1
|
MAPK Pathways in Ocular Pathophysiology: Potential Therapeutic Drugs and Challenges. Cells 2023; 12:cells12040617. [PMID: 36831285 PMCID: PMC9954064 DOI: 10.3390/cells12040617] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous cellular signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Once activated through phosphorylation, these MAPKs in turn phosphorylate and activate transcription factors present either in the cytoplasm or in the nucleus, leading to the expression of target genes and, as a consequence, they elicit various biological responses. The aim of this work is to provide a comprehensive review focusing on the roles of MAPK signaling pathways in ocular pathophysiology and the potential to influence these for the treatment of eye diseases. We summarize the current knowledge of identified MAPK-targeting compounds in the context of ocular diseases such as macular degeneration, cataract, glaucoma and keratopathy, but also in rare ocular diseases where the cell differentiation, proliferation or migration are defective. Potential therapeutic interventions are also discussed. Additionally, we discuss challenges in overcoming the reported eye toxicity of some MAPK inhibitors.
Collapse
|
2
|
Kirkby LA, Sack GS, Firl A, Feller MB. A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 2014; 80:1129-44. [PMID: 24314725 DOI: 10.1016/j.neuron.2013.10.030] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Before the onset of sensory transduction, developing neural circuits spontaneously generate correlated activity in distinct spatial and temporal patterns. During this period of patterned activity, sensory maps develop and initial coarse connections are refined, which are critical steps in the establishment of adult neural circuits. Over the last decade, there has been substantial evidence that altering the pattern of spontaneous activity disrupts refinement, but the mechanistic understanding of this process remains incomplete. In this review, we discuss recent experimental and theoretical progress toward the process of activity-dependent refinement, focusing on circuits in the visual, auditory, and motor systems. Although many outstanding questions remain, the combination of several novel approaches has brought us closer to a comprehensive understanding of how complex neural circuits are established by patterned spontaneous activity during development.
Collapse
Affiliation(s)
- Lowry A Kirkby
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
3
|
Gaillard F, Karten HJ, Sauvé Y. Retinorecipient areas in the diurnal murine rodentArvicanthis niloticus: A disproportionally large superior colliculus. J Comp Neurol 2013; 521:1699-726. [DOI: 10.1002/cne.23303] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/01/2012] [Accepted: 01/04/2013] [Indexed: 12/24/2022]
|
4
|
Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. Monoamine oxidases in development. Cell Mol Life Sci 2013; 70:599-630. [PMID: 22782111 PMCID: PMC11113580 DOI: 10.1007/s00018-012-1065-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases (MAOs) are flavoproteins of the outer mitochondrial membrane that catalyze the oxidative deamination of biogenic and xenobiotic amines. In mammals there are two isoforms (MAO-A and MAO-B) that can be distinguished on the basis of their substrate specificity and their sensitivity towards specific inhibitors. Both isoforms are expressed in most tissues, but their expression in the central nervous system and their ability to metabolize monoaminergic neurotransmitters have focused MAO research on the functionality of the mature brain. MAO activities have been related to neurodegenerative diseases as well as to neurological and psychiatric disorders. More recently evidence has been accumulating indicating that MAO isoforms are expressed not only in adult mammals, but also before birth, and that defective MAO expression induces developmental abnormalities in particular of the brain. This review is aimed at summarizing and critically evaluating the new findings on the developmental functions of MAO isoforms during embryogenesis.
Collapse
Affiliation(s)
- Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Billett
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Astrid Borchert
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| |
Collapse
|
5
|
Vierci G, Oliveira CSD, Perera LR, Bornia N, Leal RB, Rossi FM. Creb is modulated in the mouse superior colliculus in developmental and experimentally-induced models of plasticity. Int J Dev Neurosci 2012; 31:46-52. [PMID: 23085336 DOI: 10.1016/j.ijdevneu.2012.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/28/2012] [Accepted: 10/07/2012] [Indexed: 12/20/2022] Open
Abstract
In the central nervous system long-term plastic processes need the activation of specific gene expression programs and the synthesis of new protein in order to occur. A transcription factor fundamental for several plasticity mechanisms in various CNS areas is the cAMP response element-binding protein, CREB. This factor is activated through phosphorylation at its Serine 133 residue by multiple signaling pathways. Little is known about CREB role in the superior colliculus, a midbrain area considered an experimentally useful model for the study of neuronal plasticity processes. In the present work we studied by Western blot analysis the modulation of CREB expression and activation in the mouse superior colliculus in three models of neuronal plasticity: (1) developmental plasticity; (2) lesion-induced plasticity; (3) and fluoxetine-induced restored plasticity. We used an antibody that detects endogenous level of the total CREB protein (anti-TCREB) to identify possible modulations at CREB expression level, and a second antibody (anti-PCREB) that detects endogenous level of CREB only when it is phosphorylated at Ser133, to identify modifications of CREB activation state. The results showed that: (1) the expression and activation of CREB increase during the development of the superior colliculus in temporal correlation with the plastic process of refinement of retino-collicular projections; (2) the activation of CREB is induced by a monocular lesion performed during the critical period for plasticity in young animals but not when performed in less plastic juvenile mice; (3) the expression and activation of CREB increase in adult animals treated with fluoxetine, known to restore high levels of plasticity in adult animals. These results suggest that CREB transcription factor plays a fundamental role in plasticity processes also at the level of the mouse superior colliculus.
