1
|
Durrant MG, Fanton A, Tycko J, Hinks M, Chandrasekaran SS, Perry NT, Schaepe J, Du PP, Lotfy P, Bassik MC, Bintu L, Bhatt AS, Hsu PD. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat Biotechnol 2023; 41:488-499. [PMID: 36217031 PMCID: PMC10083194 DOI: 10.1038/s41587-022-01494-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Large serine recombinases (LSRs) are DNA integrases that facilitate the site-specific integration of mobile genetic elements into bacterial genomes. Only a few LSRs, such as Bxb1 and PhiC31, have been characterized to date, with limited efficiency as tools for DNA integration in human cells. In this study, we developed a computational approach to identify thousands of LSRs and their DNA attachment sites, expanding known LSR diversity by >100-fold and enabling the prediction of their insertion site specificities. We tested their recombination activity in human cells, classifying them as landing pad, genome-targeting or multi-targeting LSRs. Overall, we achieved up to seven-fold higher recombination than Bxb1 and genome integration efficiencies of 40-75% with cargo sizes over 7 kb. We also demonstrate virus-free, direct integration of plasmid or amplicon libraries for improved functional genomics applications. This systematic discovery of recombinases directly from microbial sequencing data provides a resource of over 60 LSRs experimentally characterized in human cells for large-payload genome insertion without exposed DNA double-stranded breaks.
Collapse
Affiliation(s)
- Matthew G Durrant
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Alison Fanton
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michaela Hinks
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sita S Chandrasekaran
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Nicholas T Perry
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Julia Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Genetics, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Peter Lotfy
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA.
| | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Wang X, Deng Z, Liu T. Marker‐Free System Using Ribosomal Promoters Enhanced Xylose/Glucose Isomerase Production inStreptomyces rubiginosus. Biotechnol J 2019; 14:e1900114. [DOI: 10.1002/biot.201900114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghai 200030 P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science and BiotechnologyShanghai Jiao Tong UniversityShanghai 200030 P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan 430071 P. R. China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan 430075 P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical SciencesWuhan UniversityWuhan 430071 P. R. China
- Hubei Engineering Laboratory for Synthetic MicrobiologyWuhan Institute of BiotechnologyWuhan 430075 P. R. China
| |
Collapse
|
3
|
Wang J, Liu Y, Liu Y, Du K, Xu S, Wang Y, Krupovic M, Chen X. A novel family of tyrosine integrases encoded by the temperate pleolipovirus SNJ2. Nucleic Acids Res 2019; 46:2521-2536. [PMID: 29361162 PMCID: PMC5861418 DOI: 10.1093/nar/gky005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/08/2018] [Indexed: 01/19/2023] Open
Abstract
Genomes of halophilic archaea typically contain multiple loci of integrated mobile genetic elements (MGEs). Despite the abundance of these elements, however, mechanisms underlying their site-specific integration and excision have not been investigated. Here, we identified and characterized a novel recombination system encoded by the temperate pleolipovirus SNJ2, which infects haloarchaeon Natrinema sp. J7-1. SNJ2 genome is inserted into the tRNAMet gene and flanked by 14 bp direct repeats corresponding to attachment core sites. We showed that SNJ2 encodes an integrase (IntSNJ2) that excises the proviral genome from its host cell chromosome, but requires two small accessory proteins, Orf2 and Orf3, for integration. These proteins were co-transcribed with IntSNJ2 to form an operon. Homology searches showed that IntSNJ2-type integrases are widespread in haloarchaeal genomes and are associated with various integrated MGEs. Importantly, we confirmed that SNJ2-like recombination systems are encoded by haloarchaea from three different genera and are critical for integration and excision. Finally, phylogenetic analysis suggested that IntSNJ2-type recombinases belong to a novel family of archaeal integrases distinct from previously characterized recombinases, including those from the archaeal SSV- and pNOB8-type families.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingchun Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Kaixin Du
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuqi Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuchen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mart Krupovic
- Unit of Molecular Biology of the Gene in Extremophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Balabaskaran-Nina P, Desai SA. Diverse target gene modifications in Plasmodium falciparum using Bxb1 integrase and an intronic attB. Parasit Vectors 2018; 11:548. [PMID: 30333047 PMCID: PMC6192176 DOI: 10.1186/s13071-018-3129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
Genetic manipulation of the human malaria parasite Plasmodium falciparum is needed to explore pathogen biology and evaluate antimalarial targets. It is, however, aggravated by a low transfection efficiency, a paucity of selectable markers and a biased A/T-rich genome. While various enabling technologies have been introduced over the past two decades, facile and broad-range modification of essential genes remains challenging. We recently devised a new application of the Bxb1 integrase strategy to meet this need through an intronic attB sequence within the gene of interest. Although this attB is silent and without effect on intron splicing or protein translation and function, it allows efficient gene modification with minimal risk of unwanted changes at other genomic sites. We describe the range of applications for this new method as well as specific cases where it is preferred over CRISPR-Cas9 and other technologies. The advantages and limitations of various strategies for endogenous gene editing are also discussed.
