1
|
Proteome of larval metamorphosis induced by epinephrine in the Fujian oyster Crassostrea angulata. BMC Genomics 2020; 21:675. [PMID: 32993483 PMCID: PMC7525975 DOI: 10.1186/s12864-020-07066-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Background The Fujian oyster Crassostrea angulata is an economically important species that has typical settlement and metamorphosis stages. The development of the oyster involves complex morphological and physiological changes, the molecular mechanisms of which are as yet unclear. Results In this study, changes in proteins were investigated during larval settlement and metamorphosis of Crassostrea angulata using epinephrine induction. Protein abundance and identity were characterized using label-free quantitative proteomics, tandem mass spectrometry (MS/ MS), and Mascot methods. The results showed that more than 50% (764 out of 1471) of the quantified proteins were characterized as differentially expressed. Notably, more than two-thirds of the differentially expressed proteins were down-regulated in epinephrine-induced larvae. The results showed that “metabolic process” was closely related to the development of settlement and metamorphosis; 5 × 10− 4 M epinephrine induced direct metamorphosis of larvae and was non-toxic. Calmodulin and MAPK pathways were involved in the regulation of settlement of the oyster. Expression levels of immune-related proteins increased during metamorphosis. Hepatic lectin-like proteins, cadherins, calmodulin, calreticulin, and cytoskeletal proteins were involved in metamorphosis. The nervous system may be remodeled in larval metamorphosis induced by epinephrine. Expression levels of proteins that were enriched in the epinephrine signaling pathway may reflect the developmental stage of the larvae, that may reflect whether or not larvae were directly involved in metamorphosis when the larvae were treated with epinephrine. Conclusion The study provides insight into proteins that function in energy metabolism, immune responses, settlement and metamorphosis, and shell formation in C. angulata. The results contribute valuable information for further research on larval settlement and metamorphosis. Graphical abstract ![]()
Collapse
|
2
|
Maiorova MA, Satoh N, Khalturin K, Odintsova NA. Transcriptomic profiling of the mussel Mytilus trossulus with a special emphasis on integrin-like genes during development. INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1626774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mariia A. Maiorova
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Noriyuki Satoh
- Marine Genomcs Unit, Okinawa Institute Science & Technology, Okinawa, Japan
| | | | - Nelly A. Odintsova
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, The Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
- Marine Invertebrate Biology Interfaculty Laboratory, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
3
|
Shen M, Di G, Li M, Fu J, Dai Q, Miao X, Huang M, You W, Ke C. Proteomics Studies on the three Larval Stages of Development and Metamorphosis of Babylonia areolata. Sci Rep 2018; 8:6269. [PMID: 29674673 PMCID: PMC5908917 DOI: 10.1038/s41598-018-24645-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
The ivory shell, Babylonia areolata, is a commercially important aquaculture species in the southeast coast of mainland China. The middle veliger stage, later veliger stage, and juvenile stage are distinct larval stages in B. areolata development. In this study, we used label-free quantification proteomics analysis of the three developmental stages of B. areolata. We identified a total of 5,583 proteins, of which 1,419 proteins expression level showed significant differential expression. The results of gene ontology enrichment analysis showed that the number of proteins involved in metabolic and cellular processes were the most abundant. Those proteins mostly had functions such as binding, catalytic activity and transporter activity. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the number of proteins involved in the ribosome, carbon metabolism, and lysosome pathways were the most abundant, indicating that protein synthesis and the immune response were active during the three stages of development. This is the first study to use proteomics and real-time PCR to study the early developmental stages of B. areolata, which could provide relevant data on gastropod development. Our results provide insights into the novel aspects of protein function in shell formation, body torsion, changes in feeding habits, attachment and metamorphosis, immune-related activities in B. areolata larvae.
