1
|
Bernard EIM, Towler BP, Rogoyski OM, Newbury SF. Characterisation of the in-vivo miRNA landscape in Drosophila ribonuclease mutants reveals Pacman-mediated regulation of the highly conserved let-7 cluster during apoptotic processes. Front Genet 2024; 15:1272689. [PMID: 38444757 PMCID: PMC10912645 DOI: 10.3389/fgene.2024.1272689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
The control of gene expression is a fundamental process essential for correct development and to maintain homeostasis. Many post-transcriptional mechanisms exist to maintain the correct levels of each RNA transcript within the cell. Controlled and targeted cytoplasmic RNA degradation is one such mechanism with the 5'-3' exoribonuclease Pacman (XRN1) and the 3'-5' exoribonuclease Dis3L2 playing crucial roles. Loss of function mutations in either Pacman or Dis3L2 have been demonstrated to result in distinct phenotypes, and both have been implicated in human disease. One mechanism by which gene expression is controlled is through the function of miRNAs which have been shown to be crucial for the control of almost all cellular processes. Although the biogenesis and mechanisms of action of miRNAs have been comprehensively studied, the mechanisms regulating their own turnover are not well understood. Here we characterise the miRNA landscape in a natural developing tissue, the Drosophila melanogaster wing imaginal disc, and assess the importance of Pacman and Dis3L2 on the abundance of miRNAs. We reveal a complex landscape of miRNA expression and show that whilst a null mutation in dis3L2 has a minimal effect on the miRNA expression profile, loss of Pacman has a profound effect with a third of all detected miRNAs demonstrating Pacman sensitivity. We also reveal a role for Pacman in regulating the highly conserved let-7 cluster (containing miR-100, let-7 and miR-125) and present a genetic model outlining a positive feedback loop regulated by Pacman which enhances our understanding of the apoptotic phenotype observed in Pacman mutants.
Collapse
Affiliation(s)
- Elisa I. M. Bernard
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Oliver M. Rogoyski
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
2
|
Sadek H, Elbehery H, Mohamed S, El-wahab TA. Evaluation of Insecticidal activity and Genetic Expressions of some Essential Oil and Methomyl Lannate 90% against Spodoptera frugiperda [J.E. Smith]; (Lepidoptera: Noctuidae).. [DOI: 10.21203/rs.3.rs-3156489/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Fall Armyworm (FAW) Spodoptera frugiperda [J.E. Smith] (Lepidoptera: Noctuidae) is regarded as a major pest of various economic crops, their caterpillars are a highly destructive and have a wide host range. This study's goal was to assess the insecticide potency of essential oils [rosemary (Rosmarinus officinalis L.), lemongrass (Cymbopogon citratus) and Cinnamon (Cinnamomum zeylanicum)] and Methomyl Lannate 90% commerial Insecticide to control FAW and their effected on Expression of caspase-8 and Inhibitor of Apoptosis Protein (IAP) genes and Expression of Acetylcholinesterase (AChE) gene in FAW. The insecticidal activity against 2nd larval instar was evaluated with five concentrations (2.5%, 2%, 1.0%, 0.5% and 0.25%) for essential oil and four concentrations 0.4%, 0.2%,0.15% and 0.05% for Methomyl Lannate 90%. The findings indicated that raising both essential oil concentrations and Methomyl Lannate 90%, resulted in increased the larval mortality at high concentration. Lemongrass and Cinnamon oil produced about to the same estimated LC50, whereas Methomyl Lannate 90% was (0.3%). Cymbopogon citratus (1.68%) had higher Caspase-8 gene expression levels compared to the control, but at a lower level than Rosmarinus officinalis L. (2.59%) and Cinnamomum zeylanicum (1.67%). The expression levels of Ache gene in the treated by low concentration of Methomyl Lannate were increased (by 313%) significant compared with the control but without significant differences. FAW death as a result of treatment with the tested oils having an effect on the genes that the pest uses to express critical processes. As a result, using the tested essential oils as a substitute for conventional management of FAW is a brilliance option.
