forebrain phenotypes of fgfr2b knockdown zebrafish were remarkably similar to those of fgf22 knockdown zebrafish. This establishes the Fgf22-Fgfr2b axis as a key ligand‒receptor partnership in neurogenesis and gliogenesis in the forebrain. Our results indicate that Fgf22 has a unique function in suppressing oligodendrocyte differentiation through Fgfr2b without affecting cell proliferation.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto, 606-8501, Japan; Department of Molecular Biology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama, 640-8156, Japan.
| | - Takatoshi Ohmori
- Department of Genetic Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto, 606-8501, Japan; Department of Molecular Biology, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichibancho, Wakayama, 640-8156, Japan
| | - Yuka Murakawa
- Department of Genetic Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Zhang W, Luo P, Liu X, Cheng R, Zhang S, Qian X, Liu F. Roles of Fibroblast Growth Factors in the Axon Guidance. Int J Mol Sci 2023; 24:10292. [PMID: 37373438 DOI: 10.3390/ijms241210292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) have been widely studied by virtue of their ability to regulate many essential cellular activities, including proliferation, survival, migration, differentiation and metabolism. Recently, these molecules have emerged as the key components in forming the intricate connections within the nervous system. FGF and FGF receptor (FGFR) signaling pathways play important roles in axon guidance as axons navigate toward their synaptic targets. This review offers a current account of axonal navigation functions performed by FGFs, which operate as chemoattractants and/or chemorepellents in different circumstances. Meanwhile, detailed mechanisms behind the axon guidance process are elaborated, which are related to intracellular signaling integration and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Weiyun Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Peiyi Luo
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaohan Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ruoxi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Shuxian Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiao Qian
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Fang Liu
- Department of Cell Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
7
|
Small CM, Healey HM, Currey MC, Beck EA, Catchen J, Lin ASP, Cresko WA, Bassham S. Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci U S A 2022; 119:e2119602119. [PMID: 35733255 PMCID: PMC9245644 DOI: 10.1073/pnas.2119602119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.
Collapse
Affiliation(s)
- Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Hope M. Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Mark C. Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Angela S. P. Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| |
Collapse
|
8
|
Farnsworth DR, Posner M, Miller AC. Single cell transcriptomics of the developing zebrafish lens and identification of putative controllers of lens development. Exp Eye Res 2021; 206:108535. [PMID: 33705730 PMCID: PMC8092445 DOI: 10.1016/j.exer.2021.108535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 01/10/2023]
Abstract
The vertebrate lens is a valuable model system for investigating the gene expression changes that coordinate tissue differentiation due to its inclusion of two spatially separated cell types, the outer epithelial cells and the deeper denucleated fiber cells that they support. Zebrafish are a useful model system for studying lens development given the organ's rapid development in the first several days of life in an accessible, transparent embryo. While we have strong foundational knowledge of the diverse lens crystallin proteins and the basic gene regulatory networks controlling lens development, no study has detailed gene expression in a vertebrate lens at single cell resolution. Here we report an atlas of lens gene expression in zebrafish embryos and larvae at single cell resolution through five days of development, identifying a number of novel putative regulators of lens development. Our data address open questions about the temperospatial expression of α-crystallins during lens development that will support future studies of their function and provide the first detailed view of β- and γ-crystallin expression in and outside the lens. We describe divergent expression in transcription factor genes that occur as paralog pairs in the zebrafish. Finally, we examine the expression dynamics of cytoskeletal, membrane associated, RNA-binding, and transcription factor genes, identifying a number of novel patterns. Overall these data provide a foundation for identifying and characterizing lens developmental regulatory mechanisms and revealing targets for future functional studies with potential therapeutic impact.
Collapse
Affiliation(s)
| | - Mason Posner
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA.
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
9
|
Knickmeyer MD, Mateo JL, Heermann S. BMP Signaling Interferes with Optic Chiasm Formation and Retinal Ganglion Cell Pathfinding in Zebrafish. Int J Mol Sci 2021; 22:ijms22094560. [PMID: 33925390 PMCID: PMC8123821 DOI: 10.3390/ijms22094560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Decussation of axonal tracts is an important hallmark of vertebrate neuroanatomy resulting in one brain hemisphere controlling the contralateral side of the body and also computing the sensory information originating from that respective side. Here, we show that BMP interferes with optic chiasm formation and RGC pathfinding in zebrafish. Experimental induction of BMP4 at 15 hpf results in a complete ipsilateral projection of RGC axons and failure of commissural connections of the forebrain, in part as the result of an interaction with shh signaling, transcriptional regulation of midline guidance cues and an affected optic stalk morphogenesis. Experimental induction of BMP4 at 24 hpf, resulting in only a mild repression of forebrain shh ligand expression but in a broad expression of pax2a in the diencephalon, does not per se prevent RGC axons from crossing the midline. It nevertheless shows severe pathologies of RGC projections e.g., the fasciculation of RGC axons with the ipsilateral optic tract resulting in the innervation of one tectum by two eyes or the projection of RGC axons in the direction of the contralateral eye.