Collapse
Affiliation(s)
- Minghui Shen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Hainan Academy of Ocean and Fisheries Sciences, Haikou, 570206, China
| | - Guilan Di
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China. .,College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Min Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jingqiang Fu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Qi Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiulian Miao
- College of Life Sciences, Liaocheng University, Liaocheng, 252059, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
4
|
Zhang X, Liu X, Liu C, Wei J, Yu H, Dong B. Identification and characterization of microRNAs involved in ascidian larval metamorphosis. BMC Genomics 2018; 19:168. [PMID: 29490613 PMCID: PMC5831862 DOI: 10.1186/s12864-018-4566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/22/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metamorphosis takes place within the life cycle of most marine invertebrates. The marine ascidian is a classical model to study complex cellular processes and underlying molecular mechanisms involved in its larval metamorphosis. The detailed molecular signaling pathways remain elusive, though extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinase (JNK) have been revealed to regulate cell migration, differentiation, and apoptosis in ascidian larval organ regression and juvenile organ development. MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression at the post-transcriptional level. Large numbers of miRNAs have been demonstrated to be involved in many developmental and metamorphic processes. However, the identification of miRNAs in ascidian larval metamorphosis has not yet been investigated. RESULTS Totally, 106 known and 59 novel miRNAs were screened out through RNA-sequencing of three small RNA libraries from 18 to 21-h post-fertilization (hpf) tailbud embryos as well as from 42 hpf larvae (after tail regression) in Ciona savignyi. Expression profiling of miRNAs was confirmed by quantitative real-time PCR, showing that the expression levels of csa-miR-4040, csa-miR-4086, csa-miR-4055, csa-miR-4060, csa-miR-216a, csa-miR-216b, csa-miR-217, csa-miR-183, and csa-miR-92c were significantly higher in 42 hpf larvae, whereas those of csa-miR-4018a, csa-miR-4018b, and csa-miR-4000f were higher in 18 and 21 hpf embryos; then, their expression in 42 hpf larvae became significantly low. For these 12 miRNAs, whose expression levels significantly changed, we predicted their target genes through the combination of miRanda and TargetScan. This prediction analysis revealed 332 miRNA-target gene pairs that were associated with the ERK, JNK, and transforming growth factor beta signaling pathways, suggesting that the identified miRNAs are involved in the regulation of C. savignyi larval metamorphosis via controlling the expression of their target genes. Furthermore, we validated the expression of five selected miRNAs by northern blotting. Among the selected miRNAs, the expression patterns of csa-miR-4018a, csa-miR-4018b, and csa-miR-4000f were further examined by whole-mount in situ hybridization. The results showed that all three miRNAs were specifically expressed in a cell population resembling mesenchymal cells at the head and trunk part in swimming larvae but not in metamorphic larvae. Utilizing the luciferase assay, we also confirmed that miR-4000f targeted Mapk1, suggesting that the csa-miR-4018a/csa-miR-4018b/csa-miR-4000f cluster regulates larval metamorphosis through the Mapk1-mediated signaling pathway. CONCLUSIONS Totally, 165 miRNAs, including 59 novel ones, were identified from the embryos and larvae of C. savignyi. Twelve of them showed significant changes in expression before and during metamorphosis. In situ hybridization and northern blotting results revealed that three miRNAs are potentially involved in the signaling regulatory network for the migration and differentiation of mesenchymal cells in larval metamorphosis. Furthermore, the luciferase reporter assay revealed that Mapk1 is a target of csa-miR-4000f. Our results not only present a list and profile of miRNAs involved in Ciona metamorphosis but also provide informative cues to further understand their function in ascidian larval metamorphosis.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Xiaozhuo Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Chengzhang Liu
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Haiyan Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003 People’s Republic of China
| |
Collapse
|
5
|
Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci U S A 2016; 113:10097-102. [PMID: 27551098 DOI: 10.1073/pnas.1603142113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.
Collapse
|
6
|
Karaiskou A, Swalla BJ, Sasakura Y, Chambon JP. Metamorphosis in solitary ascidians. Genesis 2014; 53:34-47. [PMID: 25250532 DOI: 10.1002/dvg.22824] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/19/2022]
Abstract
Embryonic and postembryonic development in ascidians have been studied for over a century, but it is only in the last 10 years that the complex molecular network involved in coordinating postlarval development and metamorphosis has started to emerge. In most ascidians, the transition from the larval to the sessile juvenile/adult stage, or metamorphosis, requires a combination of environmental and endogenous signals and is characterized by coordinated global morphogenetic changes that are initiated by the adhesion of the larvae. Cloney was the first to describe cellular events of ascidians' metamorphosis in 1978 and only recently elements of the molecular regulation of this crucial developmental step have been revealed. This review aims to present a thorough view of this crucial developmental step by combining recent molecular data to the already established cellular events.
