1
|
Hooper KM, Jain VD, Gormly CJ, Sanderson BJ, Lundquist EA. Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans. PLoS Genet 2025; 21:e1011526. [PMID: 39823521 PMCID: PMC11760026 DOI: 10.1371/journal.pgen.1011526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/24/2025] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth. In C. elegans, analysis of dorsally-migrating growth cones during outgrowth has shown that growth cone polarity of filopodial extension is separable from the extent of growth cone protrusion. Growth cones are first polarized by UNC-6/Netrin, and subsequent regulation of protrusion by UNC-6/Netrin is based on this earlier-established polarity (the Polarity/Protrusion model). In both cases, short-range or even haptotactic mechanisms are invoked: in vertebrate spinal cord, interactions of growth cones with radial glia expressing Netrin-1; and in C. elegans, a potential close-range interaction that polarizes the growth cone. To explore potential short-range and long-range functions of UNC-6/Netrin, a potentially membrane-anchored transmembrane UNC-6 (UNC-6(TM)) was generated by genome editing. unc-6(tm) was hypomorphic for dorsal VD/DD axon pathfinding, indicating that it retained some unc-6 function. Polarity of VD growth cone filopodial protrusion was initially established in unc-6(tm), but was lost as the growth cones migrated away from the unc-6(tm) source in the ventral nerve cord. In contrast, ventral guidance of the AVM and PVM axons was equally severe in unc-6(tm) and unc-6(null). Together, these results suggest that unc-6(tm) retains short-range functions but lacks long-range functions due to reduced secreted UNC-6. Ectopic unc-6(+) expression from non-ventral sources did not dramatically perturb dorsal VD growth cone polarity or axon outgrowth, suggesting that ectopic UNC-6 cannot redirect polarity once it is established in the VD/DD neurons. This is not what would be expected of a growth cone dynamically reading a gradient of UNC-6, but is consistent with the Polarity/protrusion model of growth cone guidance away from UNC-6/Netrin.
Collapse
Affiliation(s)
- Kelsey M. Hooper
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| | - Vedant D. Jain
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| | - Celeste J. Gormly
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| | - Brian J. Sanderson
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| | - Erik A. Lundquist
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
2
|
Hooper KM, Lundquist EA. Short- and long-range roles of UNC-6/Netrin in dorsal-ventral axon guidance in vivo in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590737. [PMID: 38712249 PMCID: PMC11071391 DOI: 10.1101/2024.04.23.590737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth. In C. elegans, analysis of dorsally-migrating growth cones during outgrowth has shown that growth cone polarity of filopodial extension is separable from the extent of growth cone protrusion. Growth cones are first polarized by UNC-6/Netrin, and subsequent regulation of protrusion by UNC-6/Netrin is based on this earlier-established polarity (the Polarity/Protrusion model). In both cases, short-range or even haptotactic mechanisms are invoked: in vertebrate spinal cord, interactions of growth cones with radial glia expressing Netrin-1; and in C. elegans, a potential close-range interaction that polarizes the growth cone. To explore potential short-range and long-range functions of UNC-6/Netrin, a potentially membrane-anchored transmembrane UNC-6 (UNC-6(TM)) was generated by genome editing. Unc-6(tm) was hypomorphic for dorsal VD/DD axon pathfinding, indicating that it retained some unc-6 function. Polarity of VD growth cone filopodial protrusion was initially established in unc-6(tm), but was lost as the growth cones migrated away from the unc-6(tm) source in the ventral nerve cord. In contrast, ventral guidance of the AVM and PVM axons was equally severe in unc-6(tm) and unc-6(null). Together, these results suggest that unc-6(tm) retains short-range functions but lacks long-range functions. Finally, ectopic unc-6(+) expression from non-ventral sources could rescue dorsal and ventral guidance defects in unc-6(tm) and unc-6(null). Thus, a ventral directional source of UNC-6 was not required for dorsal-ventral axon guidance, and UNC-6 can act as a permissive, not instructive, cue for dorsal-ventral axon guidance. Possibly, UNC-6 is a permissive signal that activates cell-intrinsic polarity; or UNC-6 acts with another signal that is required in a directional manner. In either case, the role of UNC-6 is to polarize the pro-protrusive activity of UNC-40/DCC in the direction of outgrowth.