Collapse
Affiliation(s)
- Max D. Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany;
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Juan L. Mateo
- Departamento de Informática, Universidad de Oviedo, Jesús Arias de Velasco, 33005 Oviedo, Spain;
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany;
- Correspondence:
| |
Collapse
|
10
|
Korzh V, Kondrychyn I. Origin and development of circumventricular organs in living vertebrate. Semin Cell Dev Biol 2019; 102:13-20. [PMID: 31706729 DOI: 10.1016/j.semcdb.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
The circumventricular organs (CVOs) function by mediating chemical communication between blood and brain across the blood-brain barrier. Their origin and developmental mechanisms involved are not understood in enough detail due to a lack of molecular markers common for CVOs. These rather small and inconspicuous organs are found in close vicinity to the third and fourth brain ventricles suggestive of ancient evolutionary origin. Recently, an integrated approach based on analysis of CVOs development in the enhancer-trap transgenic zebrafish led to an idea that almost all of CVOs could be highlighted by GFP expression in this transgenic line. This in turn suggested that an enhancer along with a set of genes it regulates may illustrate the first common element of developmental regulation of CVOs. It seems to be related to a mechanism of suppression of the canonical Wnt/ β-catenin signaling that functions in development of fenestrated capillaries typical for CVOs. Based on that observation the common molecular elements of the putative developmental mechanism of CVOs will be discussed in this review.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | |
Collapse
|
11
|
Chinnappan M, Gunewardena S, Chalise P, Dhillon NK. Analysis of lncRNA-miRNA-mRNA Interactions in Hyper-proliferative Human Pulmonary Arterial Smooth Muscle Cells. Sci Rep 2019; 9:10533. [PMID: 31324852 PMCID: PMC6642142 DOI: 10.1038/s41598-019-46981-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
We previously reported enhanced proliferation of smooth muscle cells on the combined exposure of HIV proteins and cocaine leading to the development of HIV-pulmonary arterial hypertension. Here, we attempt to comprehensively understand the interactions between long noncoding RNAs (lncRNAs), mRNAs and micro-RNAs (miRNAs) to determine their role in smooth muscle hyperplasia. Differential expression of lncRNAs, mRNAs and miRNAs were obtained by microarray and small-RNA sequencing from HPASMCs treated with and without cocaine and/or HIV-Tat. LncRNA to mRNA associations were conjectured by analyzing their genomic proximity and by interrogating their association to vascular diseases and cancer co-expression patterns reported in the relevant databases. Neuro-active ligand receptor signaling, Ras signaling and PI3-Akt pathway were among the top pathways enriched in either differentially expressed mRNAs or mRNAs associated to lncRNAs. HPASMC with combined exposure to cocaine and Tat (C + T) vs control identified the following top lncRNA-mRNA pairs, ENST00000495536-HOXB13, T216482-CBL, ENST00000602736-GDF7, and, TCONS_00020413-RND1. Many of the down-regulated miRNAs in the HPASMCs treated with C + T were found to be anti-proliferative and targets of up-regulated lncRNAs targeting up-regulated mRNAs, including down-regulation of miR-185, -491 and up-regulation of corresponding ENST00000585387. Specific knock down of the selected lncRNAs highlighted the importance of non-coding RNAs in smooth muscle hyperplasia.
Collapse
MESH Headings
- Cocaine/pharmacology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Gene Ontology
- HIV Infections/complications
- Humans
- Hyperplasia
- Hypertension, Pulmonary/etiology
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Tissue Array Analysis
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
12
|
Deng Z, Deng S, Zhang MR, Tang MM. Fibroblast Growth Factors in Depression. Front Pharmacol 2019; 10:60. [PMID: 30804785 PMCID: PMC6370647 DOI: 10.3389/fphar.2019.00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most serious diseases and now becomes a major public health problem in the world. The pathogenesis of depression remains poorly understood. Fibroblast growth factors (FGFs) belong to a large family of growth factors that are involved in brain development during early periods as well as maintenance and repair throughout adulthood. In recent years, studies have found a correlation between the members of the FGF system and depression. These signaling molecules may be expected to be biomarkers for the diagnosis and prognosis of MDD, and may provide new drug targets for the treatment of depression. Here, we reviewed the correlation between some members of the FGF system and depression.