Collapse
Affiliation(s)
- Anthi Karaiskou
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622-Biologie du Développement, Paris, France
| | | | | | | |
Collapse
|
7
|
Ueda N, Degnan SM. Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus. PLoS One 2013; 8:e72797. [PMID: 24019877 PMCID: PMC3760835 DOI: 10.1371/journal.pone.0072797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/12/2013] [Indexed: 12/13/2022] Open
Abstract
Marine invertebrates commonly have a biphasic life cycle in which the metamorphic transition from a pelagic larva to a benthic post-larva is mediated by the nitric oxide signalling pathway. Nitric oxide (NO) is synthesised by nitric oxide synthase (NOS), which is a client protein of the molecular chaperon heat shock protein 90 (HSP90). It is notable, then, that both NO and HSP90 have been implicated in regulating metamorphosis in marine invertebrates as diverse as urochordates, echinoderms, molluscs, annelids, and crustaceans. Specifically, the suppression of NOS activity by the application of either NOS- or HSP90-inhibiting pharmacological agents has been shown consistently to induce the initiation of metamorphosis, leading to the hypothesis that a negative regulatory role of NO is widely conserved in biphasic life cycles. Further, the induction of metamorphosis by heat-shock has been demonstrated for multiple species. Here, we investigate the regulatory role of NO in induction of metamorphosis of the solitary tropical ascidian, Herdmania momus. By coupling pharmacological treatments with analysis of HmNOS and HmHSP90 gene expression, we present compelling evidence of a positive regulatory role for NO in metamorphosis of this species, in contrast to all existing ascidian data that supports the hypothesis of NO as a conserved negative regulator of metamorphosis. The exposure of competent H. momus larvae to a NOS inhibitor or an NO donor results in an up-regulation of NOS and HSP90 genes. Heat shock of competent larvae induces metamorphosis in a temperature dependent manner, up to a thermal tolerance that approaches 35°C. Both larval/post-larval survival and the appearance of abnormal morphologies in H. momus post-larvae reflect the magnitude of up-regulation of the HSP90 gene in response to heat-shock. The demonstrated role of NO as a positive metamorphic regulator in H. momus suggests the existence of inter-specific adaptations of NO regulation in ascidian metamorphosis.
Collapse
Affiliation(s)
- Nobuo Ueda
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
8
|
Tait K, Havenhand J. Investigating a possible role for the bacterial signal molecules N-acylhomoserine lactones in Balanus improvisus cyprid settlement. Mol Ecol 2013; 22:2588-602. [PMID: 23506419 DOI: 10.1111/mec.12273] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 01/29/2023]
Abstract
Increased settlement on bacterial biofilms has been demonstrated for a number of marine invertebrate larvae, but the nature of the cue(s) responsible is not well understood. We tested the hypothesis that the bay barnacle Balanus improvisus utilizes the bacterial signal molecules N-acylhomoserine lactones (AHLs) as a cue for the selection of sites for permanent attachment. Single species biofilms of the AHL-producing bacteria Vibrio anguillarum, Aeromonas hydrophila and Sulfitobacter sp. BR1 were attractive to settling cypris larvae of B. improvisus. However, when AHL production was inactivated, either by mutation of the AHL synthetic genes or by expression of an AHL-degrading gene (aiiA), the ability of the bacteria to attract cyprids was abolished. In addition, cyprids actively explored biofilms of E. coli expressing the recombinant AHL synthase genes luxI from Vibrio fischeri (3-oxo-C6-HSL), rhlI from Pseudomonas aeruginosa (C4-HSL/C6-HSL), vanI from V. anguillarum (3-oxo-C10-HSL) and sulI from Sulfitobacter sp. BR1 (C4-HSL, 3-hydroxy-C6-HSL, C8-HSL and 3-hydroxy-C10-HSL), but not E. coli that did not produce AHLs. Finally, synthetic AHLs (C8-HSL, 3-oxo-C10-HSL and C12-HSL) at concentrations similar to those found within natural biofilms (5 μm) resulted in increased cyprid settlement. Thus, B. improvisus cypris exploration of and settlement on biofilms appears to be mediated by AHL-signalling bacteria in the laboratory. This adds to our understanding of how quorum sensing inhibition may be used as for biofouling control. Nonetheless, the significance of our results for larvae settling naturally in the field, and the mechanisms that underlay the observed responses to AHLs, is as yet unknown.
Collapse
Affiliation(s)
- Karen Tait
- Plymouth Marine Laboratory, Plymouth, UK.
| | | |
Collapse
|
9
|
Conaco C, Neveu P, Zhou H, Arcila ML, Degnan SM, Degnan BM, Kosik KS. Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions. BMC Genomics 2012; 13:209. [PMID: 22646746 PMCID: PMC3447736 DOI: 10.1186/1471-2164-13-209] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 04/02/2012] [Indexed: 11/22/2022] Open
Abstract
Background The biphasic life cycle with pelagic larva and benthic adult stages is widely observed in the animal kingdom, including the Porifera (sponges), which are the earliest branching metazoans. The demosponge, Amphimedon queenslandica, undergoes metamorphosis from a free-swimming larva into a sessile adult that bears no morphological resemblance to other animals. While the genome of A. queenslandica contains an extensive repertoire of genes very similar to that of complex bilaterians, it is as yet unclear how this is drawn upon to coordinate changing morphological features and ecological demands throughout the sponge life cycle. Results To identify genome-wide events that accompany the pelagobenthic transition in A. queenslandica, we compared global gene expression profiles at four key developmental stages by sequencing the poly(A) transcriptome using SOLiD technology. Large-scale changes in transcription were observed as sponge larvae settled on the benthos and began metamorphosis. Although previous systematics suggest that the only clear homology between Porifera and other animals is in the embryonic and larval stages, we observed extensive use of genes involved in metazoan-associated cellular processes throughout the sponge life cycle. Sponge-specific transcripts are not over-represented in the morphologically distinct adult; rather, many genes that encode typical metazoan features, such as cell adhesion and immunity, are upregulated. Our analysis further revealed gene families with candidate roles in competence, settlement, and metamorphosis in the sponge, including transcription factors, G-protein coupled receptors and other signaling molecules. Conclusions This first genome-wide study of the developmental transcriptome in an early branching metazoan highlights major transcriptional events that accompany the pelagobenthic transition and point to a network of regulatory mechanisms that coordinate changes in morphology with shifting environmental demands. Metazoan developmental and structural gene orthologs are well-integrated into the expression profiles at every stage of sponge development, including the adult. The utilization of genes involved in metazoan-associated processes throughout sponge development emphasizes the potential of the genome of the last common ancestor of animals to generate phenotypic complexity.