Collapse
Affiliation(s)
- Kelsey M. Hooper
- University of Kansas, Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology
| | - Erik A. Lundquist
- University of Kansas, Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology
| |
Collapse
|
3
|
Mahadik SS, Lundquist EA. TOM-1/tomosyn acts with the UNC-6/netrin receptor UNC-5 to inhibit growth cone protrusion in Caenorhabditis elegans. Development 2023; 150:dev201031. [PMID: 37014062 PMCID: PMC10112904 DOI: 10.1242/dev.201031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/24/2023] [Indexed: 04/05/2023]
Abstract
In the polarity/protrusion model of growth cone repulsion from UNC-6/netrin, UNC-6 first polarizes the growth cone of the VD motor neuron axon via the UNC-5 receptor, and then regulates protrusion asymmetrically across the growth cone based on this polarity. UNC-6 stimulates protrusion dorsally through the UNC-40/DCC receptor, and inhibits protrusion ventrally through UNC-5, resulting in net dorsal growth. Previous studies showed that UNC-5 inhibits growth cone protrusion via the flavin monooxygenases and potential destabilization of F-actin, and via UNC-33/CRMP and restriction of microtubule plus-end entry into the growth cone. We show that UNC-5 inhibits protrusion through a third mechanism involving TOM-1/tomosyn. A short isoform of TOM-1 inhibited protrusion downstream of UNC-5, and a long isoform had a pro-protrusive role. TOM-1/tomosyn inhibits formation of the SNARE complex. We show that UNC-64/syntaxin is required for growth cone protrusion, consistent with a role of TOM-1 in inhibiting vesicle fusion. Our results are consistent with a model whereby UNC-5 utilizes TOM-1 to inhibit vesicle fusion, resulting in inhibited growth cone protrusion, possibly by preventing the growth cone plasma membrane addition required for protrusion.
Collapse
Affiliation(s)
- Snehal S. Mahadik
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, 5049 Haworth Hall, Lawrence, KS 66045, USA
| | - Erik A. Lundquist
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Avenue, 5049 Haworth Hall, Lawrence, KS 66045, USA
| |
Collapse
|
4
|
Wadsworth WG. Neurodevelopment: UNC-40/DCC and the Patterning of Neural Circuits. Curr Biol 2021; 30:R1319-R1321. [PMID: 33142102 DOI: 10.1016/j.cub.2020.08.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new study in Caenorhabditis elegans suggests the ubiquitin-proteasome system promotes degradation of the netrin receptor UNC-40 in a particular neuron only in one sex, leading to sex-specific patterns of synaptic connections.
Collapse
Affiliation(s)
- William G Wadsworth
- Department of Pathology and Laboratory Medicine, Rutgers, The State University of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08854-5835, USA.
| |
Collapse
|
5
|
Synaptic Protein Degradation Controls Sexually Dimorphic Circuits through Regulation of DCC/UNC-40. Curr Biol 2020; 30:4128-4141.e5. [PMID: 32857970 PMCID: PMC7658809 DOI: 10.1016/j.cub.2020.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022]
Abstract
Sexually dimorphic circuits underlie behavioral differences between the sexes, yet the molecular mechanisms involved in their formation are poorly understood. We show here that sexually dimorphic connectivity patterns arise in C. elegans through local ubiquitin-mediated protein degradation in selected synapses of one sex but not the other. Specifically, synaptic degradation occurs via binding of the evolutionary conserved E3 ligase SEL-10/FBW7 to a phosphodegron binding site of the netrin receptor UNC-40/DCC (Deleted in Colorectal Cancer), resulting in degradation of UNC-40. In animals carrying an undegradable unc-40 gain-of-function allele, synapses were retained in both sexes, compromising the activity of the circuit without affecting neurite guidance. Thus, by decoupling the synaptic and guidance functions of the netrin pathway, we reveal a critical role for dimorphic protein degradation in controlling neuronal connectivity and activity. Additionally, the interaction between SEL-10 and UNC-40 is necessary not only for sex-specific synapse pruning, but also for other synaptic functions. These findings provide insight into the mechanisms that generate sex-specific differences in neuronal connectivity, activity, and function. Sex-specific synapse pruning during development is regulated by the ubiquitin pathway The E3 ligase SEL-10 targets the UNC-40 netrin receptor via binding to a CPD motif UNC-40 degradation leads to synapse removal only in hermaphrodites, not males CPD mutations disrupt synaptic functions of UNC-40, leaving axon guidance intact
Collapse
|
6
|
Clarke A, McQueen PG, Fang HY, Kannan R, Wang V, McCreedy E, Wincovitch S, Giniger E. Abl signaling directs growth of a pioneer axon in Drosophila by shaping the intrinsic fluctuations of actin. Mol Biol Cell 2020; 31:466-477. [PMID: 31967946 PMCID: PMC7185895 DOI: 10.1091/mbc.e19-10-0564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fundamental problem in axon growth and guidance is understanding how cytoplasmic signaling modulates the cytoskeleton to produce directed growth cone motility. Live imaging of the TSM1 axon of the developing Drosophila wing has shown that the essential role of the core guidance signaling molecule, Abelson (Abl) tyrosine kinase, is to modulate the organization and spatial localization of actin in the advancing growth cone. Here, we dissect in detail the properties of that actin organization and its consequences for growth cone morphogenesis and motility. We show that advance of the actin mass in the distal axon drives the forward motion of the dynamic filopodial domain that defines the growth cone. We further show that Abl regulates both the width of the actin mass and its internal organization, spatially biasing the intrinsic fluctuations of actin to achieve net advance of the actin, and thus of the dynamic filopodial domain of the growth cone, while maintaining the essential coherence of the actin mass itself. These data suggest a model whereby guidance signaling systematically shapes the intrinsic, stochastic fluctuations of actin in the growth cone to produce axon growth and guidance.
