1
|
Link O, Jahnel SM, Janicek K, Kraus J, Montenegro JD, Zimmerman B, Wick B, Cole AG, Technau U. Changes of cell-type diversity in the polyp-to-medusa metagenesis of the scyphozoan jellyfish Aurelia coerulea (formerly sp.1). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.08.24.554571. [PMID: 39990407 PMCID: PMC11844373 DOI: 10.1101/2023.08.24.554571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The life cycle of most medusozoan cnidarians is marked by the metagenesis from the asexually reproducing sessile polyp and the sexually reproducing motile medusa. At present it is unknown to what extent this drastic morphological transformation is accompanied by changes in the cell type composition. Here, we provide a single cell transcriptome atlas of the cosmopolitan scyphozoan Aurelia coerulea focussing on changes in cell-type composition during the transition from polyp to medusa. Notably, this transition marked by an increase in cell type diversity, including an expansion of neural subtypes. We find that two families of neuronal lineages are specified by homologous transcription factors in the sea anemone Nematostella vectensis and Aurelia coerulea , suggesting an origin in the common ancestor of medusozoans and anthozoans about 500 Myr ago. Our analysis suggests that gene duplications might be drivers for the increase of cellular complexity during the evolution of cnidarian neuroglandular lineages. One key medusozoan-specific cell type is the striated muscle in the subumbrella. Analysis of muscle fiber anatomy and gene expression raises the possibility that the striated muscles arise from a population of smooth muscle cells during strobilation. Although smooth and striated muscles are phenotypically distinct, both have a similar contractile complex, in contrast to bilaterian smooth and striated muscles. This suggests that in Aurelia , smooth and striated muscle cells may derive from the same progenitor cells. Teaser Single cell transcriptome atlas across the jellyfish life cycle reveals emergence of novel medusa-specific cell types is associated with expression of medusa-specific paralogs.
Collapse
|
2
|
Želježić D, Kovačević G, Matijević A, Korać P, Mihalić KC. Does the Symbiotic Relationship Between Hydra Viridissima and Photoautotrophic Alga Provide an Evolutionary Advantage in Protecting DNA against Damage by the Cytotoxic or Genotoxic Mode of Action of Environmental Stressors? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:56. [PMID: 38565802 DOI: 10.1007/s00128-024-03884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The aim of this paper was to evaluate whether symbiotic cooperation between green hydra (Hydra viridissima) and photoautotrophic alga gives higher resistance of the preservation of DNA integrity compared to brown hydra (Hydra oligactis). Norflurazon concentrations were 0.061 or 0.61 mg/L and UV-B light 254 nm, 0.023mWcm- 2 applied separately or simultaneously. By alkaline comet assay primary DNA damage was assessed and cytotoxicity by fluorescent staining. Norflurazon at 0.61 mg L- 1 significantly increased DNA damage in brown hydras compared to the control (6.17 ± 0.6 μm, 5.2 ± 1.7% vs. 2.9 ± 0.2 μm, 1.2 ± 0.2%). Cytotoxicity was significantly elevated, being higher in brown hydras (25.7 ± 3.5% vs. 8.2 ± 0.2%). UV-B irradiation induced significant DNA damage in brown hydras (13.5 ± 1.0 μm, 4.1 ± 1.0%). Simultaneous exposure to UV-B and norflurazon led to a synergistic DNA damaging. The frequency of cytotoxicity and hedgehog nucleoids was more pronounced in brown (78.3 ± 9.4%; 56.4 ± 6.0%) than in green hydras (34.7 ± 2.5%; 24.2 ± 0.6%). Evolutionary established symbiotic cooperation proved to provide resistance against cyto/genotoxicity.
