1
|
Bouin AP, Kyumurkov A, Planus E, Albiges-Rizo C. [Cellular tension and integrin trafficking]. Med Sci (Paris) 2023; 39:597-599. [PMID: 37695144 DOI: 10.1051/medsci/2023089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Affiliation(s)
- Anne-Pascale Bouin
- Université Grenoble Alpes, Inserm 1209, CNRS UMR5309, Institut pour l'avancée des biosciences, Grenoble, France
| | - Alexander Kyumurkov
- Université Grenoble Alpes, Inserm 1209, CNRS UMR5309, Institut pour l'avancée des biosciences, Grenoble, France
| | - Emmanuelle Planus
- Université Grenoble Alpes, Inserm 1209, CNRS UMR5309, Institut pour l'avancée des biosciences, Grenoble, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Inserm 1209, CNRS UMR5309, Institut pour l'avancée des biosciences, Grenoble, France
| |
Collapse
|
2
|
Ahmad SMS, Nazar H, Rahman MM, Rusyniak RS, Ouhtit A. ITGB1BP1, a Novel Transcriptional Target of CD44-Downstream Signaling Promoting Cancer Cell Invasion. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:373-380. [PMID: 37252376 PMCID: PMC10225144 DOI: 10.2147/bctt.s404565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Breast cancer (BC) is the most common malignancy worldwide and has a poor prognosis, because it begins in the breast and disseminates to lymph nodes and distant organs. While invading, BC cells acquire aggressive characteristics from the tumor microenvironment through several mechanisms. Thus, understanding the mechanisms underlying the process of BC cell invasion can pave the way towards the development of targeted therapeutics focused on metastasis. We have previously reported that the activation of CD44 receptor with its major ligand hyaluronan (HA) promotes BC metastasis to the liver in vivo. Next, a gene expression profiling microarray analysis was conducted to identify and validate CD44-downstream transcriptional targets mediating its pro-metastatic function from RNA samples collected from Tet CD44-induced versus control MCF7-B5 cells. We have already validated a number of novel CD44-target genes and published their underlying signaling pathways in promoting BC cell invasion. From the same microarray analysis, Integrin subunit beta 1 binding protein 1 (ITGB1BP1) was also identified as a potential CD44-target gene that was upregulated (2-fold) upon HA activation of CD44. This report will review the lines of evidence collected from the literature to support our hypothesis, and further discuss the possible mechanisms linking HA activation of CD44 to its novel potential transcriptional target ITGB1BP1.
Collapse
Affiliation(s)
- Salma M S Ahmad
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Hanan Nazar
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Md Mizanur Rahman
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Radoslaw Stefan Rusyniak
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Haage A, Dhasarathy A. Working a second job: Cell adhesion proteins that moonlight in the nucleus. Front Cell Dev Biol 2023; 11:1163553. [PMID: 37169022 PMCID: PMC10164977 DOI: 10.3389/fcell.2023.1163553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Cells are adept at sensing changes in their environment, transmitting signals internally to coordinate responses to external stimuli, and thereby influencing adaptive changes in cell states and behavior. Often, this response involves modulation of gene expression in the nucleus, which is seen largely as a physically separated process from the rest of the cell. Mechanosensing, whereby a cell senses physical stimuli, and integrates and converts these inputs into downstream responses including signaling cascades and gene regulatory changes, involves the participation of several macromolecular structures. Of note, the extracellular matrix (ECM) and its constituent macromolecules comprise an essential part of the cellular microenvironment, allowing cells to interact with each other, and providing both structural and biochemical stimuli sensed by adhesion transmembrane receptors. This highway of information between the ECM, cell adhesion proteins, and the cytoskeleton regulates cellular behavior, the disruption of which results in disease. Emerging evidence suggests a more direct role for some of these adhesion proteins in chromatin structure and gene regulation, RNA maturation and other non-canonical functions. While many of these discoveries were previously limited to observations of cytoplasmic-nuclear transport, recent advances in microscopy, and biochemical, proteomic and genomic technologies have begun to significantly enhance our understanding of the impact of nuclear localization of these proteins. This review will briefly cover known cell adhesion proteins that migrate to the nucleus, and their downstream functions. We will outline recent advances in this very exciting yet still emerging field, with impact ranging from basic biology to disease states like cancer.
Collapse
Affiliation(s)
- Amanda Haage
- *Correspondence: Amanda Haage, ; Archana Dhasarathy,
| | | |
Collapse
|
4
|
Kyumurkov A, Bouin AP, Boissan M, Manet S, Baschieri F, Proponnet-Guerault M, Balland M, Destaing O, Régent-Kloeckner M, Calmel C, Nicolas A, Waharte F, Chavrier P, Montagnac G, Planus E, Albiges-Rizo C. Force tuning through regulation of clathrin-dependent integrin endocytosis. J Cell Biol 2022; 222:213549. [PMID: 36250940 PMCID: PMC9579986 DOI: 10.1083/jcb.202004025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Integrin endocytosis is essential for many fundamental cellular processes. Whether and how the internalization impacts cellular mechanics remains elusive. Whereas previous studies reported the contribution of the integrin activator, talin, in force development, the involvement of inhibitors is less documented. We identified ICAP-1 as an integrin inhibitor involved in mechanotransduction by co-working with NME2 to control clathrin-mediated endocytosis of integrins at the edge of focal adhesions (FA). Loss of ICAP-1 enables β3-integrin-mediated force generation independently of β1 integrin. β3-integrin-mediated forces were associated with a decrease in β3 integrin dynamics stemming from their reduced diffusion within adhesion sites and slow turnover of FA. The decrease in β3 integrin dynamics correlated with a defect in integrin endocytosis. ICAP-1 acts as an adaptor for clathrin-dependent endocytosis of integrins. ICAP-1 controls integrin endocytosis by interacting with NME2, a key regulator of dynamin-dependent clathrin-coated pits fission. Control of clathrin-mediated integrin endocytosis by an inhibitor is an unprecedented mechanism to tune forces at FA.
Collapse
Affiliation(s)
- Alexander Kyumurkov
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Anne-Pascale Bouin
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Mathieu Boissan
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Sandra Manet
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | | | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588, University Grenoble Alpes, Grenoble, France
| | - Olivier Destaing
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Myriam Régent-Kloeckner
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Calmel
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Alice Nicolas
- University Grenoble Alpes, CNRS, CEA/LETIMinatec, Grenoble Institute of Technology, Microelectronics Technology Laboratory, Grenoble, France
| | - François Waharte
- University Sorbonne, INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, Paris, France,Laboratory of Biochemistry and Hormonology, Tenon Hospital, AP-HP, Paris, France
| | - Philippe Chavrier
- Institut Curie, UMR144, Université de Recherche Paris Sciences et Lettres, Centre Universitaire, Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Emmanuelle Planus
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Correspondence to Emmanuelle Planus: mailto:
| | - Corinne Albiges-Rizo
- University Grenoble Alpes, INSERM 1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France,Corinne Albiges-Rizo:
| |
Collapse
|
5
|
Sevilla-Movilla S, Fuentes P, Rodríguez-García Y, Arellano-Sánchez N, Krenn PW, de Val SI, Montero-Herradón S, García-Ceca J, Burdiel-Herencia V, Gardeta SR, Aguilera-Montilla N, Barrio-Alonso C, Crainiciuc G, Bouvard D, García-Pardo A, Zapata AG, Hidalgo A, Fässler R, Carrasco YR, Toribio ML, Teixidó J. ICAP-1 loss impairs CD8 + thymocyte development and leads to reduced marginal zone B cells in mice. Eur J Immunol 2022; 52:1228-1242. [PMID: 35491946 PMCID: PMC9543158 DOI: 10.1002/eji.202149560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
ICAP‐1 regulates β1‐integrin activation and cell adhesion. Here, we used ICAP‐1‐null mice to study ICAP‐1 potential involvement during immune cell development and function. Integrin α4β1‐dependent adhesion was comparable between ICAP‐1‐null and control thymocytes, but lack of ICAP‐1 caused a defective single‐positive (SP) CD8+ cell generation, thus, unveiling an ICAP‐1 involvement in SP thymocyte development. ICAP‐1 bears a nuclear localization signal and we found it displayed a strong nuclear distribution in thymocytes. Interestingly, there was a direct correlation between the lack of ICAP‐1 and reduced levels in SP CD8+ thymocytes of Runx3, a transcription factor required for CD8+ thymocyte generation. In the spleen, ICAP‐1 was found evenly distributed between cytoplasm and nuclear fractions, and ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion, indicating that ICAP‐1 negatively controls their attachment. Furthermore, CD3+‐ and CD19+‐selected spleen cells from ICAP‐1‐null mice showed reduced proliferation in response to T‐ and B‐cell stimuli, respectively. Finally, loss of ICAP‐1 caused a remarkable decrease in marginal zone B‐ cell frequencies and a moderate increase in follicular B cells. Together, these data unravel an ICAP‐1 involvement in the generation of SP CD8+ thymocytes and in the control of marginal zone B‐cell numbers.