Collapse
Affiliation(s)
- Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.,Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine/National Institutes of Health Graduate Partnerships Program, Washington, DC 20037
| | - Philip G McQueen
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Hsiao Yu Fang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Ramakrishnan Kannan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Victor Wang
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Evan McCreedy
- Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Wincovitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
7
|
Ebbing A, Middelkoop TC, Betist MC, Bodewes E, Korswagen HC. Partially overlapping guidance pathways focus the activity of UNC-40/DCC along the anteroposterior axis of polarizing neuroblasts. Development 2019; 146:dev.180059. [PMID: 31488562 DOI: 10.1242/dev.180059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Directional migration of neurons and neuronal precursor cells is a central process in nervous system development. In the nematode Caenorhabditis elegans, the two Q neuroblasts polarize and migrate in opposite directions along the anteroposterior body axis. Several key regulators of Q cell polarization have been identified, including MIG-21, DPY-19/DPY19L1, the netrin receptor UNC-40/DCC, the Fat-like cadherin CDH-4 and CDH-3/Fat, which we describe in this study. How these different transmembrane proteins act together to direct Q neuroblast polarization and migration is still largely unknown. Here, we demonstrate that MIG-21 and DPY-19, CDH-3 and CDH-4, and UNC-40 define three distinct pathways that have partially redundant roles in protrusion formation, but also separate functions in regulating protrusion direction. Moreover, we show that the MIG-21, DPY-19 and Fat-like cadherin pathways control the localization and clustering of UNC-40 at the leading edge of the polarizing Q neuroblast, and that this is independent of the UNC-40 ligands UNC-6/netrin and MADD-4. Our results provide insight into a novel mechanism for ligand-independent localization of UNC-40 that directs the activity of UNC-40 along the anteroposterior axis.
Collapse
Affiliation(s)
- Annabel Ebbing
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teije C Middelkoop
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Eduard Bodewes
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands .,Institute of Biodynamics and Biocomplexity, Developmental Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
8
|
Gujar MR, Stricker AM, Lundquist EA. RHO-1 and the Rho GEF RHGF-1 interact with UNC-6/Netrin signaling to regulate growth cone protrusion and microtubule organization in Caenorhabditis elegans. PLoS Genet 2019; 15:e1007960. [PMID: 31233487 PMCID: PMC6611649 DOI: 10.1371/journal.pgen.1007960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/05/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023] Open
Abstract
UNC-6/Netrin is a conserved axon guidance cue that directs growth cone migrations in the dorsal-ventral axis of C. elegans and in the vertebrate spinal cord. UNC-6/Netrin is expressed in ventral cells, and growth cones migrate ventrally toward or dorsally away from UNC-6/Netrin. Recent studies of growth cone behavior during outgrowth in vivo in C. elegans have led to a polarity/protrusion model in directed growth cone migration away from UNC-6/Netrin. In this model, UNC-6/Netrin first polarizes the growth cone via the UNC-5 receptor, leading to dorsally biased protrusion and F-actin accumulation. UNC-6/Netrin then regulates protrusion based on this polarity. The receptor UNC-40/DCC drives protrusion dorsally, away from the UNC-6/Netrin source, and the UNC-5 receptor inhibits protrusion ventrally, near the UNC-6/Netrin source, resulting in dorsal migration. UNC-5 inhibits protrusion in part by excluding microtubules from the growth cone, which are pro-protrusive. Here we report that the RHO-1/RhoA GTPase and its activator GEF RHGF-1 inhibit growth cone protrusion and MT accumulation in growth cones, similar to UNC-5. However, growth cone polarity of protrusion and F-actin were unaffected by RHO-1 and RHGF-1. Thus, RHO-1 signaling acts specifically as a negative regulator of protrusion and MT accumulation, and not polarity. Genetic interactions are consistent with RHO-1 and RHGF-1 acting with UNC-5, as well as with a parallel pathway, to regulate protrusion. The cytoskeletal interacting molecule UNC-33/CRMP was required for RHO-1 activity to inhibit MT accumulation, suggesting that UNC-33/CRMP might act downstream of RHO-1. In sum, these studies describe a new role of RHO-1 and RHGF-1 in regulation of growth cone protrusion by UNC-6/Netrin.
Collapse
Affiliation(s)
- Mahekta R. Gujar
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
| | - Aubrie M. Stricker
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
| | - Erik A. Lundquist
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies.