Collapse
Affiliation(s)
- Davor Želježić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska 2, Zagreb, Croatia.
| | - Goran Kovačević
- Department of Biology, Faculty of Science, Division of Zoology, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Ana Matijević
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kišpatićeva 12, Zagreb, Croatia
| | - Petra Korać
- Department of Biology, Faculty of Science, Division of Molecular Biology, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Katarina Caput Mihalić
- Department of Biology, Faculty of Science, Division of Molecular Biology, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
3
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Lechable M, Tang X, Siebert S, Feldbacher A, Fernández-Quintero ML, Breuker K, Juliano CE, Liedl KR, Hobmayer B, Hartl M. High Intrinsic Oncogenic Potential in the Myc-Box-Deficient Hydra Myc3 Protein. Cells 2023; 12:cells12091265. [PMID: 37174665 PMCID: PMC10177328 DOI: 10.3390/cells12091265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture systems. Myc transcription factors control fundamental cellular processes such as cell proliferation, cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes four myc genes (myc1-4). Previous structural and biochemical characterization showed that the Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the implementation of a differentiation program. In vitro DNA binding studies showed that Myc3 dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further revealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus, as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell transformation potential. We discuss our findings in the context of oncogenic transformation and cell differentiation, both relevant for human cancer, where Myc represents a major driver.
Collapse
Affiliation(s)
- Marion Lechable
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Xuechen Tang
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Angelika Feldbacher
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bert Hobmayer
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Hartl
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Biochemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
6
|
Vogg MC, Buzgariu W, Suknovic NS, Galliot B. Cellular, Metabolic, and Developmental Dimensions of Whole-Body Regeneration in Hydra. Cold Spring Harb Perspect Biol 2021; 13:a040725. [PMID: 34230037 PMCID: PMC8635000 DOI: 10.1101/cshperspect.a040725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here we discuss the developmental and homeostatic conditions necessary for Hydra regeneration. Hydra is characterized by populations of adult stem cells paused in the G2 phase of the cell cycle, ready to respond to injury signals. The body column can be compared to a blastema-like structure, populated with multifunctional epithelial stem cells that show low sensitivity to proapoptotic signals, and high inducibility of autophagy that promotes resistance to stress and starvation. Intact Hydra polyps also exhibit a dynamic patterning along the oral-aboral axis under the control of homeostatic organizers whose activity results from regulatory loops between activators and inhibitors. As in bilaterians, injury triggers the immediate production of reactive oxygen species (ROS) signals that promote wound healing and contribute to the reactivation of developmental programs via cell death and the de novo formation of new organizing centers from somatic tissues. In aging Hydra, regeneration is rapidly lost as homeostatic conditions are no longer pro-regenerative.
Collapse
Affiliation(s)
- Matthias Christian Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Wanda Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Nenad Slavko Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
7
|
Wang C, Luo X, Qin H, Zhao C, Yang L, Yu T, Zhang Y, Huang X, Xu X, Qin Q, Liu S. Formation of autotriploid Carassius auratus and its fertility-related genes analysis. BMC Genomics 2021; 22:435. [PMID: 34107878 PMCID: PMC8191051 DOI: 10.1186/s12864-021-07753-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background Formation of triploid organism is useful in genetics and breeding. In this study, autotriploid Carassius auratus (3nRR, 3n = 150) was generated from Carassius auratus red var. (RCC, 2n = 100) (♀) and autotetraploid Carassius auratus (4nRR, 4n = 200) (♂). The female 3nRR produced haploid, diploid and triploid eggs, whereas the male 3nRR was infertile. The aim of the present study was to explore fertility of potential candidate genes of 3nRR. Results Gonadal transcriptome profiling of four groups (3 females RCC (FRCC), 3 males 4nRR (M4nRR), 3 males 3nRR (M3nRR) and 3 females 3nRR (F3nRR)) was performed using RNA-SEq. A total of 78.90 Gb of clean short reads and 24,262 differentially expressed transcripts (DETs), including 20,155 in F3nRR vs. FRCC and 4,107 in M3nRR vs. M4nRR were identified. A total of 106 enriched pathways were identified through KEGG enrichment analysis. Out of the enriched pathways, 44 and 62 signalling pathways were identified in F3nRR vs. FRCC and M3nRR vs. M4nRR, respectively. A total of 80 and 25 potential candidate genes for fertility-related in F3nRR and M3nRR were identified, respectively, through GO, KEGG analyses and the published literature. Moreover, protein-protein interaction (PPI) network construction of these fertility-associated genes were performed. Analysis of the PPI networks showed that 6 hub genes (MYC, SOX2, BMP4, GATA4, PTEN and BMP2) were involved in female fertility of F3nRR, and 2 hub genes (TP53 and FGF2) were involved in male sterility of M3nRR. Conclusions Establishment of autotriploid fish offers an ideal model to study reproductive traits of triploid fish. RNA-Seq data revealed 6 genes, namely, MYC, SOX2, BMP4, GATA4, PTEN and BMP2, involved in the female fertility of the F3nRR. Moreover, 2 genes, namely, TP53 and FGF2, were related to the male sterility of the M3nRR. These findings provide information on reproduction and breeding in triploid fish. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07753-5.