Collapse
Affiliation(s)
- Praveen Balabaskaran-Nina
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.,Present Address: Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, India
| | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
5
|
Abstract
Serine integrases catalyze precise rearrangement of DNA through site-specific recombination of small sequences of DNA called attachment (att) sites. Unlike other site-specific recombinases, the recombination reaction driven by serine integrases is highly directional and can only be reversed in the presence of an accessory protein called a recombination directionality factor (RDF). The ability to control reaction directionality has led to the development of serine integrases as tools for controlled rearrangement and modification of DNA in synthetic biology, gene therapy, and biotechnology. This review discusses recent advances in serine integrase technologies focusing on their applications in genome engineering, DNA assembly, and logic and data storage devices.
Collapse
Affiliation(s)
- Christine A. Merrick
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| | - Jia Zhao
- Novo
Nordisk (China) Pharmaceuticals Co., Ltd., Lei Shing Hong Center, Guangshunnan Avenue, Beijing 100102, China
| | - Susan J. Rosser
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| |
Collapse
|
6
|
Abe K, Takamatsu T, Sato T. Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis. Nucleic Acids Res 2017; 45:6669-6683. [PMID: 28535266 PMCID: PMC5499854 DOI: 10.1093/nar/gkx466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
A sporulation-specific gene, spsM, is disrupted by an active prophage, SPβ, in the genome of Bacillus subtilis. SPβ excision is required for two critical steps: the onset of the phage lytic cycle and the reconstitution of the spsM-coding frame during sporulation. Our in vitro study demonstrated that SprA, a serine-type integrase, catalyzed integration and excision reactions between attP of SPβ and attB within spsM, while SprB, a recombination directionality factor, was necessary only for the excision between attL and attR in the SPβ lysogenic chromosome. DNA recombination occurred at the center of the short inverted repeat motif in the unique conserved 16 bp sequence among the att sites (5΄-ACAGATAA/AGCTGTAT-3΄; slash, breakpoint; underlines, inverted repeat), where SprA produced the 3΄-overhanging AA and TT dinucleotides for rejoining the DNA ends through base-pairing. Electrophoretic mobility shift assay showed that SprB promoted synapsis of SprA subunits bound to the two target sites during excision but impaired it during integration. In vivo data demonstrated that sprB expression that lasts until the late stage of sporulation is crucial for stable expression of reconstituted spsM without reintegration of the SPβ prophage. These results present a deeper understanding of the mechanism of the prophage-mediated bacterial gene regulatory system.
Collapse
Affiliation(s)
- Kimihiro Abe
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Takuo Takamatsu
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Tsutomu Sato
- Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
7
|
Olorunniji FJ, McPherson AL, Rosser SJ, Smith MCM, Colloms SD, Stark WM. Control of serine integrase recombination directionality by fusion with the directionality factor. Nucleic Acids Res 2017; 45:8635-8645. [PMID: 28666339 PMCID: PMC5737554 DOI: 10.1093/nar/gkx567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The 'reverse' reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition to integrase; RDF activates attL × attR recombination and inhibits attP × attB recombination. We show here that serine integrases can be fused to their cognate RDFs to create single proteins that catalyse efficient attL × attR recombination in vivo and in vitro, whereas attP × attB recombination efficiency is reduced. We provide evidence that activation of attL × attR recombination involves intra-subunit contacts between the integrase and RDF moieties of the fusion protein. Minor changes in the length and sequence of the integrase-RDF linker peptide did not affect fusion protein recombination activity. The efficiency and single-protein convenience of integrase-RDF fusion proteins make them potentially very advantageous for biotechnology/synthetic biology applications. Here, we demonstrate efficient gene cassette replacement in a synthetic metabolic pathway gene array as a proof of principle.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan J Rosser
- SynthSys - Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Roger Land Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean D Colloms
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
8
|
Stark WM. Making serine integrases work for us. Curr Opin Microbiol 2017; 38:130-136. [PMID: 28599144 DOI: 10.1016/j.mib.2017.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/19/2023]
Abstract
DNA site-specific recombinases are enzymes (often associated with mobile DNA elements) that catalyse breaking and rejoining of DNA strands at specific points, thereby bringing about precise genetic rearrangements. Serine integrases are a group of recombinases derived from bacteriophages. Their unusual properties, including directionality of recombination and simple site requirements, are leading to their development as efficient, versatile tools for applications in experimental biology, biotechnology, synthetic biology and gene therapy. This article summarizes our current knowledge of serine integrase structure and mechanism, then outlines key factors that affect the performance of these phage recombination systems. Recently published studies, that have expanded the repertoire of available systems and reveal system-specific characteristics, will help us to choose the best integrases for envisaged applications.
Collapse
Affiliation(s)
- W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, Scotland, United Kingdom.
| |
Collapse
|
9
|
Calos MP. Genome Editing Techniques and Their Therapeutic Applications. Clin Pharmacol Ther 2016; 101:42-51. [PMID: 27783398 DOI: 10.1002/cpt.542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
Fueled by advances in the field of genetics, the methods available to edit DNA sequences in living cells have continued to develop steadily. These technologies directly impact the fields of gene and cell therapy, where changes in the DNA sequence of target cells offer a route to correct genetic diseases and manipulate disorders like cancer. We review here the expanding menu of genome editing techniques and how they are being applied to therapeutic targets. The methods encompass a myriad of approaches to modify the covalent structure of DNA, including the targeted creation of double-strand breaks that can catalyze genomic changes, as well as the use of retroviruses and transposons to mediate gene addition, recombinases for sequence-specific gene addition and deletion, and base repair for direct sequence changes. The continued growth of the exciting field of genome editing is opening new possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- M P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Abstract
The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications.
Collapse
|