Collapse
Affiliation(s)
- Claire E Richardson
- Department of Biology, Stanford University, Stanford, California 94305, USA;
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California 94305, USA; .,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
The Problem of Non-Shared Environment in Behavioral Genetics. Behav Genet 2019; 49:259-269. [DOI: 10.1007/s10519-019-09950-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
|
11
|
Wadsworth WG. A perspective on SOAL, a stochastic model of neuronal outgrowth. Dev Biol 2018; 443:92-101. [PMID: 30201437 DOI: 10.1016/j.ydbio.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/27/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
A functional nervous system requires neuronal connections to be made in a highly detailed and stereotypic manner. During development, neurons extend processes that can branch, travel in different directions, and form elaborate patterns. These patterns are essential for forming proper connections. Patterns of outgrowth are produced by complex molecular events that cause a fluid membrane to move. The collective impact of dynamic fluctuating events at the microscale cause the patterns of outgrowth observed at the macroscale. Patterning is genetically controlled, but the effects genes have on membrane movement and patterning are not well understood. To better understand how genes control outgrowth patterns, I propose a statistically-oriented asymmetric localization (SOAL) model. This model is based on the theory that receptor-mediated outgrowth activity is stochastically oriented and when the system is at equilibrium there is an equal probability of outgrowth being oriented in any direction. This concept allows a statistical mechanics approach that can correlate the microscale events of outgrowth to the observed macroscale patterns. Proof-of-concept experiments suggest this approach can be used to study the effect genes have on outgrowth patterns. The SOAL model also provides a new theoretical framework for conceptualizing guidance. According to the model, outgrowth activity becomes asymmetrically localized to the neuron's surface in a statistically dependent manner. Extracellular cues regulate the probability of outgrowth along the surface and the orientation of outgrowth fluctuates across the surface over time. This creates a directional bias that allows the growth cone to navigate in reference to the composition of extracellular cues.
Collapse
Affiliation(s)
- William G Wadsworth
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| |
Collapse
|
12
|
Wang Z, Li P, Wu T, Zhu S, Deng L, Cui G. Axon guidance pathway genes are associated with schizophrenia risk. Exp Ther Med 2018; 16:4519-4526. [PMID: 30542400 PMCID: PMC6257106 DOI: 10.3892/etm.2018.6781] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023] Open
Abstract
In the present study, we analyzed schizophrenia (SCZ)-related genome-wide association studies (GWAS) to identify genes and pathways associated with SCZ. We identified 1,098 common genes (1,098/9,468) and 20 shared KEGG pathways (both P<0.01) by integrating candidate genes from the European and American SCZ-related GWAS. The pathways related to axon guidance, long term potentiation and arrhythmogenic right ventricular cardiomyopathy (ARVC) were highly significant (P<10-3). Moreover, 15 axon guidance pathway-related genes were associated with SCZ. The association between axon guidance pathway genes and SCZ was validated by a two-stage case-control study on Shandong migrants in northeastern China. Moreover, individuals with the rs9944880 TT polymorphism in the deleted in colorectal cancer (DCC) gene were associated with SCZ. These findings indicate that the axon guidance pathway genes and the rs9944880 SNP in DCC gene are associated with SCZ pathogenesis.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Academic Research, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Ping Li
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Tong Wu
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shuangyue Zhu
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang 310007, P.R. China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Guangcheng Cui
- Department of Psychiatry and Mental Health, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
13
|
Gujar MR, Sundararajan L, Stricker A, Lundquist EA. Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in Caenorhabditis elegans. Genetics 2018; 210:235-255. [PMID: 30045855 PMCID: PMC6116952 DOI: 10.1534/genetics.118.301234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022] Open
Abstract
UNC-6/Netrin has a conserved role in dorsal-ventral axon guidance, but the cellular events in the growth cone regulated by UNC-6/Netrin signaling during outgrowth are incompletely understood. Previous studies showed that, in growth cones migrating away from UNC-6/Netrin, the receptor UNC-5 regulates growth cone polarity, as observed by polarized F-actin, and limits the extent of growth cone protrusion. It is unclear how UNC-5 inhibits protrusion, and how UNC-40 acts in concert with UNC-5 to regulate polarity and protrusion. New results reported here indicate that UNC-5 normally restricts microtubule (MT) + end accumulation in the growth cone. Tubulin mutant analysis and colchicine treatment suggest that stable MTs are necessary for robust growth cone protrusion. Thus, UNC-5 might inhibit protrusion in part by restricting growth cone MT accumulation. Previous studies showed that the UNC-73/Trio Rac GEF and UNC-33/CRMP act downstream of UNC-5 in protrusion. Here, we show that UNC-33/CRMP regulates both growth cone dorsal asymmetric F-actin accumulation and MT accumulation, whereas UNC-73/Trio Rac GEF activity only affects F-actin accumulation. This suggests an MT-independent mechanism used by UNC-5 to inhibit