Collapse
Affiliation(s)
- Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Xiang Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Li Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Tingting Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Yuxin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Xidan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Hunan, 410081, Changsha, People's Republic of China.
| |
Collapse
|
8
|
Mödlhammer A, Pfurtscheller S, Feichtner A, Hartl M, Schneider R. The Diarylheptanoid Curcumin Induces MYC Inhibition and Cross-Links This Oncoprotein to the Coactivator TRRAP. Front Oncol 2021; 11:660481. [PMID: 33937075 PMCID: PMC8082493 DOI: 10.3389/fonc.2021.660481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
The c-Myc protein (MYC) is a transcription factor with strong oncogenic potential controlling fundamental cellular processes. In most human tumors, MYC is overexpressed by enhanced transcriptional activation, gene amplification, chromosomal rearrangements, or increased protein stabilization. To pharmacologically suppress oncogenic MYC functions, multiple approaches have been applied either to inhibit transcriptional activation of the endogenous MYC gene, or to interfere with biochemical functions of aberrantly activated MYC. Other critical points of attack are targeted protein modification, or destabilization leading to a non-functional MYC oncoprotein. It has been claimed that the natural compound curcumin representing the principal curcumoid of turmeric (Curcuma longa) has anticancer properties although its specificity, efficacy, and the underlying molecular mechanisms have been controversially discussed. Here, we have tested curcumin’s effect on MYC-dependent cell transformation and transcriptional activation, and found that this natural compound interferes with both of these MYC activities. Furthermore, in curcumin-treated cells, the endogenous 60-kDa MYC protein is covalently and specifically cross-linked to one of its transcriptional interaction partners, namely the 434-kDa transformation/transcription domain associated protein (TRRAP). Thereby, endogenous MYC levels are strongly reduced and cells stop to proliferate. TRRAP is a multidomain adaptor protein of the phosphoinositide 3-kinase-related kinases (PIKK) family and represents an important component of many histone acetyltransferase (HAT) complexes. TRRAP is important to mediate transcriptional activation executed by the MYC oncoprotein, but on the other hand TRRAP also negatively regulates protein stability of the tumor suppressor p53 (TP53). Curcumin-mediated covalent binding of MYC to TRRAP reduces the protein amounts of both interaction partners but does not downregulate TP53, so that the growth-arresting effect of wild type TP53 could prevail. Our results elucidate a molecular mechanism of curcumin action that specifically and irreversibly targets two crucial multifunctional cellular players. With regard to their broad impact in cancer, our findings contribute to explain the pleiotropic functions of curcumin, and suggest that this natural spice, or more bioavailable derivatives thereof, may constitute useful adjuvants in the therapy of MYC-dependent and TRRAP-associated human tumors.
Collapse
Affiliation(s)
- Alexander Mödlhammer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Sandra Pfurtscheller
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Rainer Schneider
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Abstract
The MYC oncogene was originally identified as a transduced allele (v-myc) in the genome of the highly oncogenic avian retrovirus MC29. The protein product (MYC) of the cellular MYC (c-myc) protooncogene represents the key component of a transcription factor network controlling the expression of a large fraction of all human genes. MYC regulates fundamental cellular processes like growth control, metabolism, proliferation, differentiation, and apoptosis. Mutational deregulation of MYC, leading to increased levels of the MYC protein, is a frequent event in the etiology of human cancers. In this chapter, we describe cell systems and experimental strategies to quantify the oncogenic potential of MYC alleles, to test MYC inhibitors, and to monitor MYC-specific protein-protein interactions that are relevant for the cell transformation process. We also describe experimental procedures to study the evolutionary origin of MYC and to analyze structure, function, and regulation of the ancestral MYC proto-oncogenes.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | - Klaus Bister
- Institute of Biochemistry, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Horton MB, Hawkins ED, Heinzel S, Hodgkin PD. Speculations on the evolution of humoral adaptive immunity. Immunol Cell Biol 2020; 98:439-448. [PMID: 32133683 PMCID: PMC7383592 DOI: 10.1111/imcb.12323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023]
Abstract
The protection of a multicellular organism from infection, at both cell and humoral levels, has been a tremendous driver of gene selection and cellular response strategies. Here we focus on a critical event in the development of humoral immunity: The transition from principally innate responses to a system of adaptive cell selection, with all the attendant mechanical problems that must be solved in order for it to work effectively. Here we review recent advances, but our major goal is to highlight that the development of adaptive immunity resulted from the adoption, reuse and repurposing of an ancient, autonomous cellular program that combines and exploits three titratable cellular fate timers. We illustrate how this common cell machinery recurs and appears throughout biology, and has been essential for the evolution of complex organisms, at many levels of scale.