Collapse
Affiliation(s)
- Silvia Sevilla-Movilla
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Patricia Fuentes
- Development and Function of the Immune System Unit, Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yaiza Rodríguez-García
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Nohemi Arellano-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.,Present address: Paris-Lodron Universität Salzburg, Austria
| | - Soledad Isern de Val
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, 28040.,Spain and Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Javier García-Ceca
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, 28040.,Spain and Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Valeria Burdiel-Herencia
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Sofía R Gardeta
- Department on Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, 28049, Spain
| | - Noemí Aguilera-Montilla
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Celia Barrio-Alonso
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.,Present address: Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Georgiana Crainiciuc
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, 80336, Germany
| | - Daniel Bouvard
- Centre de Recherche en Biologie Cellulaire de Montpellier, Montpellier, France
| | - Angeles García-Pardo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Agustin G Zapata
- Department of Cell Biology; Faculty of Biology, Complutense University of Madrid, Madrid, 28040.,Spain and Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, 28041, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, 80336, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yolanda R Carrasco
- Department on Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, 28049, Spain
| | - Maria L Toribio
- Development and Function of the Immune System Unit, Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joaquin Teixidó
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| |
Collapse
|
6
|
Li Q, Lan T, Xie J, Lu Y, Zheng D, Su B. Integrin-Mediated Tumorigenesis and Its Therapeutic Applications. Front Oncol 2022; 12:812480. [PMID: 35223494 PMCID: PMC8873568 DOI: 10.3389/fonc.2022.812480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Integrins, a family of adhesion molecules generally exist on the cell surface, are essential for regulating cell growth and its function. As a bi-directional signaling molecule, they mediate cell-cell and cell-extracellular matrix interaction. The recognitions of their key roles in many human pathologies, including autoimmunity, thrombosis and neoplasia, have revealed their great potential as a therapeutic target. This paper focuses on the activation of integrins, the role of integrins in tumorigenesis and progression, and advances of integrin-dependent tumor therapeutics in recent years. It is expected that understanding function and signaling transmission will fully exploit potentialities of integrin as a novel target for tumors.
Collapse
Affiliation(s)
- Qingling Li
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ting Lan
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jian Xie
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| | - Bohua Su
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- *Correspondence: Dali Zheng, ; Bohua Su,
| |
Collapse
|
7
|
Phosphorylation of Kindlins and the Control of Integrin Function. Cells 2021; 10:cells10040825. [PMID: 33916922 PMCID: PMC8067640 DOI: 10.3390/cells10040825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
Integrins serve as conduits for the transmission of information between cells and their extracellular environment. Signaling across integrins is bidirectional, transducing both inside-out and outside-signaling. Integrin activation, a transition from a low affinity/avidity state to a high affinity/avidity state for cognate ligands, is an outcome of inside-signaling. Such activation is particularly important for the recognition of soluble ligands by blood cells but also influences cell-cell and cell-matrix interactions. Integrin activation depends on a complex series of interactions, which both accelerate and inhibit their interconversion from the low to the high affinity/avidity state. There are three components regarded as being most proximately involved in integrin activation: the integrin cytoplasmic tails, talins and kindlins. The participation of each of these molecules in integrin activation is highly regulated by post-translation modifications. The importance of targeted phosphorylation of integrin cytoplasmic tails and talins in integrin activation is well-established, but much less is known about the role of post-translational modification of kindlins. The kindlins, a three-member family of 4.1-ezrin-radixin-moesin (FERM)-domain proteins in mammals, bind directly to the cytoplasmic tails of integrin beta subunits. This commentary provides a synopsis of the emerging evidence for the role of kindlin phosphorylation in integrin regulation.
Collapse
|
8
|
Structural and functional analysis of LIM domain-dependent recruitment of paxillin to αvβ3 integrin-positive focal adhesions. Commun Biol 2021; 4:380. [PMID: 33782527 PMCID: PMC8007706 DOI: 10.1038/s42003-021-01886-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
The LIM domain-dependent localization of the adapter protein paxillin to β3 integrin-positive focal adhesions (FAs) is not mechanistically understood. Here, by combining molecular biology, photoactivation and FA-isolation experiments, we demonstrate specific contributions of each LIM domain of paxillin and reveal multiple paxillin interactions in adhesion-complexes. Mutation of β3 integrin at a putative paxillin binding site (β3VE/YA) leads to rapidly inward-sliding FAs, correlating with actin retrograde flow and enhanced paxillin dissociation kinetics. Induced mechanical coupling of paxillin to β3VE/YA integrin arrests the FA-sliding, thereby disclosing an essential structural function of paxillin for the maturation of β3 integrin/talin clusters. Moreover, bimolecular fluorescence complementation unveils the spatial orientation of the paxillin LIM-array, juxtaposing the positive LIM4 to the plasma membrane and the β3 integrin-tail, while in vitro binding assays point to LIM1 and/or LIM2 interaction with talin-head domain. These data provide structural insights into the molecular organization of β3 integrin-FAs.
Collapse
|
9
|
Block MR, Brunner M, Ziegelmeyer T, Lallemand D, Pezet M, Chevalier G, Rondé P, Gauthier-Rouviere C, Wehrle-Haller B, Bouvard D. The mechano-sensitive response of β1 integrin promotes SRC-positive late endosome recycling and activation of Yes-associated protein. J Biol Chem 2020; 295:13474-13487. [PMID: 32690605 DOI: 10.1074/jbc.ra120.013503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
Yes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line. We found that p18/LAMTOR1-mediated peripheral positioning of late endosomes allows delivery of SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) to the plasma membrane and promotes activation of an SRC-dependent signaling cascade that controls YAP nuclear shuttling. Moreover, β1 integrin engagement and mechano-sensitive cues, such as external stiffness and related cell contractility, controlled LAMTOR targeting to the cell periphery and thereby late endosome recycling and had a major impact on YAP signaling. Our findings identify the late endosome recycling pathway as a key mechanism that controls YAP activity and explains YAP mechano-sensitivity.
Collapse
Affiliation(s)
- Marc R Block
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Molly Brunner
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Théo Ziegelmeyer
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Genevieve Chevalier
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France
| | - Philippe Rondé
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Université de Strasbourg, Strasbourg, France
| | - Cécile Gauthier-Rouviere
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Daniel Bouvard
- Institute for Advanced Bioscience, Université Grenoble Alpes, La Tronche, France; Institut National de la Santé et la Recherche Médicale-INSERM U1209, La Tronche, France; CNRS UMR 5309, La Tronche, France.
| |
Collapse
|
10
|
Chen C, Manso AM, Ross RS. Talin and Kindlin as Integrin-Activating Proteins: Focus on the Heart. Pediatr Cardiol 2019; 40:1401-1409. [PMID: 31367953 PMCID: PMC7590617 DOI: 10.1007/s00246-019-02167-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
Integrin receptors enable cells to sense and respond to their chemical and physical environment. As a class of membrane receptors, they provide a dynamic, tightly regulated link between the extracellular matrix or cellular counter-receptors and intracellular cytoskeletal and signaling networks. They enable transmission of mechanical force across the plasma membrane, and particularly for cardiomyocytes, may sense the mechanical load placed on cells. Talins and Kindlins are two families of FERM-domain proteins which bind the cytoplasmic tail of integrins, recruit cytoskeletal and signaling proteins involved in mechano-transduction, and those which synergize to activate integrins, allowing the integrins to physically change and bind to extracellular ligands. In this review, we will discuss the roles of talin and kindlin, particularly as integrin activators, with a focus on cardiac myocytes.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA
| | - Ana Maria Manso
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA
| | - Robert S Ross
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA.
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA.