protrusion, possibly by regulating lamellipodial and filopodial actin. Furthermore, we show that UNC-6/Netrin and the receptor UNC-40/DCC are required for excess protrusion in unc-5 mutants, but not for loss of F-actin asymmetry or MT + end accumulation, indicating that UNC-6/Netrin and UNC-40/DCC are required for protrusion downstream of, or in parallel to, F-actin asymmetry and MT + end entry. F-actin accumulation might represent a polarity mark in the growth cone where protrusion will occur, and not protrusive lamellipodial and filopodial actin per se Our data suggest a model in which UNC-6/Netrin first polarizes the growth cone via UNC-5, and then regulates protrusion based upon this polarity (the polarity/protrusion model). UNC-6/Netrin inhibits protrusion ventrally via UNC-5, and stimulates protrusion dorsally via UNC-40, resulting in dorsally-directed migration. The polarity/protrusion model represents a novel conceptual paradigm in which to understand axon guidance and growth cone migration away from UNC-6/Netrin.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Lakshmi Sundararajan
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Aubrie Stricker
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Erik A Lundquist
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| |
Collapse
|
14
|
Puppo F, George V, Silva GA. An Optimized Structure-Function Design Principle Underlies Efficient Signaling Dynamics in Neurons. Sci Rep 2018; 8:10460. [PMID: 29992977 PMCID: PMC6041316 DOI: 10.1038/s41598-018-28527-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Dynamic signaling on branching axons is critical for rapid and efficient communication between neurons in the brain. Efficient signaling in axon arbors depends on a trade-off between the time it takes action potentials to reach synaptic terminals (temporal cost) and the amount of cellular material associated with the wiring path length of the neuron's morphology (material cost). However, where the balance between structural and dynamical considerations for achieving signaling efficiency is, and the design principle that neurons optimize to preserve this balance, is still elusive. In this work, we introduce a novel analysis that compares morphology and signaling dynamics in axonal networks to address this open problem. We show that in Basket cell neurons the design principle being optimized is the ratio between the refractory period of the membrane, and action potential latencies between the initial segment and the synaptic terminals. Our results suggest that the convoluted paths taken by axons reflect a design compensation by the neuron to slow down signaling latencies in order to optimize this ratio. Deviations in this ratio may result in a breakdown of signaling efficiency in the cell. These results pave the way to new approaches for investigating more complex neurophysiological phenomena that involve considerations of neuronal structure-function relationships.
Collapse
Affiliation(s)
- Francesca Puppo
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
- Center for Engineered Natural Intelligence, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Vivek George
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA
- Center for Engineered Natural Intelligence, University of California, San Diego, La Jolla, 92093, CA, USA
| | - Gabriel A Silva
- Department of Bioengineering, University of California, San Diego, La Jolla, 92093, CA, USA.
- Department of Neurosciences, University of California, San Diego, La Jolla, 92093, CA, USA.
- Center for Engineered Natural Intelligence, University of California, San Diego, La Jolla, 92093, CA, USA.
| |
Collapse
|
15
|
Limerick G, Tang X, Lee WS, Mohamed A, Al-Aamiri A, Wadsworth WG. A Statistically-Oriented Asymmetric Localization (SOAL) Model for Neuronal Outgrowth Patterning by Caenorhabditis elegans UNC-5 (UNC5) and UNC-40 (DCC) Netrin Receptors. Genetics 2018; 208:245-272. [PMID: 29092889 PMCID: PMC5753861 DOI: 10.1534/genetics.117.300460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/29/2017] [Indexed: 01/01/2023] Open
Abstract
Neurons extend processes that vary in number, length, and direction of "outgrowth". Extracellular cues help determine outgrowth patterns. In Caenorhabditis elegans, neurons respond to the extracellular UNC-6 (netrin) cue via UNC-40 (DCC) and UNC-5 (UNC5) receptors. Previously, we presented evidence that UNC-40 asymmetric localization at the plasma membrane is self-organizing, and that UNC-40 can localize and mediate outgrowth at randomly selected sites. Here, we provide further evidence for a statistically-oriented asymmetric localization (SOAL) model in which UNC-5 receptor activity affects patterns of axon outgrowth by regulating UNC-40 asymmetric localization. According to the SOAL model, the direction of outgrowth activity fluctuates across the membrane over time. Random walk modeling predicts that increasing the degree to which the direction of outgrowth fluctuates will decrease the outward displacement of the membrane. By differentially affecting the degree to which the direction of outgrowth activity fluctuates over time, extracellular cues can produce different rates of outgrowth along the surface and create patterns of "extension". Consistent with the SOAL model, we show that unc-5 mutations alter UNC-40 asymmetric localization, increase the degree to which the direction of outgrowth fluctuates, and reduce the extent of outgrowth in multiple directions relative to the source of UNC-6 These results are inconsistent with current models, which predict that UNC-5 mediates a "repulsive" response to UNC-6 Genetic interactions suggest that UNC-5 acts through the UNC-53 (NAV2) cytoplasmic protein to regulate UNC-40 asymmetric localization in response to both the UNC-6 and EGL-20 (Wnt) extracellular cues.