Collapse
Affiliation(s)
- Cecilia Conaco
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Gauthier MEA, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev 2011; 12:519-33. [PMID: 20883219 DOI: 10.1111/j.1525-142x.2010.00436.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Members of the Toll-like receptor (TLR) and the interleukin 1 receptor (IL1R) superfamilies activate various signaling cascades that are evolutionarily conserved in eumetazoans. In this study, we have searched the genome and expressed sequence tags of the demosponge Amphimedon queenslandica for molecules involved in TLR and IL1R signaling. Although we did not identify a conventional TLR or ILR, the Amphimedon genome encodes two related receptors, AmqIgTIRs, which are comprised of at least three extracellular IL1R-like immunoglobulins (Ig) and an intracellular TLR-like Toll/interleukin1 receptor/resistance (TIR) domain. The remainder of the TLR/IL1R pathway is mostly conserved in Amphimedon and includes genes known to interact with TLRs and IL1Rs in bilaterians, such as Toll-interacting protein (Tollip) and myeloid differentiation factor 88 (MyD88). By comparing the sponge genome to that of nonmetazoan eukaryotes and other basal animal phyla (i.e., placozoan and cnidarian representatives) we can infer that most components of the signaling cascade, including the receptors, evolved after the divergence of metazoan, and choanoflagellate lineages. In most cases, these proteins are composed of metazoan-specific domains (e.g., Pellino) or architectures (e.g., the association of a death domain with a TIR domain in the MyD88). The dynamic expression of the two AmqIgTIRs, AmqMyD88, AmqTollip, and AmqPellino during Amphimedon embryogenesis and larval development is consistent with the TLR/IL1R pathway having a role in both development and immunity in the last common metazoan ancestor.
Collapse
Affiliation(s)
- Marie E A Gauthier
- School of Biological Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
11
|
Hadfield MG. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:453-70. [PMID: 21329213 DOI: 10.1146/annurev-marine-120709-142753] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Communities of microorganisms form thin coats across solid surfaces in the sea. Larvae of many marine invertebrates use biofilm components as cues to appropriate settlement sites. Research on the tube-dwelling polychaete worm Hydroides elegans, a globally common member of biofouling communities, is described to exemplify approaches to understanding biofilm bacteria as a source of settlement cues and larvae as bearers of receptors for bacterial cues. The association of species of the bacterial genus Pseudoalteromonas with larval settlement in many phyla is described, and the question of whether cues are soluble or surface-bound is reviewed, concluding that most evidence points to surface-bound cues. Seemingly contradictory data for stimulation of barnacle settlement are discussed; possibly both explanations are true. Paleontological evidence reveals a relationship between metazoans and biofilms very early in metazoan evolution, and thus the receptors for bacterial cues of invertebrate larvae are very old and possibly unique. Finally, despite more than 60 years of intense investigation, we still know very little about either the bacterial ligands that stimulate larval settlement or the cellular basis of their detection by larvae.
Collapse
Affiliation(s)
- Michael G Hadfield
- Kewalo Marine Laboratory and Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA.