- University of California, San Diego, Biomedical Research Facility 2, Room 2A-17, 9500 Gilman Drive #0613-C, La Jolla, CA, 92093-0613, USA.
| |
Collapse
|
11
|
Wischmann J, Lenze F, Thiel A, Bookbinder S, Querido W, Schmidt O, Burgkart R, von Eisenhart-Rothe R, Richter GHS, Pleshko N, Mayer-Kuckuk P. Matrix mineralization controls gene expression in osteoblastic cells. Exp Cell Res 2018; 372:25-34. [PMID: 30193837 DOI: 10.1016/j.yexcr.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/21/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Osteoblasts are adherent cells, and under physiological conditions they attach to both mineralized and non-mineralized osseous surfaces. However, how exactly osteoblasts respond to these different osseous surfaces is largely unknown. Our hypothesis was that the state of matrix mineralization provides a functional signal to osteoblasts. To assess the osteoblast response to mineralized compared to demineralized osseous surfaces, we developed and validated a novel tissue surface model. We demonstrated that with the exception of the absence of mineral, the mineralized and demineralized surfaces were similar in molecular composition as determined, for example, by collagen content and maturity. Subsequently, we used the human osteoblastic cell line MG63 in combination with genome-wide gene set enrichment analysis (GSEA) to record and compare the gene expression signatures on mineralized and demineralized surfaces. Assessment of the 5 most significant gene sets showed on mineralized surfaces an enrichment exclusively of genes sets linked to protein synthesis, while on the demineralized surfaces 3 of the 5 enriched gene sets were associated with the matrix. Focusing on these three gene sets, we observed not only the expected structural components of the bone matrix, but also gene products, such as HMCN1 or NID2, that are likely to act as temporal migration guides. Together, these findings suggest that in osteoblasts mineralized and demineralized osseous surfaces favor intracellular protein production and matrix formation, respectively. Further, they demonstrate that the mineralization state of bone independently controls gene expression in osteoblastic cells.
Collapse
Affiliation(s)
- Johannes Wischmann
- Department of Orthopedics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Florian Lenze
- Department of Orthopedics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Antonia Thiel
- Department of Orthopedics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Sakina Bookbinder
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Oxana Schmidt
- Children's Cancer Research Center, Comprehensive Cancer Center Munich, German Translational Cancer Research Consortium and Department of Pediatrics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Rainer Burgkart
- Department of Orthopedics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | | | - Günther H S Richter
- Children's Cancer Research Center, Comprehensive Cancer Center Munich, German Translational Cancer Research Consortium and Department of Pediatrics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Philipp Mayer-Kuckuk
- Department of Orthopedics, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany.
| |
Collapse
|
12
|
Abstract
Cerebral cavernous malformations (CCM) are manifested by microvascular lesions characterized by leaky endothelial cells with minimal intervening parenchyma predominantly in the central nervous system predisposed to hemorrhagic stroke, resulting in focal neurological defects. Till date, three proteins are implicated in this condition: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). These multi-domain proteins form a protein complex via CCM2 that function as a docking site for the CCM signaling complex, which modulates many signaling pathways. Defects in the formation of this signaling complex have been shown to affect a wide range of cellular processes including cell-cell contact stability, vascular angiogenesis, oxidative damage protection and multiple biogenic events. In this review we provide an update on recent advances in structure and function of these CCM proteins, especially focusing on the signaling cascades involved in CCM pathogenesis and the resultant CCM cellular phenotypes in the past decade.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
13
|
Osterix regulates corticalization for longitudinal bone growth via integrin β3 expression. Exp Mol Med 2018; 50:1-11. [PMID: 30022046 PMCID: PMC6052162 DOI: 10.1038/s12276-018-0119-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023] Open
Abstract
Corticalization, coalescence of trabecular bone into the metaphyseal cortex, is important for the longitudinal growth of long bones. However, little is known about the molecular mechanisms controlling corticalization. To understand the molecular mechanisms underlying corticalization, we analyzed osteoblast-specific Osterix-knockout mice (Col-OMT). In control mice, corticalization was initiated after 7 postnatal days, and the number of osteoblasts in the peripheral spongiosa was increased compared to the number in the central spongiosa. In contrast, in Col-OMT mice, corticalization was delayed, and the number of osteoblasts in peripheral zones was unchanged compared to the central zone. Furthermore, femoral length was decreased in Col-OMT mice at 1 month. Because Col-OMT mice exhibited impaired matrix coalescence and osteoblast migration, we evaluated integrin signaling in Col-OMT mice. Osterix bound to the Itgb3 promoter and increased transcription of the Itgb3 gene in osteoblast cells. Interestingly, the inner and outer cortical bones were separated in Itgb3-null mice at postnatal day 7. In Itgb3-null mice, the number of osteoblasts in peripheral zones was not changed, and the femoral length was decreased. Taken together, these results indicate that Osterix regulates corticalization for longitudinal bone growth via the control of integrin β3 expression in osteoblasts. Our findings imply that the ability to control osteoblast function during corticalization may help in the treatment of short stature.
Collapse
|
14
|
Brunner M, Mandier N, Gautier T, Chevalier G, Ribba AS, Guardiola P, Block MR, Bouvard D. β1 integrins mediate the BMP2 dependent transcriptional control of osteoblast differentiation and osteogenesis. PLoS One 2018; 13:e0196021. [PMID: 29677202 PMCID: PMC5909894 DOI: 10.1371/journal.pone.0196021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/05/2022] Open
Abstract
Osteoblast differentiation is a highly regulated process that requires coordinated information from both soluble factors and the extracellular matrix. Among these extracellular stimuli, chemical and physical properties of the matrix are sensed through cell surface receptors such as integrins and transmitted into the nucleus to drive specific gene expression. Here, we showed that the conditional deletion of β1 integrins in the osteo-precursor population severely impacts bone formation and homeostasis both in vivo and in vitro. Mutant mice displayed a severe bone deficit characterized by bone fragility and reduced bone mass. We showed that β1 integrins are required for proper BMP2 dependent signaling at the pre-osteoblastic stage, by positively modulating Smad1/5-dependent transcriptional activity at the nuclear level. The lack of β1 integrins results in a transcription modulation that relies on a cooperative defect with other transcription factors rather than a plain blunted BMP2 response. Our results point to a nuclear modulation of Smad1/5 transcriptional activity by β1 integrins, allowing a tight control of osteoblast differentiation.
Collapse
Affiliation(s)
- Molly Brunner
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Noémie Mandier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Thierry Gautier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Genevieve Chevalier
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Anne-Sophie Ribba
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Philippe Guardiola
- Centre Hospitalier Universitaire and University of Angers, SNP Plateform, Institute for Biological Health, Transcriptome and Epigenomic, Angers, France
| | - Marc R. Block
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
| | - Daniel Bouvard
- Centre de Recherche INSERM 1209, CNRS 5309, Institute for Advanced Bioscience; Université Grenoble Alpes, Grenoble, France
- * E-mail:
| |
Collapse
|
15
|
Sabra H, Brunner M, Mandati V, Wehrle-Haller B, Lallemand D, Ribba AS, Chevalier G, Guardiola P, Block MR, Bouvard D. β1 integrin-dependent Rac/group I PAK signaling mediates YAP activation of Yes-associated protein 1 (YAP1) via NF2/merlin. J Biol Chem 2017; 292:19179-19197. [PMID: 28972170 DOI: 10.1074/jbc.m117.808063] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/28/2017] [Indexed: 01/08/2023] Open
Abstract
Cell adhesion to the extracellular matrix or to surrounding cells plays a key role in cell proliferation and differentiation and is critical for proper tissue homeostasis. An important pathway in adhesion-dependent cell proliferation is the Hippo signaling cascade, which is coregulated by the transcription factors Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ). However, how cells integrate extracellular information at the molecular level to regulate YAP1's nuclear localization is still puzzling. Herein, we investigated the role of β1 integrins in regulating this process. We found that β1 integrin-dependent cell adhesion is critical for supporting cell proliferation in mesenchymal cells both in vivo and in vitro β1 integrin-dependent cell adhesion relied on the relocation of YAP1 to the nucleus after the down-regulation of its phosphorylated state mediated by large tumor suppressor gene 1 and 2 (LATS1/2). We also found that this phenotype relies on β1 integrin-dependent local activation of the small GTPase RAC1 at the plasma membrane to control the activity of P21 (RAC1)-activated kinase (PAK) of group 1. We further report that the regulatory protein merlin (neurofibromin 2, NF2) interacts with both YAP1 and LATS1/2 via its C-terminal moiety and FERM domain, respectively. PAK1-mediated merlin phosphorylation on Ser-518 reduced merlin's interactions with both LATS1/2 and YAP1, resulting in YAP1 dephosphorylation and nuclear shuttling. Our results highlight RAC/PAK1 as major players in YAP1 regulation triggered by cell adhesion.