Collapse
Affiliation(s)
- Zheng Deng
- Hospital Evaluation Office, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China
| | - Mu-Rong Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Mi-Mi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Central South University, Changsha, China
| |
Collapse
|
13
|
Gibbs HC, Chang-Gonzalez A, Hwang W, Yeh AT, Lekven AC. Midbrain-Hindbrain Boundary Morphogenesis: At the Intersection of Wnt and Fgf Signaling. Front Neuroanat 2017; 11:64. [PMID: 28824384 PMCID: PMC5541008 DOI: 10.3389/fnana.2017.00064] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
A constriction in the neural tube at the junction of the midbrain and hindbrain is a conserved feature of vertebrate embryos. The constriction is a defining feature of the midbrain-hindbrain boundary (MHB), a signaling center that patterns the adjacent midbrain and rostral hindbrain and forms at the junction of two gene expression domains in the early neural plate: an anterior otx2/wnt1 positive domain and a posterior gbx/fgf8 positive domain. otx2 and gbx genes encode mutually repressive transcription factors that create a lineage restriction boundary at their expression interface. Wnt and Fgf genes form a mutually dependent feedback system that maintains their expression domains on the otx2 or gbx side of the boundary, respectively. Constriction morphogenesis occurs after these conserved gene expression domains are established and while their mutual interactions maintain their expression pattern; consequently, mutant studies in zebrafish have led to the suggestion that constriction morphogenesis should be considered a unique phase of MHB development. We analyzed MHB morphogenesis in fgf8 loss of function zebrafish embryos using a reporter driven by the conserved wnt1 enhancer to visualize anterior boundary cells. We found that fgf8 loss of function results in a re-activation of wnt1 reporter expression posterior to the boundary simultaneous with an inactivation of the wnt1 reporter in the anterior boundary cells, and that these events correlate with relaxation of the boundary constriction. In consideration of other results that correlate the boundary constriction with Wnt and Fgf expression, we propose that the maintenance of an active Wnt-Fgf feedback loop is a key factor in driving the morphogenesis of the MHB constriction.
Collapse
Affiliation(s)
- Holly C Gibbs
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Ana Chang-Gonzalez
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States.,Department of Materials Science and Engineering, Texas A&M UniversityCollege Station, TX, United States.,School of Computational Sciences, Korea Institute for Advanced StudySeoul, South Korea
| | - Alvin T Yeh
- Department of Biomedical Engineering, Texas A&M UniversityCollege Station, TX, United States
| | - Arne C Lekven
- Department of Biology, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
14
|
Brorin is required for neurogenesis, gliogenesis, and commissural axon guidance in the zebrafish forebrain. PLoS One 2017; 12:e0176036. [PMID: 28448525 PMCID: PMC5407822 DOI: 10.1371/journal.pone.0176036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Bmps regulate numerous neural functions with their regulators. We previously identified Brorin, a neural-specific secreted antagonist of Bmp signaling, in humans, mice, and zebrafish. Mouse Brorin has two cysteine-rich domains containing 10 cysteine residues in its core region, and these are located in similar positions to those in the cysteine-rich domains of Chordin family members, which are secreted Bmp antagonists. Zebrafish Brorin had two cysteine-rich domains with high similarity to those of mouse Brorin. We herein examined zebrafish brorin in order to elucidate its in vivo actions. Zebrafish brorin was predominantly expressed in developing neural tissues. The overexpression of brorin led to the inactivation of Bmp signaling. On the other hand, the knockdown of brorin resulted in the activation of Bmp signaling and brorin morphants exhibited defective development of the ventral domain in the forebrain. Furthermore, the knockdown of brorin inhibited the generation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes and promoted the generation of astrocytes in the forebrain. In addition, brorin was required for axon guidance in the forebrain. The present results suggest that Brorin is a secreted Bmp antagonist predominantly expressed in developing neural tissues and that it plays multiple roles in the development of the zebrafish forebrain.
Collapse
|
15
|
Šestak MS, Domazet-Lošo T. Phylostratigraphic profiles in zebrafish uncover chordate origins of the vertebrate brain. Mol Biol Evol 2014; 32:299-312. [PMID: 25415965 PMCID: PMC4298178 DOI: 10.1093/molbev/msu319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor.
Collapse
Affiliation(s)
- Martin Sebastijan Šestak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
16
|
Miyake A, Chitose T, Kamei E, Murakami A, Nakayama Y, Konishi M, Itoh N. Fgf16 is required for specification of GABAergic neurons and oligodendrocytes in the zebrafish forebrain. PLoS One 2014; 9:e110836. [PMID: 25357195 PMCID: PMC4214708 DOI: 10.1371/journal.pone.0110836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not required for dorsoventral patterning in the midbrain. fgf16 was additionally required for the specification and differentiation of γ-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes, but not for those of glutamatergic neurons in the forebrain. Cross talk between Fgf and Hedgehog (Hh) signaling was critical for the specification of GABAergic interneurons and oligodendrocytes. The expression of fgf16 in the forebrain was down-regulated by the inhibition of Hh and Fgf19 signaling, but not by that of Fgf3/Fgf8 signaling. The fgf16 morphant phenotype was similar to that of the fgf19 morphant and embryos blocked Hh signaling. The results of the present study indicate that Fgf16 signaling, which is regulated by the downstream pathways of Hh-Fgf19 in the forebrain, is involved in forebrain development.
Collapse
Affiliation(s)
- Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
- * E-mail:
| | - Tatsuya Chitose
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Eriko Kamei
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Atsuko Murakami
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Yoshiaki Nakayama
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Morichika Konishi
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|