| |
Collapse
|
12
|
Degnan SM, Degnan BM. The initiation of metamorphosis as an ancient polyphenic trait and its role in metazoan life-cycle evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365:641-51. [PMID: 20083639 DOI: 10.1098/rstb.2009.0248] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Comparative genomics of representative basal metazoans leaves little doubt that the most recent common ancestor to all modern metazoans was morphogenetically complex. Here, we support this interpretation by demonstrating that the demosponge Amphimedon queenslandica has a biphasic pelagobenthic life cycle resembling that present in a wide range of bilaterians and anthozoan cnidarians. The A. queenslandica life cycle includes a compulsory planktonic larval phase that can end only once the larva develops competence to respond to benthic signals that induce settlement and metamorphosis. The temporal onset of competence varies between individuals as revealed by idiosyncratic responses to inductive cues. Thus, the biphasic life cycle with a dispersing larval phase of variable length appears to be a metazoan synapomorphy and may be viewed as an ancestral polyphenic trait. Larvae of a particular age that are subjected to an inductive cue either maintain the larval form or metamorphose into the post-larval/juvenile form. Variance in the development of competence dictates that only a subset of a larval cohort will settle and undergo metamorphosis at a given time, which in turn leads to variation in dispersal distance and in location of settlement. Population divergence and allopatric speciation are likely outcomes of this conserved developmental polyphenic trait.
Collapse
Affiliation(s)
- Sandie M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
13
|
Bacchetti De Gregoris T, Borra M, Biffali E, Bekel T, Burgess JG, Kirby RR, Clare AS. Construction of an adult barnacle (Balanus amphitrite) cDNA library and selection of reference genes for quantitative RT-PCR studies. BMC Mol Biol 2009; 10:62. [PMID: 19552808 PMCID: PMC2713238 DOI: 10.1186/1471-2199-10-62] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 06/24/2009] [Indexed: 11/10/2022] Open
Abstract
Background Balanus amphitrite is a barnacle commonly used in biofouling research. Although many aspects of its biology have been elucidated, the lack of genetic information is impeding a molecular understanding of its life cycle. As part of a wider multidisciplinary approach to reveal the biogenic cues influencing barnacle settlement and metamorphosis, we have sequenced and annotated the first cDNA library for B. amphitrite. We also present a systematic validation of potential reference genes for normalization of quantitative real-time PCR (qRT-PCR) data obtained from different developmental stages of this animal. Results We generated a cDNA library containing expressed sequence tags (ESTs) from adult B. amphitrite. A total of 609 unique sequences (comprising 79 assembled clusters and 530 singlets) were derived from 905 reliable unidirectionally sequenced ESTs. Bioinformatics tools such as BLAST, HMMer and InterPro were employed to allow functional annotation of the ESTs. Based on these analyses, we selected 11 genes to study their ability to normalize qRT-PCR data. Total RNA extracted from 7 developmental stages was reverse transcribed and the expression stability of the selected genes was compared using geNorm, BestKeeper and NormFinder. These software programs produced highly comparable results, with the most stable gene being mt-cyb, while tuba, tubb and cp1 were clearly unsuitable for data normalization. Conclusion The collection of B. amphitrite ESTs and their annotation has been made publically available representing an important resource for both basic and applied research on this species. We developed a qRT-PCR assay to determine the most reliable reference genes. Transcripts encoding cytochrome b and NADH dehydrogenase subunit 1 were expressed most stably, although other genes also performed well and could prove useful to normalize gene expression studies.
Collapse
|
14
|
WILLIAMS ELIZABETHA, DEGNAN BERNARDM, GUNTER HELEN, JACKSON DANIELJ, WOODCROFT BENJ, DEGNAN SANDIEM. Widespread transcriptional changes pre-empt the critical pelagic-benthic transition in the vetigastropodHaliotis asinina. Mol Ecol 2009; 18:1006-25. [DOI: 10.1111/j.1365-294x.2008.04078.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Nakayama-Ishimura A, Chambon JP, Horie T, Satoh N, Sasakura Y. Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev Biol 2009; 326:357-67. [DOI: 10.1016/j.ydbio.2008.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/10/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
16
|
Grasso LC, Maindonald J, Rudd S, Hayward DC, Saint R, Miller DJ, Ball EE. Microarray analysis identifies candidate genes for key roles in coral development. BMC Genomics 2008; 9:540. [PMID: 19014561 PMCID: PMC2629781 DOI: 10.1186/1471-2164-9-540] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/14/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Anthozoan cnidarians are amongst the simplest animals at the tissue level of organization, but are surprisingly complex and vertebrate-like in terms of gene repertoire. As major components of tropical reef ecosystems, the stony corals are anthozoans of particular ecological significance. To better understand the molecular bases of both cnidarian development in general and coral-specific processes such as skeletogenesis and symbiont acquisition, microarray analysis was carried out through the period of early development - when skeletogenesis is initiated, and symbionts are first acquired. RESULTS Of 5081 unique peptide coding genes, 1084 were differentially expressed (P <or= 0.05) in comparisons between four different stages of coral development, spanning key developmental transitions. Genes of likely relevance to the processes of settlement, metamorphosis, calcification and interaction with symbionts were characterised further and their spatial expression patterns investigated using whole-mount in situ hybridization. CONCLUSION This study is the first large-scale investigation of developmental gene expression for any cnidarian, and has provided candidate genes for key roles in many aspects of coral biology, including calcification, metamorphosis and symbiont uptake. One surprising finding is that some of these genes have clear counterparts in higher animals but are not present in the closely-related sea anemone Nematostella. Secondly, coral-specific processes (i.e. traits which distinguish corals from their close relatives) may be analogous to similar processes in distantly related organisms. This first large-scale application of microarray analysis demonstrates the potential of this approach for investigating many aspects of coral biology, including the effects of stress and disease.