Collapse
|
3
|
Pueyo JI, Salazar J, Grincho C, Berni J, Towler BP, Newbury SF. Purriato is a conserved small open reading frame gene that interacts with the CASA pathway to regulate muscle homeostasis and epithelial tissue growth in Drosophila. Front Cell Dev Biol 2023; 11:1117454. [PMID: 36968202 PMCID: PMC10036370 DOI: 10.3389/fcell.2023.1117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Recent advances in proteogenomic techniques and bioinformatic pipelines have permitted the detection of thousands of translated small Open Reading Frames (smORFs), which contain less than 100 codons, in eukaryotic genomes. Hundreds of these actively translated smORFs display conserved sequence, structure and evolutionary signatures indicating that the translated peptides could fulfil important biological roles. Despite their abundance, only tens of smORF genes have been fully characterised; these act mainly as regulators of canonical proteins involved in essential cellular processes. Importantly, some of these smORFs display conserved functions with their mutations being associated with pathogenesis. Thus, investigating smORF roles in Drosophila will not only expand our understanding of their functions but it may have an impact in human health. Here we describe the function of a novel and essential Drosophila smORF gene named purriato (prto). prto belongs to an ancient gene family whose members have expanded throughout the Protostomia clade. prto encodes a transmembrane peptide which is localized in endo-lysosomes and perinuclear and plasma membranes. prto is dynamically expressed in mesodermal tissues and imaginal discs. Targeted prto knockdown (KD) in these organs results in changes in nuclear morphology and endo-lysosomal distributions correlating with the loss of sarcomeric homeostasis in muscles and reduction of mitosis in wing discs. Consequently, prto KD mutants display severe reduction of motility, and shorter wings. Finally, our genetic interaction experiments show that prto function is closely associated to the CASA pathway, a conserved mechanism involved in turnover of mis-folded proteins and linked to muscle dystrophies and neurodegenerative diseases. Thus, this study shows the relevance of smORFs in regulating important cellular functions and supports the systematic characterisation of this class of genes to understand their functions and evolution.
Collapse
Affiliation(s)
- Jose I. Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jorge Salazar
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Carolina Grincho
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jimena Berni
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
4
|
Feng Y, Zhang Y, Lin Z, Ye X, Lin X, Lv L, Lin Y, Sun S, Qi Y, Lin X. Chromatin remodeler Dmp18 regulates apoptosis by controlling H2Av incorporation in Drosophila imaginal disc development. PLoS Genet 2022; 18:e1010395. [PMID: 36166470 PMCID: PMC9514664 DOI: 10.1371/journal.pgen.1010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Programmed Cell Death (PCD) or apoptosis is a highly conserved biological process and plays essential roles both in the development and stress context. In Drosophila, expression of pro-apoptotic genes, including reaper (rpr), head involution defective (hid), grim, and sickle (skl), is sufficient to induce cell death. Here, we demonstrate that the chromatin remodeler Dmp18, the homolog of mammalian Znhit1, plays a crucial role in regulating apoptosis in eye and wing development. We showed that loss of Dmp18 disrupted eye and wing development, up-regulated transcription of pro-apoptotic genes, and induced apoptosis. Inhibition of apoptosis suppressed the eye defects caused by Dmp18 deletion. Furthermore, loss of Dmp18 disrupted H2Av incorporation into chromatin, promoted H3K4me3, but reduced H3K27me3 modifications on the TSS regions of pro-apoptotic genes. These results indicate that Dmp18 negatively regulates apoptosis by mediating H2Av incorporation and histone H3 modifications at pro-apoptotic gene loci for transcriptional regulation. Our study uncovers the role of Dmp18 in regulating apoptosis in Drosophila eye and wing development and provides insights into chromatin remodeling regulating apoptosis at the epigenetic levels.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail: (YF); (YQ); (XL)
| | - Yan Zhang
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqing Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Ye
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| | - Xinhua Lin
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Greater Bay Area Institute of Precision Medicine (Guangzhou), Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (YF); (YQ); (XL)