Collapse
Affiliation(s)
- Hiba Sabra
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Molly Brunner
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Vinay Mandati
- the Department of Cancer Biology, Scripps Research Institute, Jupiter, Florida 33458
| | - Bernhard Wehrle-Haller
- the Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dominique Lallemand
- the Ecole Polytechnique, Department of Biochemistry, CNRS 7654, F-91128 Palaiseau, France, and
| | - Anne-Sophie Ribba
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Genevieve Chevalier
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Philippe Guardiola
- the Centre Hospitalier Universitaire and Université d'Angers, Plateform, Institute for Biological Health, Transcriptome and Epigenomic, F-49933 Angers, France
| | - Marc R Block
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France
| | - Daniel Bouvard
- From the Institute for Advanced Bioscience, Université Grenoble Alpes, INSERM 1209, CNRS 5309, F-38042 Grenoble, France,
| |
Collapse
|
16
|
Thiel A, Reumann MK, Boskey A, Wischmann J, von Eisenhart-Rothe R, Mayer-Kuckuk P. Osteoblast migration in vertebrate bone. Biol Rev Camb Philos Soc 2017. [PMID: 28631442 DOI: 10.1111/brv.12345] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone formation, for example during bone remodelling or fracture repair, requires mature osteoblasts to deposit bone with remarkable spatial precision. As osteoblast precursors derive either from circulation or resident stem cell pools, they and their progeny are required to migrate within the three-dimensional bone space and to navigate to their destination, i.e. to the site of bone formation. An understanding of this process is emerging based on in vitro and in vivo studies of several vertebrate species. Receptors on the osteoblast surface mediate cell adhesion and polarization, which induces osteoblast migration. Osteoblast migration is then facilitated along gradients of chemoattractants. The latter are secreted or released proteolytically by several cell types interacting with osteoblasts, including osteoclasts and vascular endothelial cells. The positions of these cellular sources of chemoattractants in relation to the position of the osteoblasts provide the migrating osteoblasts with tracks to their destination, and osteoblasts possess the means to follow a track marked by multiple chemoattractant gradients. In addition to chemotactic cues, osteoblasts sense other classes of signals and utilize them as landmarks for navigation. The composition of the osseous surface guides adhesion and hence migration efficiency and can also provide steering through haptotaxis. Further, it is likely that signals received from surface interactions modulate chemotaxis. Besides the nature of the surface, mechanical signals such as fluid flow may also serve as navigation signals for osteoblasts. Alterations in osteoblast migration and navigation might play a role in metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Antonia Thiel
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Marie K Reumann
- Siegfried Weller Institute, BG Hospital, University of Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Adele Boskey
- Mineralized Tissue Laboratory, Research Division, Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, U.S.A
| | - Johannes Wischmann
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Rüdiger von Eisenhart-Rothe
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| | - Philipp Mayer-Kuckuk
- Bone Cell and Imaging Laboratory, Department of Orthopedics, Klinikum rechts der Isar, Ismaninger Straße 22, Technical University Munich, 81675 München, Germany
| |
Collapse
|
17
|
Sens C, Huck K, Pettera S, Uebel S, Wabnitz G, Moser M, Nakchbandi IA. Fibronectins containing extradomain A or B enhance osteoblast differentiation via distinct integrins. J Biol Chem 2017; 292:7745-7760. [PMID: 28325836 DOI: 10.1074/jbc.m116.739987] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Fibronectin is a multidomain protein secreted by various cell types. It forms a network of fibers within the extracellular matrix and impacts intracellular processes by binding to various molecules, primarily integrin receptors on the cells. Both the presence of several isoforms and the ability of the various domains and isoforms to bind to a variety of integrins result in a wide range of effects. In vivo findings suggest that fibronectin isoforms produced by the osteoblasts enhance their differentiation. Here we report that the isoform characterized by the presence of extradomain A activates α4β1 integrin and augments osteoblast differentiation. In addition, the isoform containing extradomain B enhances the binding of fibronectin through the RGD sequence to β3-containing integrin, resulting in increased mineralization by and differentiation of osteoblasts. Our study thus reveals novel functions for two fibronectin isoforms and the mediating receptors in osteoblast differentiation.
Collapse
Affiliation(s)
- Carla Sens
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and.,the Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Katrin Huck
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and.,the Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Pettera
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and
| | - Stephan Uebel
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and
| | - Guido Wabnitz
- the Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Moser
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and
| | - Inaam A Nakchbandi
- From the Max-Planck Institute of Biochemistry, 82152 Martinsried and .,the Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Catechol-modified hyaluronic acid: in situ-forming hydrogels by auto-oxidation of catechol or photo-oxidation using visible light. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1937-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Sens C, Altrock E, Rau K, Klemis V, von Au A, Pettera S, Uebel S, Damm T, Tiwari S, Moser M, Nakchbandi IA. An O-Glycosylation of Fibronectin Mediates Hepatic Osteodystrophy Through α4β1 Integrin. J Bone Miner Res 2017; 32:70-81. [PMID: 27427791 DOI: 10.1002/jbmr.2916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Patients with cholestatic liver disease experience increased fracture risk. Higher circulating levels of a fibronectin isoform called oncofetal fibronectin (oFN) were detected in a subset of such patients. Administering this isoform to mice suppresses osteoblast differentiation and diminishes bone mineral density in vivo, suggesting it is responsible for bone loss in cholestatic liver disease. The aim of this study was to define the mechanism by which oFN affects osteoblast function and evaluate possible modifiers in experimental hepatic osteodystrophy. The fibronectin isoform oFN is characterized by the presence of various glycosylations. In line with this, adding oFN that underwent enzymatic O-deglycosylation to osteoblasts normalized nodule formation in vitro. Of three possible O-glycosylation sites in oFN, only a mutation at AA 33 of the variable region or binding of this glycosylated site with an antibody normalized osteoblast differentiation. Because the responsible site is located in the variable region of fibronectin, which binds to α4β1 or α4β7 integrins, these integrins were evaluated. We show that integrin α4β1 mediates the inhibitory effect of oFN both in vitro as well as in vivo. In a hepatic osteodystrophy mouse model, we demonstrate that liver fibrosis is associated with increased circulating oFN and diminished BMD. In addition, trabecular bone loss induced by oFN injection or fibrosis induction could be prevented by either administering an antibody that binds to α4 integrin (PS/2) or the CS1 peptide, which contains a binding site for α4β1 integrin. In summary, oFN inhibits osteoblast activity. This is because of an O-glycosylation in the variable region that results in decreased integrin-mediated signaling. This deleterious effect can be thwarted by binding α4β1 integrin. Thus, we have characterized the defect and the receptor mediating bone loss in patients with hepatic osteodystrophy and evaluated possible therapeutic interventions in a murine model. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carla Sens
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Eva Altrock
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Katrin Rau
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Verena Klemis
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Anja von Au
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Pettera
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Stephan Uebel
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Timo Damm
- Section of Biomedical Imaging, University-Hospital Schleswig- Holstein, Campus Kiel, Kiel, Germany
| | - Sanjay Tiwari
- Section of Biomedical Imaging, University-Hospital Schleswig- Holstein, Campus Kiel, Kiel, Germany
| | - Markus Moser
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Inaam A Nakchbandi
- Max-Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Bouin AP, Kyurmurkov A, Régent-Kloeckner M, Ribba AS, Faurobert E, Fournier HN, Bourrin-Reynard I, Manet-Dupé S, Oddou C, Balland M, Planus E, Albiges-Rizo C. ICAP-1 monoubiquitination coordinates matrix density and rigidity sensing for cell migration through ROCK2- MRCKα balance. J Cell Sci 2017; 130:626-636. [DOI: 10.1242/jcs.200139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/21/2022] Open
Abstract
Cell migration is a complex process requiring density and rigidity sensing of the microenvironment to adapt cell migratory speed through focal adhesion and actin cytoskeleton regulation. ICAP-1, a β1 integrin partner, is essential for ensuring integrin activation cycle and focal adhesion formation. We show that ICAP-1 is monoubiquitinated by Smurf1, preventing ICAP-1 binding to β1 integrin. The non-ubiquitinable form of ICAP-1 modifies β1 integrin focal adhesion organization and interferes with fibronectin density sensing. ICAP-1 is also required for adapting cell migration in response to substrate stiffness in a β1 integrin-independent manner. ICAP-1 monoubiquitination regulates rigidity sensing by increasing MRCKα-dependent cell contractility through myosin phosphorylation independently of substrate rigidity. We provide evidence that ICAP-1 monoubiquitination helps in switching from ROCK2-mediated to MRCKα-mediated cell contractility. ICAP-1 monoubiquitination serves as a molecular switch to coordinate extracellular matrix density and rigidity sensing thus acting as a critical modulator of cell migration and mechanosensing.