Collapse
Affiliation(s)
- Lauretta C Grasso
- Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
Affiliation(s)
- Patrick Lemaire
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS-Université de la Méditerranée, case 907, Campus de Luminy, F-13288 Marseille cedex 9, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106. USA
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
18
|
de la Vega E, Hall MR, Wilson KJ, Reverter A, Woods RG, Degnan BM. Stress-induced gene expression profiling in the black tiger shrimp Penaeus monodon. Physiol Genomics 2007; 31:126-38. [PMID: 17566080 DOI: 10.1152/physiolgenomics.00068.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cultured shrimp are continuously exposed to variable environmental conditions that have been associated with stress and subsequent outbreaks of disease. To investigate the effect of environmental stress on Penaeus monodon gene expression, a 3,853 random cDNA microarray chip was generated with clones originating from six stress-enriched hemocyte libraries generated by suppression subtractive hybridization and a normal hemocyte cDNA library. Changes in temporal gene expression were analyzed from shrimp exposed to hypoxic, hyperthermic, and hypoosmotic conditions; 3.1% of the cDNAs were differentially expressed in response to at least one of the environmental stressors, and 72% of the differentially expressed clones had no significant sequence similarity to previously known genes. Among those genes with high identity to known sequences, the most common functional groups were immune-related genes and non-long terminal repeat retrotransposons. Hierarchical clustering revealed a set of cDNAs with temporal and stress-specific gene expression profiles as well as a set of cDNAs indicating a common stress response between stressors. Hypoxic and hyperthermic stressors induced the most severe short-term response in terms of gene regulation, and the osmotic stress had the least variation in expression profiles relative to the control. These expression data agree with observed differences in shrimp physical appearance and behavior following exposure to stress conditions.
Collapse
Affiliation(s)
- Enrique de la Vega
- Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Gyoja F, Satou Y, Shin-i T, Kohara Y, Swalla BJ, Satoh N. Analysis of large scale expression sequenced tags (ESTs) from the anural ascidian, Molgula tectiformis. Dev Biol 2007; 307:460-82. [PMID: 17540363 DOI: 10.1016/j.ydbio.2007.03.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 03/19/2007] [Accepted: 03/23/2007] [Indexed: 11/27/2022]
Abstract
Anural ascidians show embryogenesis during which tail formation does not take place. This mode of development is a derived character acquired several times independently in ascidian evolution. We identified approximately 20,000 each ESTs (i. e. 10,000 clones each were sequenced from both 5' and 3' ends) of adult gonads, cleaving-embryos, gastrulae/neurulae, embryos before hatching, and hatched larvae of the anural ascidian Molgula tectiformis, in order to comprehensively investigate the molecular mechanism of tailless evolution. Analyses of these ESTs showed that in this species, (1) the expression of embryonic/larval muscle structural genes which are expressed abundantly during embryogenesis of the urodele ascidian Ciona intestinalis, is suppressed; (2) genes that encode proteins with no similarity to known proteins of other organisms are abundantly expressed; (3) genes that show similarity with those up-regulated at metamorphosis in urodele ascidians are up-regulated within several hours after hatching; and (4) 15 of 35 putative orthologues of the downstream components of Brachyury, a key transcription factor for ascidian notochord formation, were found in the ESTs, even though differentiation of notochord is suppressed in this species. We discuss these remarkable results that allow insight into the molecular mechanism(s) responsible for the anural mode of ascidian development.
Collapse
Affiliation(s)
- Fuki Gyoja
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Chambon JP, Nakayama A, Takamura K, McDougall A, Satoh N. ERK- and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissues of ascidian tadpoles. Development 2007; 134:1203-19. [PMID: 17332536 DOI: 10.1242/dev.002220] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ascidian tadpoles, metamorphosis is triggered by a polarized wave of apoptosis, via mechanisms that are largely unknown. We demonstrate that the MAP kinases ERK and JNK are both required for the wave of apoptosis and metamorphosis. By employing a gene-profiling-based approach, we identified the network of genes controlled by either ERK or JNK activity that stimulate the onset of apoptosis. This approach identified a gene network involved in hormonal signalling, in innate immunity, in cell-cell communication and in the extracellular matrix. Through gene silencing, we show that Ci-sushi, a cell-cell communication protein controlled by JNK activity, is required for the wave of apoptosis that precedes tail regression. These observations lead us to propose a model of metamorphosis whereby JNK activity in the CNS induces apoptosis in several adjacent tissues that compose the tail by inducing the expression of genes such as Ci-sushi.