| |
Collapse
|
5
|
Pashler AL, Towler BP, Jones CI, Haime HJ, Burgess T, Newbury SF. Genome-wide analyses of XRN1-sensitive targets in osteosarcoma cells identify disease-relevant transcripts containing G-rich motifs. RNA (NEW YORK, N.Y.) 2021; 27:1265-1280. [PMID: 34266995 PMCID: PMC8457002 DOI: 10.1261/rna.078872.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
XRN1 is a highly conserved exoribonuclease which degrades uncapped RNAs in a 5'-3' direction. Degradation of RNAs by XRN1 is important in many cellular and developmental processes and is relevant to human disease. Studies in D. melanogaster demonstrate that XRN1 can target specific RNAs, which have important consequences for developmental pathways. Osteosarcoma is a malignancy of the bone and accounts for 2% of all pediatric cancers worldwide. Five-year survival of patients has remained static since the 1970s and therefore furthering our molecular understanding of this disease is crucial. Previous work has shown a down-regulation of XRN1 in osteosarcoma cells; however, the transcripts regulated by XRN1 which might promote osteosarcoma remain elusive. Here, we confirm reduced levels of XRN1 in osteosarcoma cell lines and patient samples and identify XRN1-sensitive transcripts in human osteosarcoma cells. Using RNA-seq in XRN1-knockdown SAOS-2 cells, we show that 1178 genes are differentially regulated. Using a novel bioinformatic approach, we demonstrate that 134 transcripts show characteristics of direct post-transcriptional regulation by XRN1. Long noncoding RNAs (lncRNAs) are enriched in this group, suggesting that XRN1 normally plays an important role in controlling lncRNA expression in these cells. Among potential lncRNAs targeted by XRN1 is HOTAIR, which is known to be up-regulated in osteosarcoma and contributes to disease progression. We have also identified G-rich and GU motifs in post-transcriptionally regulated transcripts which appear to sensitize them to XRN1 degradation. Our results therefore provide significant insights into the specificity of XRN1 in human cells which are relevant to disease.
Collapse
Affiliation(s)
- Amy L Pashler
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Christopher I Jones
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Hope J Haime
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Tom Burgess
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| |
Collapse
|
6
|
Control of Cell Growth and Proliferation by the Tribbles Pseudokinase: Lessons from Drosophila. Cancers (Basel) 2021; 13:cancers13040883. [PMID: 33672471 PMCID: PMC7923445 DOI: 10.3390/cancers13040883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Tribbles pseudokinases represent a sub-branch of the CAMK (Ca2+/calmodulin-dependent protein kinase) subfamily and are associated with disease-associated signaling pathways associated with various cancers, including melanoma, lung, liver, and acute leukemia. The ability of this class of molecules to regulate cell proliferation was first recognized in the model organism Drosophila and the fruit fly genetic model and continues to provide insight into the molecular mechanism by which this family of adapter molecules regulates both normal development and disease associated with corruption of their proper regulation and function. Abstract The Tribbles (Trib) family of pseudokinase proteins regulate cell growth, proliferation, and differentiation during normal development and in response to environmental stress. Mutations in human Trib isoforms (Trib1, 2, and 3) have been associated with metabolic disease and linked to leukemia and the formation of solid tumors, including melanomas, hepatomas, and lung cancers. Drosophila Tribbles (Trbl) was the first identified member of this sub-family of pseudokinases and shares a conserved structure and similar functions to bind and direct the degradation of key mediators of cell growth and proliferation. Common Trib targets include Akt kinase (also known as protein kinase B), C/EBP (CAAT/enhancer binding protein) transcription factors, and Cdc25 phosphatases, leading to the notion that Trib family members stand athwart multiple pathways modulating their growth-promoting activities. Recent work using the Drosophila model has provided important insights into novel facets of conserved Tribbles functions in stem cell quiescence, tissue regeneration, metabolism connected to insulin signaling, and tumor formation linked to the Hippo signaling pathway. Here we highlight some of these recent studies and discuss their implications for understanding the complex roles Tribs play in cancers and disease pathologies.