Collapse
Affiliation(s)
- Miles B Horton
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Edwin D Hawkins
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Susanne Heinzel
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Philip D Hodgkin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
Boundary maintenance in the ancestral metazoan Hydra depends on histone acetylation. Dev Biol 2019; 458:200-214. [PMID: 31738910 DOI: 10.1016/j.ydbio.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
Much of boundary formation during development remains to be understood, despite being a defining feature of many animal taxa. Axial patterning of Hydra, a member of the ancient phylum Cnidaria which diverged prior to the bilaterian radiation, involves a steady-state of production and loss of tissue, and is dependent on an organizer located in the upper part of the head. We show that the sharp boundary separating tissue in the body column from head and foot tissue depends on histone acetylation. Histone deacetylation disrupts the boundary by affecting numerous developmental genes including Wnt components and prevents stem cells from entering the position dependent differentiation program. Overall, our results suggest that reversible histone acetylation is an ancient regulatory mechanism for partitioning the body axis into domains with specific identity, which was present in the common ancestor of cnidarians and bilaterians, at least 600 million years ago.
Collapse
|
12
|
Hartl M, Glasauer S, Gufler S, Raffeiner A, Puglisi K, Breuker K, Bister K, Hobmayer B. Differential regulation of myc homologs by Wnt/β-Catenin signaling in the early metazoan Hydra. FEBS J 2019; 286:2295-2310. [PMID: 30869835 PMCID: PMC6618008 DOI: 10.1111/febs.14812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
The c-Myc protein is a transcription factor with oncogenic potential controlling fundamental cellular processes. Homologs of the human c-myc protooncogene have been identified in the early diploblastic cnidarian Hydra (myc1, myc2). The ancestral Myc1 and Myc2 proteins display the principal design and biochemical properties of their vertebrate derivatives, suggesting that important Myc functions arose very early in metazoan evolution. c-Myc is part of a transcription factor network regulated by several upstream pathways implicated in oncogenesis and development. One of these signaling cascades is the Wnt/β-Catenin pathway driving cell differentiation and developmental patterning, but also tumorigenic processes including aberrant transcriptional activation of c-myc in several human cancers. Here, we show that genetic or pharmacological stimulation of Wnt/β-Catenin signaling in Hydra is accompanied by specific downregulation of myc1 at mRNA and protein levels. The myc1 and myc2 promoter regions contain consensus binding sites for the transcription factor Tcf, and Hydra Tcf binds to the regulatory regions of both promoters. The myc1 promoter is also specifically repressed in the presence of ectopic Hydra β-Catenin/Tcf in avian cell culture. We propose that Hydra myc1 is a negative Wnt signaling target, in contrast to vertebrate c-myc, which is one of the best studied genes activated by this pathway. On the contrary, myc2 is not suppressed by ectopic β-Catenin in Hydra and presumably represents the structural and functional c-myc ortholog. Our data implicate that the connection between β-Catenin-mediated signaling and myc1 and myc2 gene regulation is an ancestral metazoan feature. Its impact on decision making in Hydra interstitial stem cells is discussed.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of BiochemistryUniversity of InnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckAustria
| | - Stella Glasauer
- Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckAustria
- Institute of ZoologyUniversity of InnsbruckAustria
- Present address:
Department of Molecular, Cellular, and Developmental BiologyUniversity of CaliforniaSanta BarbaraCAUSA
| | - Sabine Gufler
- Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckAustria
- Institute of ZoologyUniversity of InnsbruckAustria
| | - Andrea Raffeiner
- Institute of BiochemistryUniversity of InnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckAustria
| | - Kane Puglisi
- Institute of BiochemistryUniversity of InnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckAustria
| | - Kathrin Breuker
- Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckAustria
- Institute of Organic ChemistryUniversity of InnsbruckAustria
| | - Klaus Bister
- Institute of BiochemistryUniversity of InnsbruckAustria
- Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckAustria
| | - Bert Hobmayer
- Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckAustria
- Institute of ZoologyUniversity of InnsbruckAustria
| |
Collapse
|
13
|