Collapse
Affiliation(s)
- Anne-Pascale Bouin
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Alexander Kyurmurkov
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Myriam Régent-Kloeckner
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Anne-Sophie Ribba
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Eva Faurobert
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Henri-Noël Fournier
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Ingrid Bourrin-Reynard
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Sandra Manet-Dupé
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Christiane Oddou
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Martial Balland
- CNRS UMR 5309, F-38042 Grenoble, France
- Laboratoire Interdisciplinaire de Physique, UMR CNRS 5588Grenoble, France
| | - Emmanuelle Planus
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| | - Corinne Albiges-Rizo
- INSERM U1209, Grenoble, F-38042, France
- Université Grenoble Alpes, Institute for Advanced Biosciences, 38042 Grenoble, France
- CNRS UMR 5309, F-38042 Grenoble, France
| |
Collapse
|
21
|
Draheim KM, Huet-Calderwood C, Simon B, Calderwood DA. Nuclear Localization of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP1) Influences β1 Integrin Activation and Recruits Krev/Interaction Trapped-1 (KRIT1) to the Nucleus. J Biol Chem 2016; 292:1884-1898. [PMID: 28003363 DOI: 10.1074/jbc.m116.762393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
Binding of ICAP1 (integrin cytoplasmic domain-associated protein-1) to the cytoplasmic tails of β1 integrins inhibits integrin activation. ICAP1 also binds to KRIT1 (Krev interaction trapped-1), a protein whose loss of function leads to cerebral cavernous malformation, a cerebrovascular dysplasia occurring in up to 0.5% of the population. We previously showed that KRIT1 functions as a switch for β1 integrin activation by antagonizing ICAP1-mediated inhibition of integrin activation. Here we use overexpression studies, mutagenesis, and flow cytometry to show that ICAP1 contains a functional nuclear localization signal and that nuclear localization impairs the ability of ICAP1 to suppress integrin activation. Moreover, we find that ICAP1 drives the nuclear localization of KRIT1 in a manner dependent upon a direct ICAP1/KRIT1 interaction. Thus, nuclear-cytoplasmic shuttling of ICAP1 influences both integrin activation and KRIT1 localization, presumably impacting nuclear functions of KRIT1.
Collapse
Affiliation(s)
- Kyle M Draheim
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Clotilde Huet-Calderwood
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Bertrand Simon
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - David A Calderwood
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
22
|
Martínez-Moreno M, Leiva M, Aguilera-Montilla N, Sevilla-Movilla S, Isern de Val S, Arellano-Sánchez N, Gutiérrez NC, Maldonado R, Martínez-López J, Buño I, García-Marco JA, Sánchez-Mateos P, Hidalgo A, García-Pardo A, Teixidó J. In vivo adhesion of malignant B cells to bone marrow microvasculature is regulated by α4β1 cytoplasmic-binding proteins. Leukemia 2015; 30:861-72. [PMID: 26658839 DOI: 10.1038/leu.2015.332] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/23/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) and chronic lymphocytic leukemia (CLL) cells must attach to the bone marrow (BM) microvasculature before lodging in the BM microenvironment. Using intravital microscopy (IVM) of the BM calvariae we demonstrate that the α4β1 integrin is required for MM and CLL cell firm arrest onto the BM microvasculature, while endothelial P-selectin and E-selectin mediate cell rolling. Talin, kindlin-3 and ICAP-1 are β1-integrin-binding partners that regulate β1-mediated cell adhesion. We show that talin and kindlin-3 cooperatively stimulate high affinity and strength of α4β1-dependent MM and CLL cell attachment, whereas ICAP-1 negatively regulates this adhesion. A functional connection between talin/kindlin-3 and Rac1 was found to be required for MM cell attachment mediated by α4β1. Importantly, IVM analyses with talin- and kindlin-3-silenced MM cells indicate that these proteins are needed for cell arrest on the BM microvasculature. Instead, MM cell arrest is repressed by ICAP-1. Moreover, MM cells silenced for talin and kindlin-3, and cultured on α4β1 ligands showed higher susceptibility to bortezomib-mediated cell apoptosis. Our results highlight the requirement of α4β1 and selectins for the in vivo attachment of MM and CLL cells to the BM microvasculature, and indicate that talin, kindlin-3 and ICAP-1 differentially control physiological adhesion by regulating α4β1 activity.
Collapse
Affiliation(s)
- M Martínez-Moreno
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - M Leiva
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - N Aguilera-Montilla
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - S Sevilla-Movilla
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - S Isern de Val
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - N Arellano-Sánchez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - N C Gutiérrez
- Department of Hematology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - R Maldonado
- Section of Hematology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J Martínez-López
- Section of Hematology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Buño
- Section of Hematology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - J A García-Marco
- Hematology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - P Sánchez-Mateos
- Section of Immuno-Oncology, Hospital General Universitario Gregorio Marañón, Complutense University School of Medicine, Madrid, Spain
| | - A Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - A García-Pardo
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - J Teixidó
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
23
|
van den Berg MCW, Burgering BMT. CCM1 and the second life of proteins in adhesion complexes. Cell Adh Migr 2015; 8:146-57. [PMID: 24714220 DOI: 10.4161/cam.28437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well recognized that a number of proteins present within adhesion complexes perform discrete signaling functions outside these adhesion complexes, including transcriptional control. In this respect, β-catenin is a well-known example of an adhesion protein present both in cadherin complexes and in the nucleus where it regulates the TCF transcription factor. Here we discuss nuclear functions of adhesion complex proteins with a special focus on the CCM-1/KRIT-1 protein, which may turn out to be yet another adhesion complex protein with a second life.
Collapse
Affiliation(s)
- Maaike C W van den Berg
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| |
Collapse
|
24
|
Jing J, Fournier A, Szarpak-Jankowska A, Block MR, Auzély-Velty R. Type, density, and presentation of grafted adhesion peptides on polysaccharide-based hydrogels control preosteoblast behavior and differentiation. Biomacromolecules 2015; 16:715-22. [PMID: 25629300 DOI: 10.1021/bm501613u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, cell-responsive polysaccharide hydrogels were prepared by a simple procedure based on the sequential bioconjugation and cross-linking of the polysaccharide backbone with bioactive peptides and poly(ethylene glycol)-bis(thiol) (PEG-(SH)2), respectively. Using thiol-ene reactions, we successfully functionalized hyaluronic acid (HA) and carboxymethylcellulose (CMC) with short and long peptides (5-mer and 15-mer derivatives, respectively) derived from adhesive proteins of bone extracellular matrix. The resulting HA-peptide and CMC-peptide conjugates with varying degrees of substitution were then carefully characterized by (1)H NMR spectroscopy to precisely control the peptide density into the hydrogels cross-linked with PEG-(SH)2. Preosteoblast seeded on the hydrogels with controlled identical stiffness spread in a manner that was strongly dependent on ligand density. Surprisingly, increasing the density of the adhesive peptide anchors did not result in a plateau of initial cell spreading but rather in a bell-shaped cell response that varies with the nature of both polysaccharide backbone and functional peptide. Placing the cells under optimal conditions for cell/hydrogel interaction, we showed that in HA hydrogels, the polysaccharide moiety is not solely a passive scaffold that presents the active peptides but is an active player in cell microenvironment to control and sustain cell activity.
Collapse
Affiliation(s)
- Jing Jing
- University Grenoble Alpes, CERMAV , 601 Rue de la Chimie, F-38000 Grenoble, France
| | | | | | | | | |
Collapse
|
25
|
Shekaran A, Shoemaker JT, Kavanaugh TE, Lin AS, LaPlaca MC, Fan Y, Guldberg RE, García AJ. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype. Bone 2014; 68:131-41. [PMID: 25183373 PMCID: PMC4189988 DOI: 10.1016/j.bone.2014.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 11/27/2022]
Abstract
Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and osteocalcin-Cre lines to generate conditional β1 integrin deletions, where Cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic chondryocyte-lineage cells regulate incisor eruption and perinatal bone formation in both intramembranously and endochondrally formed bones in young, rapidly growing mice. In contrast, the osteocalcin-specific β1 integrin deletion had only minor effects on skeletal phenotype.