Collapse
|
7
|
Shu B, Zhang J, Veeran S, Zhong G. Pro-Apoptotic Function Analysis of the Reaper Homologue IBM1 in Spodoptera frugiperda. Int J Mol Sci 2020; 21:ijms21082729. [PMID: 32326478 PMCID: PMC7215429 DOI: 10.3390/ijms21082729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
As an important type of programmed cell death, apoptosis plays a critical role in lepidopteran insects in response to various internal and external stresses. It is controlled by a network of genes such as those encoding the inhibitor of apoptosis proteins. However, there are few studies on apoptosis-related genes in Spodoptera frugiperda. In this study, an orthologue to the Drosophila reaper gene, named Sf-IBM1, was identified from S. frugiperda, and a full-length sequence was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends PCR (RACE-PCR). The expression pattern of Sf-IBM1 was determined in different developmental stages and various tissues. Apoptotic stimuli including azadirachtin, camptothecin, and ultraviolet radiation (UV) induced the expression of Sf-IBM1 at both transcript and protein levels. Overexpression of Sf-IBM1 induced apoptosis in Sf9 cells, and the Sf-IBM1 protein was localized in mitochondria. The apoptosis induced by Sf-IBM1 could be blocked by the caspase universal inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) and Sf-IAP1. Our results provide valuable information that should contribute to a better understanding of the molecular events that lead to apoptosis in lepidopterans.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Sethuraman Veeran
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-0308; Fax: +86-20-8528-0203
| |
Collapse
|
8
|
Langeberg CJ, Welch WRW, McGuire JV, Ashby A, Jackson AD, Chapman EG. Biochemical Characterization of Yeast Xrn1. Biochemistry 2020; 59:1493-1507. [PMID: 32251580 DOI: 10.1021/acs.biochem.9b01035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Messenger RNA degradation is an important component of overall gene expression. During the final step of eukaryotic mRNA degradation, exoribonuclease 1 (Xrn1) carries out 5' → 3' processive, hydrolytic degradation of RNA molecules using divalent metal ion catalysis. To initiate studies of the 5' → 3' RNA decay machinery in our lab, we expressed a C-terminally truncated version of Saccharomyces cerevisiae Xrn1 and explored its enzymology using a second-generation, time-resolved fluorescence RNA degradation assay. Using this system, we quantitatively explored Xrn1's preference for 5'-monophosphorylated RNA substrates, its pH dependence, and the importance of active site mutations in the molecule's conserved catalytic core. Furthermore, we explore Xrn1's preference for RNAs containing a 5' single-stranded region both in an intermolecular hairpin structure and in an RNA-DNA hybrid duplex system. These results both expand and solidify our understanding of Xrn1, a centrally important enzyme whose biochemical properties have implications in numerous RNA degradation and processing pathways.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - William R W Welch
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - John V McGuire
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Alison Ashby
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Alexander D Jackson
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Erich G Chapman
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
9
|
Towler BP, Newbury SF. Regulation of cytoplasmic RNA stability: Lessons from Drosophila. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1499. [PMID: 30109918 DOI: 10.1002/wrna.1499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
The process of RNA degradation is a critical level of regulation contributing to the control of gene expression. In the last two decades a number of studies have shown the specific and targeted nature of RNA decay and its importance in maintaining homeostasis. The key players within the pathways of RNA decay are well conserved with their mutation or disruption resulting in distinct phenotypes as well as human disease. Model organisms including Drosophila melanogaster have played a substantial role in elucidating the mechanisms conferring control over RNA stability. A particular advantage of this model organism is that the functions of ribonucleases can be assessed in the context of natural