Collapse
Affiliation(s)
- Jean-Philippe Chambon
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
21
|
Roberts B, Davidson B, MacMaster G, Lockhart V, Ma E, Wallace SS, Swalla BJ. A complement response may activate metamorphosis in the ascidian Boltenia villosa. Dev Genes Evol 2007; 217:449-58. [PMID: 17497166 DOI: 10.1007/s00427-007-0157-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 04/09/2007] [Indexed: 12/11/2022]
Abstract
Ascidian metamorphosis transforms a free-swimming larval chordate ascidian into a sessile adult through a distinct series of metamorphic events. Initially, larvae must become competent to respond to settlement cues. Settlement is then marked by dramatic body plan remodeling and may be accompanied by attachment to the substrate. Subtractive hybridization has revealed that many innate immunity transcripts are upregulated during metamorphosis in the ascidian Boltenia villosa. Several of these genes have well-known roles in the mannose-binding lectin (MBL)-complement pathway of innate immunity, including MBL and MBL-activated serine protease (MASP). MBL recognizes and binds to bacterial pathogens, activates MASP, and triggers the complement cascade. In B. villosa, larvae upregulate BvMASP at the time of competency to initiate settlement. We show that several bacterial strains can induce settlement and that the timing of BvMASP expression in the papillae-associated tissue (PAT) cells is tightly correlated with larval competency. We further demonstrate that serine protease inhibitors used to block the complement response also block metamorphosis, allowing tail resorption, but preventing further morphological changes. Based on these experiments, we propose that the MBL-complement pathway may be important for competency, bacterial substrate detection and body plan remodeling during metamorphosis.
Collapse
Affiliation(s)
- Brock Roberts
- Biology Department and Center for Developmental Biology, 24 Kincaid Hall, University of Washington, P.O. Box 351800, Seattle, WA 98195-1800, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Comes S, Locascio A, Silvestre F, d'Ischia M, Russo GL, Tosti E, Branno M, Palumbo A. Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Dev Biol 2007; 306:772-84. [PMID: 17499701 DOI: 10.1016/j.ydbio.2007.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 01/30/2023]
Abstract
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.
Collapse
Affiliation(s)
- Stefania Comes
- Biochemistry and Molecular Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sellars MJ, Vuocolo T, Leeton LA, Coman GJ, Degnan BM, Preston NP. Real-time RT-PCR quantification of Kuruma shrimp transcripts: a comparison of relative and absolute quantification procedures. J Biotechnol 2007; 129:391-9. [PMID: 17350129 DOI: 10.1016/j.jbiotec.2007.01.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 01/12/2007] [Accepted: 01/26/2007] [Indexed: 11/18/2022]
Abstract
Housekeeping genes are often used as references when quantifying the relative abundance of transcripts of interest, because it is assumed that they are stably expressed across tissues and developmental stages. Standard housekeeping genes are targeted particularly in organisms where there is no detailed information on gene expression profiles. Here, the validity of using the two widely accepted housekeeping genes, 18S rRNA and beta-actin, as reference genes to normalize real-time RT-PCR gene expression data from the Kuruma shrimp, Marsupenaeus japonicus, was tested. Expression patterns of two target genes in a diverse sample set of embryonic, larval, post-larval and gonad mRNAs were quantified using relative and absolute real-time RT-PCR procedures. Comparison of these approaches revealed significant differences (P<0.0001) in transcript level profiles between the relative and absolute procedures for both target genes. When 18S rRNA was used as a reference, target gene expression was more similar to that of the absolute method than when beta-actin was used as a reference. Variability between the relative and absolute procedures occurred for a greater percentage of the embryonic stages compared to later developmental stages. This study indicates that the use of 18S rRNA and beta-actin for studying relative gene expression patterns in Kuruma shrimp embryonic, larval, post-larval and gonad samples will give significantly variable results, and illustrates the proposition that housekeeping genes are not necessarily appropriate references for real-time RT-PCR data normalization. Until suitable reference genes are characterized, gene expression experiments using the studied Kuruma shrimp tissues of different morphological developmental stages should use absolute quantification procedures.
Collapse
Affiliation(s)
- Melony J Sellars
- CSIRO Food Futures National Research Flagship, Australia; CSIRO Marine and Atmospheric Research, 233 Middle Street, Cleveland, Qld 4163, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Kågedal B, Farnebäck M, Håkansson A, Gustafsson B, Håkansson L. How useful are housekeeping genes? Variable expression in melanoma metastases. ACTA ACUST UNITED AC 2007; 45:1481-7. [PMID: 17892440 DOI: 10.1515/cclm.2007.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractClin Chem Lab Med 2007;45:1481–7.