Moros M, Kyriazi ME, El-Sagheer AH, Brown T, Tortiglione C, Kanaras AG. DNA-Coated Gold Nanoparticles for the Detection of mRNA in Live Hydra Vulgaris Animals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13905-13911. [PMID: 30525369 DOI: 10.1021/acsami.8b17846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in nanoparticle design have led to the development of nanoparticulate systems that can sense intracellular molecules, alter cellular processes, and release drugs to specific targets in vitro. In this work, we demonstrate that oligonucleotide-coated gold nanoparticles are suitable for the detection of mRNA in live Hydra vulgaris, a model organism, without affecting the animal's integrity. We specifically focus on the detection of Hymyc1 mRNA, which is responsible for the regulation of the balance between stem cell self-renewal and differentiation. Myc deregulation is found in more than half of human cancers, thus the ability to detect in vivo related mRNAs through innovative fluorescent systems is of outmost interest.
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | | - Afaf H El-Sagheer
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | |
Collapse
|
14
|
Revilla-i-Domingo R, Simakov O. The Diversification of Early Emerging Metazoans: A Window into the Evolution of Animal Multicellularity. Bioessays 2018; 40:e1800029. [DOI: 10.1002/bies.201800029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 11/06/2022]
Affiliation(s)
| | - Oleg Simakov
- Department of Molecular Evolution and Development; University of Vienna; Vienna 1090 Austria
| |
Collapse
|
15
|
DNA repair enzyme APE1 from evolutionarily ancient Hydra reveals redox activity exclusively found in mammalian APE1. DNA Repair (Amst) 2017; 59:44-56. [PMID: 28946035 DOI: 10.1016/j.dnarep.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 01/12/2023]
Abstract
Only mammalian apurinic/apyrimidinic endonuclease1 (APE1) has been reported to possess both DNA repair and redox activities. C terminal of the protein is required for base excision repair, while the redox activity resides in the N terminal due to cysteine residues at specific positions. APE1s from other organisms studied so far lack the redox activity in spite of having the N terminal domain. We find that APE1 from the Cnidarian Hydra exhibits both endonuclease and redox activities similar to mammalian APE1. We further show the presence of the three indispensable cysteines in Hydra APE1 for redox activity by site directed mutagenesis. Importance of redox domain but not the repair domain of APE1 in regeneration has been demonstrated by using domain-specific inhibitors. Our findings clearly demonstrate that the redox function of APE1 evolved very early in metazoan evolution and is not a recent acquisition in mammalian APE1 as believed so far.
Collapse
|
16
|
Fortunato SAV, Vervoort M, Adamski M, Adamska M. Conservation and divergence of bHLH genes in the calcisponge Sycon ciliatum. EvoDevo 2016; 7:23. [PMID: 27757221 PMCID: PMC5064789 DOI: 10.1186/s13227-016-0060-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Basic Helix-Loop-Helix (bHLH) genes encode a large family of eukaryotic transcription factors, categorized into six high-order groups: pan-eukaryotic group B involved in regulation of cell cycle, metabolism, and development; holozoan-specific groups C and F involved in development and maintenance of homeostasis; and metazoan-specific groups A, D and E including well-studied genes, such as Atonal, Twist and Hairy, with diverse developmental roles including control of morphogenesis and specification of neurons. Current scenarios of bHLH evolution in animals are mainly based on the bHLH gene set found in the genome of demosponge Amphimedon queenslandica. In this species, the majority of the 21 identified bHLH genes belong to group B, and the single group A gene is orthologous to several neurogenic bilaterian subfamilies, including atonal and neurogenin. Results Given recently discovered differences in developmental toolkit components between siliceous and calcareous sponges, we have carried out genome-wide analysis of bHLH genes in Sycon ciliatum, an emerging calcisponge model. We identified 30 bHLH genes in this species, representing 12 individual families, including four group A families not found in Amphimedon, and two larger family groupings. Notably, the families represented in Sycon are only partially overlapping with those represented in Amphimedon. Developmental expression analysis of a subset of the identified genes revealed patterns consistent with deeply conserved roles, such as specification of sensory cells by Atona-related and stem cells by Myc genes. Conclusions Our results demonstrate independent gene loss events in demosponges and calcisponges, implying a complex bHLH toolkit in the last common metazoan ancestor. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0060-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia A V Fortunato
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.,ARC Centre for Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 Australia