cells within tissues in addition to individual immortalized cells in culture. Drosophila RNA stability research has demonstrated how the cytoplasmic decay machines, such as the exosome, Dis3L2 and Xrn1, are responsible for regulating specific processes including apoptosis, proliferation, wound healing and fertility. The work discussed here has begun to identify specific mRNA transcripts that appear sensitive to specific decay pathways representing mechanisms through which the ribonucleases control mRNA stability. Drosophila research has also contributed to our knowledge of how specific RNAs are targeted to the ribonucleases including AU rich elements, miRNA targeting and 3' tailing. Increased understanding of these mechanisms is critical to elucidating the control elicited by the cytoplasmic ribonucleases which is relevant to human disease. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
10
|
Multiple Nonsense-Mediated mRNA Processes Require Smg5 in Drosophila. Genetics 2018; 209:1073-1084. [PMID: 29903866 DOI: 10.1534/genetics.118.301140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 01/09/2023] Open
Abstract
The nonsense-mediated messenger RNA (mRNA) decay (NMD) pathway is a cellular quality control and post-transcriptional gene regulatory mechanism and is essential for viability in most multicellular organisms . A complex of proteins has been identified to be required for NMD function to occur; however, there is an incomplete understanding of the individual contributions of each of these factors to the NMD process. Central to the NMD process are three proteins, Upf1 (SMG-2), Upf2 (SMG-3), and Upf3 (SMG-4), which are found in all eukaryotes, with Upf1 and Upf2 being absolutely required for NMD in all organisms in which their functions have been examined. The other known NMD factors, Smg1, Smg5, Smg6, and Smg7, are more variable in their presence in different orders of organisms and are thought to have a more regulatory role. Here we present the first genetic analysis of the NMD factor Smg5 in Drosophila Surprisingly, we find that unlike the other analyzed Smg genes in this organism, Smg5 is essential for NMD activity. We found this is due in part to a requirement for Smg5 in both the activity of Smg6-dependent endonucleolytic cleavage, as well as an additional Smg6-independent mechanism. Redundancy between these degradation pathways explains why some Drosophila NMD genes are not required for all NMD-pathway activity. We also found that while the NMD component Smg1 has only a minimal role in Drosophila NMD during normal conditions, it becomes essential when NMD activity is compromised by partial loss of Smg5 function. Our findings suggest that not all NMD complex components are required for NMD function at all times, but instead are utilized in a context-dependent manner in vivo.
Collapse
|
11
|
Nishioka K, Wang XF, Miyazaki H, Soejima H, Hirose S. Mbf1 ensures Polycomb silencing by protecting E(z) mRNA from degradation by Pacman. Development 2018. [PMID: 29523653 PMCID: PMC5868998 DOI: 10.1242/dev.162461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Under stress conditions, the coactivator Multiprotein bridging factor 1 (Mbf1) translocates from the cytoplasm into the nucleus to induce stress-response genes. However, its role in the cytoplasm, where it is mainly located, has remained elusive. Here, we show that Drosophila Mbf1 associates with E(z) mRNA and protects it from degradation by the exoribonuclease Pacman (Pcm), thereby ensuring Polycomb silencing. In genetic studies, loss of mbf1 function enhanced a Polycomb phenotype in Polycomb group mutants, and was accompanied by a significant reduction in E(z) mRNA expression. Furthermore, a pcm mutation suppressed the Polycomb phenotype and restored the expression level of E(z) mRNA, while pcm overexpression exhibited the Polycomb phenotype in the mbf1 mutant but not in the wild-type background. In vitro, Mbf1 protected E(z) RNA from Pcm activity. Our results suggest that Mbf1 buffers fluctuations in Pcm activity to maintain an E(z) mRNA expression level sufficient for Polycomb silencing. Highlighted Article: In addition to its role as a nuclear coactivator, a cytoplasmic mRNA-stabilizing function of Multiprotein bridging factor 1 may contribute to various types of stress defense, metabolic processes and neurogenesis in Drosophila.