Collapse
Affiliation(s)
- Bertil Kågedal
- Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Sasakura Y. Germline transgenesis and insertional mutagenesis in the ascidianCiona intestinalis. Dev Dyn 2007; 236:1758-67. [PMID: 17342755 DOI: 10.1002/dvdy.21111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stable transgenesis is a splendid technique that is applicable to the creation of useful marker lines, enhancer/gene traps, and insertional mutagenesis. Recently, transposon-mediated transformation using a Tc1/mariner transposable element Minos has been reported in two ascidians: Ciona intestinalis and C. savignyi. The transposon derived from an insect, Drosophila hydei, has high activity for excision in Ciona embryos and transposition in their genome. As much as 37% of Minos-injected C. intestinalis transmitted transposon insertions to the subsequent generation. Minos-mediated germline transgenesis has also been achieved by means of electroporation method. Minos techniques have been applied to enhancer traps and insertional mutagenesis in Ciona. For those reasons, Minos offers the high potential for use as a powerful tool for future genetic studies. This review specifically addresses recent achievements of transformation techniques in Ciona, as exemplified using the Minos system.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| |
Collapse
|
26
|
Heyland A, Reitzel AM, Price DA, Moroz LL. Endogenous thyroid hormone synthesis in facultative planktotrophic larvae of the sand dollar Clypeaster rosaceus: implications for the evolutionary loss of larval feeding. Evol Dev 2006; 8:568-79. [PMID: 17073939 PMCID: PMC4028318 DOI: 10.1111/j.1525-142x.2006.00128.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Critical roles of hormones in metamorphic life history transitions are well documented in amphibians, lampreys, insects, and many plant species. Recent evidence suggests that thyroid hormones (TH) or TH-like compounds can regulate development to metamorphosis in echinoids (sea urchins, sand dollars, and their relatives). Moreover, previous research has provided evidence for endogenous hormone synthesis in both feeding and nonfeeding echinoderm larvae. However, the mechanisms for endogenous synthesis remain largely unknown. Here, we show that facultatively planktotrophic larvae (larvae that reach metamorphosis in the absence of food but have the ability to feed) from the subtropical sea biscuit Clypeaster rosaceus can synthesize thyroxine endogenously from incorporated iodine (I(125)). When treated with the goitrogen thiourea (a peroxidase inhibitor), iodine incorporation, thyroxine synthesis, and metamorphosis are all blocked in a dose-dependent manner. The inhibitory effect on metamorphosis can be rescued by administration of exogenous thyroxine. Finally, we demonstrate that thiourea induces morphological changes in feeding structures comparable to the phenotypic plastic response of larval structures to low food conditions, further supporting a signaling role of thyroxine in regulating larval morphogenesis and phenotypic plasticity. We conclude that upregulation of endogenous hormone synthesis might have been associated with the evolution of nonfeeding development, subsequently leading to morphological changes characteristic of nonfeeding development.
Collapse
Affiliation(s)
- Andreas Heyland
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA.
| | | | | | | |
Collapse
|
27
|
Nakayama A, Satoh N, Sasakura Y. Tissue-Specific Profile of DNA Replication in the Swimming Larvae of Ciona intestinalis. Zoolog Sci 2005; 22:301-9. [PMID: 15795492 DOI: 10.2108/zsj.22.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cell cycle is strictly regulated during development and its regulation is essential for organ formation and developmental timing. Here we observed the pattern of DNA replication in swimming larvae of an ascidian, Ciona intestinalis. Usually, Ciona swimming larvae obtain competence for metamorphosis at about 4-5 h after hatching, and these competent larvae initiate metamorphosis soon after they adhere to substrate with their papillae. In these larvae, three major tissues (epidermis, endoderm and mesenchyme) showed extensive DNA replication with distinct pattern and timing, suggesting tissue-specific cell cycle regulation. However, DNA replication did not continue in aged larvae which kept swimming for several days, suggesting that the cell cycle is arrested in these larvae at a certain time to prevent further growth of adult organ rudiments until the initiation of metamorphosis. Inhibition of the cell cycle by aphidicolin during the larval stage affects only the speed of metamorphosis, and not the formation of adult organ rudiments or the timing of the initiation of metamorphosis. However, after the completion of tail resorption, DNA replication is necessary for further metamorphic events. Our data showed that DNA synthesis in the larval trunk is not directly associated with the organization of adult organs, but it contributes to the speed of metamorphosis after settlement.
Collapse
Affiliation(s)
- Akie Nakayama
- Department of Zoology, Graduate School of Science, Kyoto University, Japan
| | | | | |
Collapse
|