Collapse
Affiliation(s)
- Asha Shekaran
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| | - James T Shoemaker
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Taylor E Kavanaugh
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Angela S Lin
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA
| | - Michelle C LaPlaca
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Yuhong Fan
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Robert E Guldberg
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA.
| |
Collapse
|
26
|
Docheva D, Popov C, Alberton P, Aszodi A. Integrin signaling in skeletal development and function. ACTA ACUST UNITED AC 2014; 102:13-36. [DOI: 10.1002/bdrc.21059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| |
Collapse
|
27
|
Hytönen VP, Wehrle-Haller B. Protein conformation as a regulator of cell–matrix adhesion. Phys Chem Chem Phys 2014; 16:6342-57. [DOI: 10.1039/c3cp54884h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational changes within proteins play key roles in the regulation of cell–matrix adhesion. We discuss the mechanisms involved in conformational regulation, including mechanical signals, posttranslational modifications and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Vesa P. Hytönen
- University of Tampere
- Institute of Biomedical Technology and BioMediTech
- 33520 Tampere, Finland
- Fimlab Laboratories
- 33014 Tampere, Finland
| | - Bernhard Wehrle-Haller
- University of Geneva
- Department of Cell Physiology and Metabolism
- Centre Médical Universitaire
- 1211 Geneva 4, Switzerland
| |
Collapse
|
28
|
Fisher OS, Boggon TJ. Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 2013; 71:1881-92. [PMID: 24287896 DOI: 10.1007/s00018-013-1532-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.
Collapse
Affiliation(s)
- Oriana S Fisher
- Department of Pharmacology, Yale University School of Medicine, SHM B-316A, 333 Cedar Street, New Haven, CT, 06520, USA
| | | |
Collapse
|
29
|
Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin AP, Kéramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C. CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodeling. ACTA ACUST UNITED AC 2013; 202:545-61. [PMID: 23918940 PMCID: PMC3734079 DOI: 10.1083/jcb.201303044] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of CCM1/2 leads to destabilization of ICAP-1 and up-regulation of β1 integrin, resulting in the destabilization of intercellular junctions due to increased cell contractility and aberrant extracellular matrix remodeling. The endothelial CCM complex regulates blood vessel stability and permeability. Loss-of-function mutations in CCM genes are responsible for human cerebral cavernous malformations (CCMs), which are characterized by clusters of hemorrhagic dilated capillaries composed of endothelium lacking mural cells and altered sub-endothelial extracellular matrix (ECM). Association of the CCM1/2 complex with ICAP-1, an inhibitor of β1 integrin, prompted us to investigate whether the CCM complex interferes with integrin signaling. We demonstrate that CCM1/2 loss resulted in ICAP-1 destabilization, which increased β1 integrin activation and led to increased RhoA-dependent contractility. The resulting abnormal distribution of forces led to aberrant ECM remodeling around lesions of CCM1- and CCM2-deficient mice. ICAP-1–deficient vessels displayed similar defects. We demonstrate that a positive feedback loop between the aberrant ECM and internal cellular tension led to decreased endothelial barrier function. Our data support that up-regulation of β1 integrin activation participates in the progression of CCM lesions by destabilizing intercellular junctions through increased cell contractility and aberrant ECM remodeling.
Collapse
Affiliation(s)
- Eva Faurobert
- INSERM U823, Institut Albert Bonniot, Grenoble F-38042, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bouvard D, Pouwels J, De Franceschi N, Ivaska J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 2013; 14:430-42. [DOI: 10.1038/nrm3599] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Millon-Frémillon A, Brunner M, Abed N, Collomb E, Ribba AS, Block MR, Albigès-Rizo C, Bouvard D. Calcium and calmodulin-dependent serine/threonine protein kinase type II (CaMKII)-mediated intramolecular opening of integrin cytoplasmic domain-associated protein-1 (ICAP-1α) negatively regulates β1 integrins. J Biol Chem 2013; 288:20248-60. [PMID: 23720740 DOI: 10.1074/jbc.m113.455956] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal adhesion turnover during cell migration is an integrated cyclic process requiring tight regulation of integrin function. Interaction of integrin with its ligand depends on its activation state, which is regulated by the direct recruitment of proteins onto the β integrin chain cytoplasmic domain. We previously reported that ICAP-1α, a specific cytoplasmic partner of β1A integrins, limits both talin and kindlin interaction with β1 integrin, thereby restraining focal adhesion assembly. Here we provide evidence that the calcium and calmodulin-dependent serine/threonine protein kinase type II (CaMKII) is an important regulator of ICAP-1α for controlling focal adhesion dynamics. CaMKII directly phosphorylates ICAP-1α and disrupts an intramolecular interaction between the N- and the C-terminal domains of ICAP-1α, unmasking the PTB domain, thereby permitting ICAP-1α binding onto the β1 integrin tail. ICAP-1α direct interaction with the β1 integrin tail and the modulation of β1 integrin affinity state are required for down-regulating focal adhesion assembly. Our results point to a molecular mechanism for the phosphorylation-dependent control of ICAP-1α function by CaMKII, allowing the dynamic control of β1 integrin activation and cell adhesion.
Collapse
|
32
|
Abstract
The ageing skeleton experiences a progressive decline in the rate of bone formation, which can eventually result in osteoporosis--a common disease characterized by reduced bone mass and altered bone microarchitecture which can result in fractures. One emerging therapy involves the identification of molecules that target bone-marrow mesenchymal stromal cells (MSCs) and promote their differentiation into osteoblasts, thereby counteracting bone loss. This Review highlights the discovery that some integrins, a family of heterodimeric transmembrane proteins that can interact with matrix proteins and generate intracellular signals, can be targeted to promote homing of MSCs to bone, osteogenic differentiation and bone formation. Specifically, priming of the α(5)β(1) integrin, which is required for osteoblastic differentiation of MSCs, leads to increased bone formation and improved bone repair in mice. Additionally, treatment with a peptidomimetic ligand of the α(4)β(1) integrin coupled to an agent with a high affinity for bone improves the homing of MSCs to bone and promotes osteoblast differentiation and bone formation, leading to increased bone mass in osteopenic mice. Strategies that target key integrins expressed by MSCs might, therefore, translate into improved therapies for age-related bone loss and possibly other disorders.
Collapse
Affiliation(s)
- Pierre J Marie
- Unité Mixte de Recherche 606, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
33
|
Liu W, Boggon TJ. Cocrystal structure of the ICAP1 PTB domain in complex with a KRIT1 peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:494-8. [PMID: 23695561 DOI: 10.1107/s1744309113010762] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/19/2013] [Indexed: 11/11/2022]
Abstract
Integrin cytoplasmic domain-associated protein-1 (ICAP1) is a suppressor of integrin activation and directly binds to the cytoplasmic tail of β1 integrins; its binding suppresses integrin activation by competition with talin. Krev/Rap1 interaction trapped-1 (KRIT1) releases ICAP1 suppression of integrin activation by sequestering ICAP1 away from integrin cytoplasmic tails. Here, the cocrystal structure of the PTB domain of ICAP1 in complex with a 29-amino-acid fragment (residues 170-198) of KRIT1 is presented to 1.7 Å resolution [the resolution at which 〈I/σ(I)〉 = 2.9 was 1.83 Å]. In previous studies, the structure of ICAP1 with integrin β1 was determined to 3.0 Å resolution and that of ICAP1 with the N-terminal portion of KRIT1 (residues 1-198) was determined to 2.54 Å resolution; therefore, this study provides the highest resolution structure yet of ICAP1 and allows further detailed analysis of the interaction of ICAP1 with its minimal binding region in KRIT1.