Collapse
Affiliation(s)
- Gerard Limerick
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Xia Tang
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Won Suk Lee
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ahmed Mohamed
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Aseel Al-Aamiri
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - William G Wadsworth
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
16
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
17
|
Pandey A, Yadav V, Sharma A, Khurana JP, Pandey GK. The unc-53 gene negatively regulates rac GTPases to inhibit unc-5 activity during Distal tip cell migrations in C. elegans. Cell Adh Migr 2017; 12:195-203. [PMID: 28678595 DOI: 10.1080/19336918.2017.1345413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The unc-53/NAV2 gene encodes for an adaptor protein required for cell migrations along the anteroposterior (AP) axes of C. elegans. This study identifies unc-53 as a novel component of signaling pathways regulating Distal tip cell (DTC) migrations along the AP and dorsoventral (DV) axes. unc-53 negatively regulates and functions downstream of ced-10/Rac pathway genes; ced-10/Rac and mig-2/RhoG, which are required for proper DTC migration. Moreover, unc-53 exhibits genetic interaction with abl-1 and unc-5, the 2 known negative regulators of ced-10/Rac signaling. Our genetic analysis supports the model, where abl-1 negatively regulates unc-53 during DTC migrations and requirement of unc-53 function during both AP and DV DTC migrations could be due to unc-53 mediated regulation of unc-5 activity.
Collapse
Affiliation(s)
- Amita Pandey
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Vipul Yadav
- b Department of Genetics , University of Delhi South Campus , New Delhi , India
| | - Aditi Sharma
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Jitendra P Khurana
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| | - Girdhar K Pandey
- a Department of Plant Molecular Biology , University of Delhi South Campus , New Delhi , India
| |
Collapse
|
18
|
Florica RO, Hipolito V, Bautista S, Anvari H, Rapp C, El-Rass S, Asgharian A, Antonescu CN, Killeen MT. The ENU-3 protein family members function in the Wnt pathway parallel to UNC-6/Netrin to promote motor neuron axon outgrowth in C. elegans. Dev Biol 2017; 430:249-261. [PMID: 28694018 DOI: 10.1016/j.ydbio.2017.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway.
Collapse
Affiliation(s)
- Roxana Oriana Florica
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Victoria Hipolito
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Stephen Bautista
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Homa Anvari
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Chloe Rapp
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Suzan El-Rass
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Alimohammad Asgharian
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Costin N Antonescu
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Marie T Killeen
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3.
| |
Collapse
|
19
|
Hegemann B, Peter M. Local sampling paints a global picture: Local concentration measurements sense direction in complex chemical gradients. Bioessays 2017; 39. [PMID: 28556309 DOI: 10.1002/bies.201600134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Detecting and interpreting extracellular spatial signals is essential for cellular orientation within complex environments, such as during directed cell migration or growth in multicellular development. Although the molecular understanding of how cells read spatial signals like chemical gradients is still lacking, recent work has revealed that stochastic processes at different temporal and spatial scales are at the core of this gradient sensing process in a wide range of eukaryotes. Fast biochemical reactions like those underlying GTPase activity dynamics form a functional module together with slower cell morphological changes driven by membrane remodelling. This biochemical-morphological module explores the environment by stochastic local concentration sampling to determine the source of the gradient signal, enabling efficient signal detection and interpretation before polarised growth or migration towards the gradient source is initiated. Here we review recent data describing local sampling and propose a model of local fast and slow feedback counteracted by gradient-dependent substrate limitation to be at the core of gradient sensing by local sampling.
Collapse
Affiliation(s)
- Björn Hegemann
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zürich, Switzerland
| | - Matthias Peter
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
20
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
21
|
Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans. Genetics 2016; 203:1235-47. [PMID: 27116976 DOI: 10.1534/genetics.115.186064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/15/2016] [Indexed: 01/27/2023] Open
Abstract
Precise and accurate axon tract formation is an essential aspect of brain development. This is achieved by the migration of early outgrowing axons (pioneers) allowing later outgrowing axons (followers) to extend toward their targets in the embryo. In Caenorhabditis elegans the AVG neuron pioneers the right axon tract of the ventral nerve cord, the major longitudinal axon tract. AVG is essential for the guidance of follower axons and hence organization of the ventral nerve cord. In an enhancer screen for AVG axon guidance defects in a nid-1/Nidogen mutant background, we isolated an allele of aex-3 aex-3 mutant animals show highly penetrant AVG axon navigation defects. These defects are dependent on a mutation in nid-1/Nidogen, a basement membrane component. Our data suggest that AEX-3 activates RAB-3 in the context of AVG axon navigation. aex-3 genetically acts together with known players of vesicular exocytosis: unc-64/Syntaxin, unc-31/CAPS, and ida-1/IA-2. Furthermore our genetic interaction data suggest that AEX-3 and the UNC-6/Netrin receptor UNC-5 act in the same pathway, suggesting AEX-3 might regulate the trafficking and/or insertion of UNC-5 at the growth cone to mediate the proper guidance of the AVG axon.