| | - Michel Vervoort
- Institut Jacques Monod - CNRS, Université Paris Diderot, 75005 Paris Cedex 13, France
| | - Marcin Adamski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.,Research School of Biology, Australian National University, Canberra, Australia
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.,Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
17
|
Duffy DJ, Krstic A, Halasz M, Schwarzl T, Fey D, Iljin K, Mehta JP, Killick K, Whilde J, Turriziani B, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma. Oncotarget 2016; 6:43182-201. [PMID: 26673823 PMCID: PMC4791225 DOI: 10.18632/oncotarget.6568] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022] Open
Abstract
Despite intensive study, many mysteries remain about the MYCN oncogene's functions. Here we focus on MYCN's role in neuroblastoma, the most common extracranial childhood cancer. MYCN gene amplification occurs in 20% of cases, but other recurrent somatic mutations are rare. This scarcity of tractable targets has hampered efforts to develop new therapeutic options. We employed a multi-level omics approach to examine MYCN functioning and identify novel therapeutic targets for this largely un-druggable oncogene. We used systems medicine based computational network reconstruction and analysis to integrate a range of omic techniques: sequencing-based transcriptomics, genome-wide chromatin immunoprecipitation, siRNA screening and interaction proteomics, revealing that MYCN controls highly connected networks, with MYCN primarily supressing the activity of network components. MYCN's oncogenic functions are likely independent of its classical heterodimerisation partner, MAX. In particular, MYCN controls its own protein interaction network by transcriptionally regulating its binding partners. Our network-based approach identified vulnerable therapeutically targetable nodes that function as critical regulators or effectors of MYCN in neuroblastoma. These were validated by siRNA knockdown screens, functional studies and patient data. We identified β-estradiol and MAPK/ERK as having functional cross-talk with MYCN and being novel targetable vulnerabilities of MYCN-amplified neuroblastoma. These results reveal surprising differences between the functioning of endogenous, overexpressed and amplified MYCN, and rationalise how different MYCN dosages can orchestrate cell fate decisions and cancerous outcomes. Importantly, this work describes a systems-level approach to systematically uncovering network based vulnerabilities and therapeutic targets for multifactorial diseases by integrating disparate omic data types.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,European Molecular Biology Laboratory (EMBL), Meyerhofstraße, Heidelberg, Germany
| | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Jai Prakash Mehta
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Kate Killick
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Jenny Whilde
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | | | - Vidal Fey
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matthias Fischer
- Department of Paediatric Haematology and Oncology and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Frank Westermann
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Bannert
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
18
|
Hartl M. The Quest for Targets Executing MYC-Dependent Cell Transformation. Front Oncol 2016; 6:132. [PMID: 27313991 PMCID: PMC4889588 DOI: 10.3389/fonc.2016.00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022] Open
Abstract
MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of synthetic lethality using MYC-overexpressing cancer cells and chemical or RNAi libraries have been employed to search for novel anticancer drugs, also leading to the identification of several druggable targets. Targeting oncogenic MYC effector genes instead of MYC may lead to compounds with higher specificities and less side effects. This class of drugs could also display a wider pharmaceutical window because physiological functions of MYC, which are important for normal cell growth, proliferation, and differentiation would be less impaired.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry and Center of Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
19
|
Buzgariu W, Al Haddad S, Tomczyk S, Wenger Y, Galliot B. Multi-functionality and plasticity characterize epithelial cells in Hydra. Tissue Barriers 2015; 3:e1068908. [PMID: 26716072 PMCID: PMC4681288 DOI: 10.1080/21688370.2015.1068908] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra.
Collapse
Affiliation(s)
- W Buzgariu
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - S Al Haddad
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - S Tomczyk
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - Y Wenger
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - B Galliot
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| |
Collapse
|