Collapse
Affiliation(s)
- Kenichi Nishioka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga City, Saga 849-8501, Japan
| | - Xian-Feng Wang
- Division of Gene Expression, Department of Developmental Genetics, National Institute of Genetics, 1111 Yata, Mishima City, Shizuoka 411-8540, Japan
| | - Hitomi Miyazaki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga City, Saga 849-8501, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga City, Saga 849-8501, Japan
| | - Susumu Hirose
- Division of Gene Expression, Department of Developmental Genetics, National Institute of Genetics, 1111 Yata, Mishima City, Shizuoka 411-8540, Japan
| |
Collapse
|
12
|
The roles of the exoribonucleases DIS3L2 and XRN1 in human disease. Biochem Soc Trans 2017; 44:1377-1384. [PMID: 27911720 DOI: 10.1042/bst20160107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
RNA degradation is a vital post-transcriptional process which ensures that transcripts are maintained at the correct level within the cell. DIS3L2 and XRN1 are conserved exoribonucleases that are critical for the degradation of cytoplasmic RNAs. Although the molecular mechanisms of RNA degradation by DIS3L2 and XRN1 have been well studied, less is known about their specific roles in the development of multicellular organisms or human disease. This review focusses on the roles of DIS3L2 and XRN1 in the pathogenesis of human disease, particularly in relation to phenotypes seen in model organisms. The known diseases associated with loss of activity of DIS3L2 and XRN1 are discussed, together with possible mechanisms and cellular pathways leading to these disease conditions.
Collapse
|
13
|
Towler BP, Jones CI, Harper KL, Waldron JA, Newbury SF. A novel role for the 3'-5' exoribonuclease Dis3L2 in controlling cell proliferation and tissue growth. RNA Biol 2016; 13:1286-1299. [PMID: 27630034 PMCID: PMC5207379 DOI: 10.1080/15476286.2016.1232238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In a complex organism, cell proliferation and apoptosis need to be precisely controlled in order for tissues to develop correctly. Excessive cell proliferation can lead to diseases such as cancer. We have shown that the exoribonuclease Dis3L2 is required for the correct regulation of proliferation in a natural tissue within the model organism Drosophila melanogaster. Dis3L2 is a member of a highly conserved family of exoribonucleases that degrade RNA in a 3′-5′ direction. We show that knockdown of dis3L2 in the Drosophila wing imaginal discs results in substantial wing overgrowth due to increased cellular proliferation rather than an increase in cell size. Imaginal discs are specified in the embryo before proliferating and differentiating to form the adult structures of the fly. Using RNA-seq we identified a small set of mRNAs that are sensitive to Dis3L2 activity. Of the mRNAs which increase in levels and are therefore potential targets of Dis3L2, we identified 2 that change at the post-transcriptional level but not at the transcriptional level, namely CG2678 (a transcription factor) and pyrexia (a TRP cation channel). We also demonstrate a compensatory effect between Dis3L2 and the 5′-3′ exoribonuclease Pacman demonstrating that these 2 exoribonucleases function to regulate opposing pathways within the developing tissue. This work provides the first description of the molecular and developmental consequences of Dis3L2 inactivation in a non-human animal model. The work is directly relevant to the understanding of human overgrowth syndromes such as Perlman syndrome.
Collapse
Affiliation(s)
- Benjamin P Towler
- a Brighton and Sussex Medical School, University of Sussex , Brighton , UK
| | | | - Kirsty L Harper
- a Brighton and Sussex Medical School, University of Sussex , Brighton , UK
| | - Joseph A Waldron
- a Brighton and Sussex Medical School, University of Sussex , Brighton , UK
| | - Sarah F Newbury
- a Brighton and Sussex Medical School, University of Sussex , Brighton , UK
| |
Collapse
|
14
|
Abstract
miRNAs are short RNA molecules of ∼22-nt in length that play important roles in post-transcriptional control of gene expression. miRNAs normally function as negative regulators of mRNA expression by binding complementary sequences in the 3'-UTR of target mRNAs and causing translational repression and/or target degradation. Much research has been undertaken to enhance understanding of the biogenesis, function and targeting of miRNAs. However, until recently, the mechanisms underlying the regulation of the levels of mature miRNAs themselves have been largely overlooked. Although it has generally been assumed that miRNAs are stable molecules, recent evidence indicates that the stability of specific mature miRNAs can be regulated during key cellular and developmental processes in certain cell types. Here we discuss the current knowledge of the mechanisms by which mature miRNAs are regulated in the cell and the factors that contribute to the control of their stability.