Collapse
|
22
|
Levy-Strumpf N. Orchestrating A/P and D/V guidance - A Wnt/Netrin tale. WORM 2016; 5:e1146857. [PMID: 27073738 PMCID: PMC4805361 DOI: 10.1080/21624054.2016.1146857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
While ample information was gathered in identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is intracellularly to generate normal patterning. Netrin and Wnt signaling pathways play key roles in normal development as well as in malignancies. In C. elegans, as in vertebrates, dorso-ventral (D/V) graded distributions of UNC-6/Netrin and antero-posterior (A/P) graded distributions of Wnts provide instructive polarity information to guide cells and axons along their respective gradients. In this commentary, I will discuss recent findings demonstrating that these 2 signaling pathways also function redundantly to regulate polarity orthogonal to the axis of their gradation. Thus, Wnt signaling components contribute to D/V polarity, while Netrin signaling components contribute to A/P polarity and their joint action collaboratively governs migratory transitions from one axis to the other. These findings pave the way to unraveling broader roles of Wnt and Netrin signaling pathways, roles that are masked due to their redundant nature, and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated to establish polarity in multiple biological processes.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto, Ontario, Canada
| |
Collapse
|
23
|
Wadsworth WG. Understanding axon guidance: attraction, repulsion, and statistical physics. Neural Regen Res 2015; 10:176-9. [PMID: 25883605 PMCID: PMC4392654 DOI: 10.4103/1673-5374.152360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2014] [Indexed: 02/02/2023] Open
Affiliation(s)
- William G Wadsworth
- Rutgers Robert Wood Johnson Medical School, Department of Pathology and Laboratory Medicine, 675 Hoes Lane West, Piscataway, NJ 08854-5635, USA
| |
Collapse
|
24
|
Tang X, Wadsworth WG. SAX-3 (Robo) and UNC-40 (DCC) regulate a directional bias for axon guidance in response to multiple extracellular cues. PLoS One 2014; 9:e110031. [PMID: 25333948 PMCID: PMC4198195 DOI: 10.1371/journal.pone.0110031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 11/21/2022] Open
Abstract
Axons in Caenorhabditis elegans are guided by multiple extracellular cues, including UNC-6 (netrin), EGL-20 (wnt), UNC-52 (perlecan), and SLT-1 (slit). How multiple extracellular cues determine the direction of axon guidance is not well understood. We have proposed that an axon's response to guidance cues can be modeled as a random walk, i.e., a succession of randomly directed movement. Guidance cues dictate the probability of axon outgrowth activity occurring in each direction, which over time creates a directional bias. Here we provide further evidence for this model. We describe the effects that the UNC-40 (DCC) and SAX-3 (Robo) receptors and the UNC-6, EGL-20, UNC-52, and SLT-1 extracellular cues have on the directional bias of the axon outgrowth activity for the HSN and AVM neurons. We find that the directional bias created by the cues depend on UNC-40 or SAX-3. UNC-6 and EGL-20 affect the directional bias for both neurons, whereas UNC-52 and SLT-1 only affect the directional bias for HSN and AVM, respectively. The direction of the bias created by the loss of a cue can vary and the direction depends on the other cues. The random walk model predicts this combinatorial regulation. In a random walk a probability is assigned for each direction of outgrowth, thus creating a probability distribution. The probability distribution for each neuron is determined by the collective effect of all the cues. Since the sum of the probabilities must equal one, each cue affects the probability of outgrowth in multiple directions.
Collapse
Affiliation(s)
- Xia Tang
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - William G. Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
25
|
Wang Z, Linden LM, Naegeli KM, Ziel JW, Chi Q, Hagedorn EJ, Savage NS, Sherwood DR. UNC-6 (netrin) stabilizes oscillatory clustering of the UNC-40 (DCC) receptor to orient polarity. ACTA ACUST UNITED AC 2014; 206:619-33. [PMID: 25154398 PMCID: PMC4151141 DOI: 10.1083/jcb.201405026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The receptor deleted in colorectal cancer (DCC) directs dynamic polarizing activities in animals toward its extracellular ligand netrin. How DCC polarizes toward netrin is poorly understood. By performing live-cell imaging of the DCC orthologue UNC-40 during anchor cell invasion in Caenorhabditis elegans, we have found that UNC-40 clusters, recruits F-actin effectors, and generates F-actin in the absence of UNC-6 (netrin). Time-lapse analyses revealed that UNC-40 clusters assemble, disassemble, and reform at periodic intervals in different regions of the cell membrane. This oscillatory behavior indicates that UNC-40 clusters through a mechanism involving interlinked positive (formation) and negative (disassembly) feedback. We show that endogenous UNC-6 and ectopically provided UNC-6 orient and stabilize UNC-40 clustering. Furthermore, the UNC-40-binding protein MADD-2 (a TRIM family protein) promotes ligand-independent clustering and robust UNC-40 polarization toward UNC-6. Together, our data suggest that UNC-6 (netrin) directs polarized responses by stabilizing UNC-40 clustering. We propose that ligand-independent UNC-40 clustering provides a robust and adaptable mechanism to polarize toward netrin.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biology, Duke University, Durham, NC 27708
| | - Lara M Linden
- Department of Biology, Duke University, Durham, NC 27708
| | | | - Joshua W Ziel
- Department of Biology, Duke University, Durham, NC 27708
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, NC 27708