Collapse
Affiliation(s)
- Weizhi Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
34
|
Liu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ. Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 2013; 49:719-29. [PMID: 23317506 DOI: 10.1016/j.molcel.2012.12.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/04/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
KRIT1 (Krev/Rap1 Interaction Trapped-1) mutations are observed in ∼40% of autosomal-dominant cerebral cavernous malformations (CCMs), a disease occurring in up to 0.5% of the population. We show that KRIT1 functions as a switch for β1 integrin activation by antagonizing ICAP1 (Integrin Cytoplasmic Associated Protein-1)-mediated modulation of "inside-out" activation. We present cocrystal structures of KRIT1 with ICAP1 and ICAP1 with integrin β1 cytoplasmic tail to 2.54 and 3.0 Å resolution (the resolutions at which I/σI = 2 are 2.75 and 3.0 Å, respectively). We find that KRIT1 binds ICAP1 by a bidentate surface, that KRIT1 directly competes with integrin β1 to bind ICAP1, and that KRIT1 antagonizes ICAP1-modulated integrin activation using this site. We also find that KRIT1 contains an N-terminal Nudix domain, in a region previously designated as unstructured. We therefore provide insights to integrin regulation and CCM-associated KRIT1 function.
Collapse
Affiliation(s)
- Weizhi Liu
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
35
|
New insights into adhesion signaling in bone formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:1-68. [PMID: 23890379 DOI: 10.1016/b978-0-12-407695-2.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralized tissues that are protective scaffolds in the most primitive species have evolved and acquired more specific functions in modern animals. These are as diverse as support in locomotion, ion homeostasis, and precise hormonal regulation. Bone formation is tightly controlled by a balance between anabolism, in which osteoblasts are the main players, and catabolism mediated by the osteoclasts. The bone matrix is deposited in a cyclic fashion during homeostasis and integrates several environmental cues. These include diffusible elements that would include estrogen or growth factors and physicochemical parameters such as bone matrix composition, stiffness, and mechanical stress. Therefore, the microenvironment is of paramount importance for controlling this delicate equilibrium. Here, we provide an overview of the most recent data highlighting the role of cell-adhesion molecules during bone formation. Due to the very large scope of the topic, we focus mainly on the role of the integrin receptor family during osteogenesis. Bone phenotypes of some deficient mice as well as diseases of human bones involving cell adhesion during this process are discussed in the context of bone physiology.
Collapse
|
36
|
Pouwels J, Nevo J, Pellinen T, Ylänne J, Ivaska J. Negative regulators of integrin activity. J Cell Sci 2012; 125:3271-80. [PMID: 22822081 DOI: 10.1242/jcs.093641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Integrins are heterodimeric transmembrane adhesion receptors composed of α- and β-subunits. They are ubiquitously expressed and have key roles in a number of important biological processes, such as development, maintenance of tissue homeostasis and immunological responses. The activity of integrins, which indicates their affinity towards their ligands, is tightly regulated such that signals inside the cell cruicially regulate the switching between active and inactive states. An impaired ability to activate integrins is associated with many human diseases, including bleeding disorders and immune deficiencies, whereas inappropriate integrin activation has been linked to inflammatory disorders and cancer. In recent years, the molecular details of integrin 'inside-out' activation have been actively investigated. Binding of cytoplasmic proteins, such as talins and kindlins, to the cytoplasmic tail of β-integrins is widely accepted as being the crucial step in integrin activation. By contrast, much less is known with regard to the counteracting mechanism involved in switching integrins into an inactive conformation. In this Commentary, we aim to discuss the known mechanisms of integrin inactivation and the molecules involved.
Collapse
Affiliation(s)
- Jeroen Pouwels
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
37
|
Mergy J, Fournier A, Hachet E, Auzély-Velty R. Modification of polysaccharides via thiol-ene chemistry: A versatile route to functional biomaterials. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26201] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Zheng Y, Qiu J, Hu J, Wang G. Concepts and hypothesis: integrin cytoplasmic domain-associated protein-1 (ICAP-1) as a potential player in cerebral cavernous malformation. J Neurol 2012; 260:10-9. [DOI: 10.1007/s00415-012-6567-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 11/28/2022]
|
39
|
Hachet E, Van Den Berghe H, Bayma E, Block MR, Auzély-Velty R. Design of biomimetic cell-interactive substrates using hyaluronic acid hydrogels with tunable mechanical properties. Biomacromolecules 2012; 13:1818-27. [PMID: 22559074 DOI: 10.1021/bm300324m] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyaluronic acid (HA) is a natural polysaccharide abundant in biological tissues with excellent potential for constructing synthetic extracellular matrix analogues. In this work, we established a simple and dependable approach to prepare hyaluronic acid-based hydrogels with controlled stiffness and cell recognition properties for use as cell-interactive substrates. This approach relied on a new procedure for the synthesis of methacrylate-modified HA macromers (HA-MA) and, on photorheometry allowing real time monitoring of gelation during photopolymerization. We showed in this way the ability to obtain gels that encompass the range of physiologically relevant elastic moduli while still maintaining the recognition properties of HA by specific cell surface receptors. These hydrogels were prepared from HA macromers having a degree of methacrylation <0.5, which allows to minimize compromising effects on the binding affinity of HA to its cell receptors due to high substitution on the one hand, and to achieve nearly 100% conversion of the methacrylate groups on the other. When the HA hydrogels were immobilized on glass substrates, it was observed that the attachment and the spreading of a variety of mammalian cells rely on CD44 and its coreceptor RHAMM. The attachment and spreading were also shown to be modulated by the elastic properties of the HA matrix. All together, these results highlight the biological potential of these HA hydrogel systems and the needs of controlling their chemical and physical properties for applications in cell culture and tissue engineering.
Collapse
Affiliation(s)
- Emilie Hachet
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
β1 integrin signaling plays crucial roles in enteric nervous system development. Zhang and colleagues (pp. 69-81) discovered that phosphatase and actin regulator 4 (Phactr4) antagonizes β1 integrin signaling through protein phosphatase 1 (PP1) in focal adhesions of enteric neural crest cells (ENCCs). Loss of Phactr4-PP1 interaction leads to increased β1 integrin signaling, loss of collective and directional migration, and hindgut hypogangaliosis, indicating that the right adjustment of β1 integrin signaling is required for the normal migration and organization of ENCCs.
Collapse
Affiliation(s)
- Zhiqi Sun
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
41
|
Identification of genes involved in the regulation of 14-deoxy-11,12-didehydroandrographolide-induced toxicity in T-47D mammary cells. Food Chem Toxicol 2011; 50:431-44. [PMID: 22101062 DOI: 10.1016/j.fct.2011.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/30/2011] [Accepted: 11/03/2011] [Indexed: 12/19/2022]
Abstract
14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.
Collapse
|
42
|
Brunner M, Millon-Frémillon A, Chevalier G, Nakchbandi IA, Mosher D, Block MR, Albigès-Rizo C, Bouvard D. Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition. ACTA ACUST UNITED AC 2011; 194:307-22. [PMID: 21768292 PMCID: PMC3144405 DOI: 10.1083/jcb.201007108] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ICAP-1 prevents recruitment of kindlin-2 to β1 integrin to control
dynamics of fibrillar adhesion sites, fibronectin deposition, and osteoblast
mineralization during bone formation. The morphogenetic and differentiation events required for bone formation are
orchestrated by diffusible and insoluble factors that are localized within the
extracellular matrix. In mice, the deletion of ICAP-1, a modulator of β1
integrin activation, leads to severe defects in osteoblast proliferation,
differentiation, and mineralization and to a delay in bone formation. Deposition
of fibronectin and maturation of fibrillar adhesions, adhesive structures that
accompany fibronectin deposition, are impaired upon ICAP-1 loss, as are type I
collagen deposition and mineralization. Expression of β1 integrin with a
mutated binding site for ICAP-1 recapitulates the ICAP-1–null phenotype.
Follow-up experiments demonstrated that ICAP-1 negatively regulates kindlin-2
recruitment onto the β1 integrin cytoplasmic domain, whereas an excess of
kindlin-2 binding has a deleterious effect on fibrillar adhesion formation.
These results suggest that ICAP-1 works in concert with kindlin-2 to control the
dynamics of β1 integrin–containing fibrillar adhesions and,
thereby, regulates fibronectin deposition and osteoblast mineralization.
Collapse
Affiliation(s)
- Molly Brunner
- Equipe 1 Dynamique des Systèmes d'Adhérence et Différenciation Cellulaire, Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Regulation of cell-cell and cell-matrix interaction is essential for the normal physiology of metazoans and is important in many diseases. Integrin adhesion receptors can rapidly increase their affinity (integrin activation) in response to intracellular signaling events in a process termed inside-out signaling. The transmembrane domains of integrins and their interactions with the membrane are important in inside-out signaling. Moreover, integrin activation is tightly regulated by a complex network of signaling pathways. Here, we review recent progress in understanding how the membrane environment can, in cooperation with integrin-binding proteins, regulate integrin activation.