Collapse
|
15
|
Towler BP, Jones CI, Viegas SC, Apura P, Waldron JA, Smalley SK, Arraiano CM, Newbury SF. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs. RNA Biol 2016; 12:728-41. [PMID: 25892215 PMCID: PMC4615222 DOI: 10.1080/15476286.2015.1040978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dis3 is a highly conserved exoribonuclease which degrades RNAs in the 3'-5' direction. Mutations in Dis3 are associated with a number of human cancers including multiple myeloma and acute myeloid leukemia. In this work, we have assessed the effect of a Dis3 knockdown on Drosophila imaginal disc development and on expression of mature microRNAs. We find that Dis3 knockdown severely disrupts the development of wing imaginal discs in that the flies have a “no wing” phenotype. Use of RNA-seq to quantify the effect of Dis3 knockdown on microRNA expression shows that Dis3 normally regulates a small subset of microRNAs, with only 11 (10.1%) increasing in level ≥2-fold and 6 (5.5%) decreasing in level ≥2-fold. Of these microRNAs, miR-252–5p is increased 2.1-fold in Dis3-depleted cells compared to controls while the level of the miR-252 precursor is unchanged, suggesting that Dis3 can act in the cytoplasm to specifically degrade this mature miRNA. Furthermore, our experiments suggest that Dis3 normally interacts with the exosomal subunit Rrp40 in the cytoplasm to target miR-252–5p for degradation during normal wing development. Another microRNA, miR-982–5p, is expressed at lower levels in Dis3 knockdown cells, while the miR-982 precursor remains unchanged, indicating that Dis3 is involved in its processing. Our study therefore reveals an unexpected specificity for this ribonuclease toward microRNA regulation, which is likely to be conserved in other eukaryotes and may be relevant to understanding its role in human disease.
Collapse
Affiliation(s)
- Benjamin P Towler
- a Brighton and Sussex Medical School; Medical Research Building; University of Sussex; Falmer , Brighton , UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nelson JO, Moore KA, Chapin A, Hollien J, Metzstein MM. Degradation of Gadd45 mRNA by nonsense-mediated decay is essential for viability. eLife 2016; 5:e12876. [PMID: 26952209 PMCID: PMC4848089 DOI: 10.7554/elife.12876] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway functions to degrade both abnormal and wild-type mRNAs. NMD is essential for viability in most organisms, but the molecular basis for this requirement is unknown. Here we show that a single, conserved NMD target, the mRNA coding for the stress response factor growth arrest and DNA-damage inducible 45 (GADD45) can account for lethality in Drosophila lacking core NMD genes. Moreover, depletion of Gadd45 in mammalian cells rescues the cell survival defects associated with NMD knockdown. Our findings demonstrate that degradation of Gadd45 mRNA is the essential NMD function and, surprisingly, that the surveillance of abnormal mRNAs by this pathway is not necessarily required for viability.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, United States
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, United States
| | - Alex Chapin
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, United States
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, United States
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| |
Collapse
|
17
|
Jones CI, Pashler AL, Towler BP, Robinson SR, Newbury SF. RNA-seq reveals post-transcriptional regulation of Drosophila insulin-like peptide dilp8 and the neuropeptide-like precursor Nplp2 by the exoribonuclease Pacman/XRN1. Nucleic Acids Res 2015; 44:267-80. [PMID: 26656493 PMCID: PMC4705666 DOI: 10.1093/nar/gkv1336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022] Open
Abstract
Ribonucleases are critically important in many cellular and developmental processes and defects in their expression are associated with human disease. Pacman/XRN1 is a highly conserved cytoplasmic exoribonuclease which degrades RNAs in a 5′-3′ direction. In Drosophila, null mutations in pacman result in small imaginal discs, a delay in onset of pupariation and lethality during the early pupal stage. In this paper, we have used RNA-seq in a genome-wide search for mRNAs misregulated in pacman null wing imaginal discs. Only 4.2% of genes are misregulated ±>2-fold in pacman null mutants compared to controls, in line with previous work showing that Pacman has specificity for particular mRNAs. Further analysis of the most upregulated mRNAs showed that Pacman post-transcriptionally regulates the expression of the secreted insulin-like peptide Dilp8. Dilp8 is related to human IGF-1, and has been shown to coordinate tissue growth with developmental timing in Drosophila. The increased expression of Dilp8 is consistent with the developmental delay seen in pacman null mutants. Our analysis, together with our previous results, show that the normal role of this exoribonuclease in imaginal discs is to suppress the expression of transcripts that are crucial in apoptosis and growth control during normal development.