| | | | - Natasha S Savage
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | | |
Collapse
|
26
|
Levy-Strumpf N, Culotti JG. Netrins and Wnts function redundantly to regulate antero-posterior and dorso-ventral guidance in C. elegans. PLoS Genet 2014; 10:e1004381. [PMID: 24901837 PMCID: PMC4046927 DOI: 10.1371/journal.pgen.1004381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/31/2014] [Indexed: 02/01/2023] Open
Abstract
Guided migrations of cells and developing axons along the dorso-ventral (D/V) and antero-posterior (A/P) body axes govern tissue patterning and neuronal connections. In C. elegans, as in vertebrates, D/V and A/P graded distributions of UNC-6/Netrin and Wnts, respectively, provide instructive polarity information to guide cells and axons migrating along these axes. By means of a comprehensive genetic analysis, we found that simultaneous loss of Wnt and Netrin signaling components reveals previously unknown and unexpected redundant roles for Wnt and Netrin signaling pathways in both D/V and A/P guidance of migrating cells and axons in C. elegans, as well as in processes essential for organ function and viability. Thus, in addition to providing polarity information for migration along the axis of their gradation, Wnts and Netrin are each able to guide migrations orthogonal to the axis of their gradation. Netrin signaling not only functions redundantly with some Wnts, but also counterbalances the effects of others to guide A/P migrations, while the involvement of Wnt signaling in D/V guidance identifies Wnt signaling as one of the long sought mechanisms that functions in parallel to Netrin signaling to promote D/V guidance of cells and axons. These findings provide new avenues for deciphering how A/P and D/V guidance signals are integrated within the cell to establish polarity in multiple biological processes, and implicate broader roles for Netrin and Wnt signaling - roles that are currently masked due to prevalent redundancy. While ample information was gathered in past decades on identifying guidance cues and their downstream mediators, very little is known about how the information from multiple extracellular cues is integrated within the cell to generate normal patterning. Netrin and Wnt signaling pathways are both critical to multiple developmental processes and play key roles in normal development as well as in malignancies. The UNC-6/Netrin guidance cue has a conserved role in guiding cell and growth cone migrations along the dorso-ventral axis, whereas Wnts are critical for determining polarity and guidance along the antero-posterior axis. In this study we show that these two signaling pathways function redundantly in both antero-posterior and dorso-ventral guidance as well as in processes essential for viability. Furthermore, we demonstrate that a fine balance between Wnt and Netrin signaling pathways is critical for proper polarity establishment and identify Wnt signaling as one of the long sought mechanisms that signal in parallel to Netrin to promote dorso-ventral guidance of cells and axons in Caenorhabditis elegans. These findings pave the way to unraveling the broader roles of Wnt and Netrin signaling pathways and provide a conceptually novel view of how antero-posterior and dorso-ventral guidance mechanisms are orchestrated.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Joseph G. Culotti
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Yang Y, Lee WS, Tang X, Wadsworth WG. Extracellular matrix regulates UNC-6 (netrin) axon guidance by controlling the direction of intracellular UNC-40 (DCC) outgrowth activity. PLoS One 2014; 9:e97258. [PMID: 24824544 PMCID: PMC4019552 DOI: 10.1371/journal.pone.0097258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/16/2014] [Indexed: 11/18/2022] Open
Abstract
How extracellular molecules influence the direction of axon guidance is poorly understood. The HSN axon of Caenorhabditis elegans is guided towards a ventral source of secreted UNC-6 (netrin). The axon's outgrowth response to UNC-6 is mediated by the UNC-40 (DCC) receptor. We have proposed that in response to the UNC-6 molecule the direction of UNC-40-mediated axon outgrowth is stochastically determined. The direction of guidance is controlled by asymmetric cues, including the gradient of UNC-6, that regulate the probability that UNC-40-mediated axon outgrowth is directed on average, over time, in a specific direction. Here we provide genetic evidence that a specialized extracellular matrix, which lies ventral to the HSN cell body, regulates the probability that UNC-40-mediated axon outgrowth will be directed ventrally towards the matrix. We show that mutations that disrupt the function of proteins associated with this matrix, UNC-52 (perlecan), UNC-112 (kindlin), VAB-19 (Kank), and UNC-97 (PINCH), decrease the probability of UNC-40-mediated axon outgrowth in the ventral direction, while increasing the probability of outgrowth in the anterior and posterior directions. Other results suggest that INA-1 (α integrin) and MIG-15 (NIK kinase) signaling mediate the response in HSN. Although the AVM axon also migrates through this matrix, the mutations have little effect on the direction of AVM axon outgrowth, indicating that responses to the matrix are cell-specific. Together, these results suggest that an extracellular matrix can regulate the direction of UNC-6 guidance by increasing the probability that UNC-40-mediated axon outgrowth activity will be oriented in a specific direction.
Collapse
Affiliation(s)
- Yong Yang
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Won Suk Lee
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Xia Tang
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - William G. Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|