Collapse
Affiliation(s)
- Chungho Kim
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
44
|
Visvikis O, Boyer L, Torrino S, Doye A, Lemonnier M, Lorès P, Rolando M, Flatau G, Mettouchi A, Bouvard D, Veiga E, Gacon G, Cossart P, Lemichez E. Escherichia coli Producing CNF1 Toxin Hijacks Tollip to Trigger Rac1-Dependent Cell Invasion. Traffic 2011; 12:579-90. [DOI: 10.1111/j.1600-0854.2011.01174.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Régent M, Planus E, Bouin AP, Bouvard D, Brunner M, Faurobert E, Millon-Frémillon A, Block MR, Albiges-Rizo C. Specificities of β1 integrin signaling in the control of cell adhesion and adhesive strength. Eur J Cell Biol 2010; 90:261-9. [PMID: 20971526 DOI: 10.1016/j.ejcb.2010.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022] Open
Abstract
Cells exert actomyosin contractility and cytoskeleton-dependent force in response to matrix stiffness cues. Cells dynamically adapt to force by modifying their behavior and remodeling their microenvironment. This adaptation is favored by integrin activation switch and their ability to modulate their clustering and the assembly of an intracellular hub in response to force. Indeed integrins are mechanoreceptors and mediate mechanotransduction by transferring forces to specific adhesion proteins into focal adhesions which are sensitive to tension and activate intracellular signals. α(5)β(1) integrin is considered of major importance for the formation of an elaborate meshwork of fibronectin fibrils and for the extracellular matrix deposition and remodeling. Here we summarize recent progress in the study of mechanisms regulating the activation cycle of β(1) integrin and the specificity of α(5)β(1) integrin in mechanotransduction.
Collapse
Affiliation(s)
- Myriam Régent
- INSERM U823 Institut Albert Bonniot, Université Joseph Fourier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Destaing O, Planus E, Bouvard D, Oddou C, Badowski C, Bossy V, Raducanu A, Fourcade B, Albiges-Rizo C, Block MR. β1A integrin is a master regulator of invadosome organization and function. Mol Biol Cell 2010; 21:4108-19. [PMID: 20926684 PMCID: PMC2993740 DOI: 10.1091/mbc.e10-07-0580] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Use of patterned surfaces, reverse genetics, and time-controlled photoinactivation showed that β1 but not β3 integrins are required for invadosome formation, self-assembly, and stabilization into a ring structure. The activation state of β1 as well as its phosphorylation by protein kinase C on Ser785 control these process and link to the degradative function. Invadosomes are adhesion structures involved in tissue invasion that are characterized by an intense actin polymerization–depolymerization associated with β1 and β3 integrins and coupled to extracellular matrix (ECM) degradation activity. We induced the formation of invadosomes by expressing the constitutive active form of Src, SrcYF, in different cell types. Use of ECM surfaces micropatterned at the subcellular scale clearly showed that in mesenchymal cells, integrin signaling controls invadosome activity. Using β1−/− or β3−/− cells, it seemed that β1A but not β3 integrins are essential for initiation of invadosome formation. Protein kinase C activity was shown to regulate autoassembly of invadosomes into a ring-like metastructure (rosette), probably by phosphorylation of Ser785 on the β1A tail. Moreover, our study clearly showed that β1A links actin dynamics and ECM degradation in invadosomes. Finally, a new strategy based on fusion of the photosensitizer KillerRed to the β1A cytoplasmic domain allowed specific and immediate loss of function of β1A, resulting in disorganization and disassembly of invadosomes and formation of focal adhesions.
Collapse
Affiliation(s)
- Olivier Destaing
- Institut Albert Bonniot, Université Joseph Fourier, Centre National de la Recherche Scientifique, and Institute National de la Santé et de la Recherche Médicale-Université Joseph Fourier U823 Site Santé BP 170, Grenoble 38042, Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brütsch R, Liebler SS, Wüstehube J, Bartol A, Herberich SE, Adam MG, Telzerow A, Augustin HG, Fischer A. Integrin Cytoplasmic Domain–Associated Protein-1 Attenuates Sprouting Angiogenesis. Circ Res 2010; 107:592-601. [DOI: 10.1161/circresaha.110.217257] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- René Brütsch
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Sven S. Liebler
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Joycelyn Wüstehube
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Arne Bartol
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Stefanie E. Herberich
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - M. Gordian Adam
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Anja Telzerow
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Hellmut G. Augustin
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Andreas Fischer
- From the Vascular Biology and Tumor Angiogenesis (R.B., S.S.L., J.W., A.B., S.E.H., M.G.A., A.T., H.G.A., A.F.), Medical Faculty Mannheim (CBTM), Heidelberg University, Mannheim; and Vascular Oncology and Metastasis (S.S.L., J.W., A.B., S.E.H., M.G.A., H.G.A., A.F.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| |
Collapse
|
48
|
Snyder EM, Small CL, Bomgardner D, Xu B, Evanoff R, Griswold MD, Hinton BT. Gene expression in the efferent ducts, epididymis, and vas deferens during embryonic development of the mouse. Dev Dyn 2010; 239:2479-91. [PMID: 20652947 PMCID: PMC2939230 DOI: 10.1002/dvdy.22378] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tissues of the male reproductive tract are characterized by distinct morphologies, from highly coiled to un-coiled. Global gene expression profiles of efferent ducts, epididymis, and vas deferens were generated from embryonic day 14.5 to postnatal day 1 as tissue-specific morphologies emerge. Expression of homeobox genes, potential mediators of tissue-specific morphological development, was assessed. Twenty homeobox genes were identified as either tissue-enriched, developmentally regulated, or both. Additionally, ontology analysis demonstrated cell adhesion to be highly regulated along the length of the reproductive tract. Regulators of cell adhesion with variable expression between the three tissues were identified including Alcam, various cadherins, and multiple integrins. Immunofluorescence localization of the cell adhesion regulators POSTN and CDH2 demonstrated cell adhesion in the epithelium and mesenchyme of the epididymis may change throughout development. These results suggest cell adhesion may be modulated in a tissue-specific manner, playing an important role in establishing each tissue's final morphology.
Collapse
Affiliation(s)
- Elizabeth M Snyder
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Johnston J, Ramos-Valdes Y, Stanton LA, Ladhani S, Beier F, Dimattia GE. Human stanniocalcin-1 or -2 expressed in mice reduces bone size and severely inhibits cranial intramembranous bone growth. Transgenic Res 2010; 19:1017-39. [PMID: 20174869 DOI: 10.1007/s11248-010-9376-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 02/04/2010] [Indexed: 01/27/2023]
Abstract
Stanniocalcin-1 (STC1) and -2 (STC2) are highly related, secreted, homodimeric glycoproteins that are significantly upregulated by different forms of stress including high phosphate levels. Transgenic mice that constitutively express either human STC1 or STC2 exhibit intra-uterine growth restriction and permanent post-natal growth retardation. STC1 is expressed in chondrocytic and osteoblastic cells during murine development and can enhance differentiation of calvarial cells in culture. Therefore, there is mounting evidence that stanniocalcins (STCs) modulate bone development in vivo. To further define the effects of stanniocalcins on skeletal development, we performed a series of measurements on components of the axial, appendicular, and cranial skeleton in transgenic and wildtype mice. We show that skeletal growth is retarded and that the intramembranous bones of the cranium exhibit a particularly severe delay in suture closure. The posterior frontal suture remains patent throughout the lifetime of human STC1 and STC2 transgenic mice. We did not observe significant effects on chondrogenesis: however, calvarial cells exhibited reduced viability, proliferation and delayed differentiation, indicating that developing osteoblasts are particularly sensitive to the levels of STCs. Given the evidence linking STC1 to cellular phosphate homeostasis, we assessed the expression of a variety of phosphate regulators in transgenic and wildtype calvarial cells and found significantly lower levels of Mepe, Dmp1, Sfrp4 in transgenic cells without a change in Pit1 or Pit2. Collectively these data support a direct regulatory role for STCs in osteoblasts and suggest that overexposure to these factors inhibits normal skeletal development without significant changes in patterning.
Collapse
Affiliation(s)
- Jennifer Johnston
- Cancer Research Laboratory Program, London Regional Cancer Program (LRCP), 790 Commissioners Rd, Room A4-921, London, ON, N6A 4L6, Canada
| | | | | | | | | | | |
Collapse
|
50
|
|