Collapse
Affiliation(s)
- Christopher I Jones
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Amy L Pashler
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Benjamin P Towler
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Sophie R Robinson
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Sarah F Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| |
Collapse
|
18
|
Barrios N, González-Pérez E, Hernández R, Campuzano S. The Homeodomain Iroquois Proteins Control Cell Cycle Progression and Regulate the Size of Developmental Fields. PLoS Genet 2015; 11:e1005463. [PMID: 26305360 PMCID: PMC4549242 DOI: 10.1371/journal.pgen.1005463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/23/2015] [Indexed: 01/09/2023] Open
Abstract
During development, proper differentiation and final organ size rely on the control of territorial specification and cell proliferation. Although many regulators of these processes have been identified, how both are coordinated remains largely unknown. The homeodomain Iroquois/Irx proteins play a key, evolutionarily conserved, role in territorial specification. Here we show that in the imaginal discs, reduced function of Iroquois genes promotes cell proliferation by accelerating the G1 to S transition. Conversely, their increased expression causes cell-cycle arrest, down-regulating the activity of the Cyclin E/Cdk2 complex. We demonstrate that physical interaction of the Iroquois protein Caupolican with Cyclin E-containing protein complexes, through its IRO box and Cyclin-binding domains, underlies its activity in cell-cycle control. Thus, Drosophila Iroquois proteins are able to regulate cell-autonomously the growth of the territories they specify. Moreover, our results provide a molecular mechanism for a role of Iroquois/Irx genes as tumour suppressors. The correct development of body organs, with their characteristic size and shape, requires the coordination of cell division and cell differentiation. Here we show that the Iroquois proteins (Irx in vertebrates) slow down cell division in the Drosophila imaginal discs, in addition to their well-known role in cell fate and territorial specification. In humans, inactivating mutations at the Irx genes are associated to several types of cancer, thus allowing their classification as tumour suppressor genes. We have observed that Drosophila Iroquois genes similarly behave as tumour suppressor genes. Iroquois proteins belong to a family of homeodomain-containing transcriptional regulators. However, our results indicate that they control cell division by a transcription independent mechanism based on their physical interaction with Cyclin E containing complexes, a key player in cell-cycle progression. We have identified two evolutionary conserved domains of Iroquois proteins, different from the homeodomain, involved in that interaction. This new function of Iroquois proteins places them in a key position to coordinate growth and differentiation during normal development. Our results further suggest a molecular mechanism for their role in tumour suppression. Future studies of Irx genes should help to determine if a similar mechanism could operate to help cancer progression when Irx activity is compromised.
Collapse
Affiliation(s)
- Natalia Barrios
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Esther González-Pérez
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Rosario Hernández
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sonsoles Campuzano
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
19
|
Robinson SR, Oliver AW, Chevassut TJ, Newbury SF. The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules 2015; 5:1515-39. [PMID: 26193331 PMCID: PMC4598762 DOI: 10.3390/biom5031515] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 12/03/2022] Open
Abstract
DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3' to 5' degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the function of DIS3 at the organismal level. Mutant phenotypes in S. pombe, S. cerevisiae and Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and microtubule assembly. DIS3 has also recently been implicated in antibody diversification of mouse B-cells. This article aims to review current knowledge of the structure, mechanisms and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis.
Collapse
Affiliation(s)
- Sophie R Robinson
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Timothy J Chevassut
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Sarah F Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| |
Collapse
|