Collapse
Affiliation(s)
- Gabriela Vierci
- Laboratorio de Neurociencias Neuroplasticity Unit, Facultad de Ciencias, UdelaR, Iguá 4225, esq. Mataojo, 11400 Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
6
|
Donovan M, Doonan F, Cotter TG. Differential roles of ERK1/2 and JNK in retinal development and degeneration. J Neurochem 2010; 116:33-42. [DOI: 10.1111/j.1471-4159.2010.07056.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Iwai L, Kawasaki H. Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation. Neuroscience 2009; 159:1326-37. [PMID: 19409202 DOI: 10.1016/j.neuroscience.2009.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/05/2009] [Accepted: 02/05/2009] [Indexed: 11/29/2022]
Abstract
When retinal waves are inhibited binocularly, eye-specific segregation of retinal axons is disrupted, and retinal axons from the two eyes remain intermingled in the lateral geniculate nucleus (LGN). This effect of binocular retinal wave inhibition is mediated by the lack of activity-dependent competition between retinal axons from the two eyes, but it is unknown whether this effect is also mediated by the developmental arrest of the LGN in an immature state. Here we find developmental markers of the LGN during eye-specific segregation. The expression levels of Purkinje cell protein 4 (PCP4/PEP19), transcription factor 7-like 2 (TCF7L2/TCF4) and LIM homeobox protein 9 (Lhx9) in the LGN change significantly during eye-specific segregation. Using PCP4, TCF7L2 and Lhx9 as developmental markers of the LGN, we examine whether LGN development is affected by binocular disruption of retinal waves during eye-specific segregation. Binocular injection of epibatidine strongly inhibits eye-specific segregation, whereas it does not affect the expression of PCP4, TCF7L2 and Lhx9. Furthermore, the expression of PCP4, TCF7L2 and Lhx9 is normal in binocularly enucleated animals and in mice treated with the monoamine oxidase A (MAOA) inhibitor, clorgyline. In addition, our experiments using LGN slice cultures show that the expression of PCP4 and TCF7L2 in LGN slices changes as in vivo. Our results suggest that LGN development proceeds, at least in part, even in the absence of retinal inputs. PCP4, TCF7L2 and Lhx9 should be useful to examine LGN development during eye-specific segregation in mice and in ferrets.
Collapse
Affiliation(s)
- L Iwai
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
8
|
Hawkins TA, Cavodeassi F, Erdélyi F, Szabó G, Lele Z. The small molecule Mek1/2 inhibitor U0126 disrupts the chordamesoderm to notochord transition in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2008; 8:42. [PMID: 18419805 PMCID: PMC2359734 DOI: 10.1186/1471-213x-8-42] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/17/2008] [Indexed: 11/10/2022]
Abstract
Background Key molecules involved in notochord differentiation and function have been identified through genetic analysis in zebrafish and mice, but MEK1 and 2 have so far not been implicated in this process due to early lethality (Mek1-/-) and functional redundancy (Mek2-/-) in the knockout animals. Results Here, we reveal a potential role for Mek1/2 during notochord development by using the small molecule Mek1/2 inhibitor U0126 which blocks phosphorylation of the Mek1/2 target gene Erk1/2 in vivo. Applying the inhibitor from early gastrulation until the 18-somite stage produces a specific and consistent phenotype with lack of dark pigmentation, shorter tail and an abnormal, undulated notochord. Using morphological analysis, in situ hybridization, immunhistochemistry, TUNEL staining and electron microscopy, we demonstrate that in treated embryos the chordamesoderm to notochord transition is disrupted and identify disorganization in the medial layer of the perinotochordal basement mebrane as the probable cause of the undulations and bulges in the notochord. We also examined and excluded FGF as the upstream signal during this process. Conclusion Using the small chemical U0126, we have established a novel link between MAPK-signaling and notochord differentiation. Our phenotypic analysis suggests a potential connection between the MAPK-pathway, the COPI-mediated intracellular transport and/or the copper-dependent posttranslational regulatory processes during notochord differentiation.
Collapse
Affiliation(s)
- Thomas A Hawkins
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
9
|
Oliveira CS, Rigon AP, Leal RB, Rossi FM. The activation of ERK1/2 and p38 mitogen‐activated protein kinases is dynamically regulated in the developing rat visual system. Int J Dev Neurosci 2008; 26:355-62. [DOI: 10.1016/j.ijdevneu.2007.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022] Open
Affiliation(s)
- Camila Salum Oliveira
- Laboratório de Neuroquímica‐3, Departamento de BioquímicaCentro de Ciências Biológicas, Universidade Federal de Santa CatarinaFlorianópolisSC88040‐900Brazil
| | - Ana Paula Rigon
- Laboratório de Neuroquímica‐3, Departamento de BioquímicaCentro de Ciências Biológicas, Universidade Federal de Santa CatarinaFlorianópolisSC88040‐900Brazil
| | - Rodrigo Bainy Leal
- Laboratório de Neuroquímica‐3, Departamento de BioquímicaCentro de Ciências Biológicas, Universidade Federal de Santa CatarinaFlorianópolisSC88040‐900Brazil
| | - Francesco Mattia Rossi
- Laboratório de Neuroquímica‐3, Departamento de BioquímicaCentro de Ciências Biológicas, Universidade Federal de Santa CatarinaFlorianópolisSC88040‐900Brazil
| |
Collapse
|
10
|
Ziburkus J, Guido W. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J Neurophysiol 2006; 96:2775-84. [PMID: 16899631 DOI: 10.1152/jn.01321.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the developing mammalian visual system, axon terminals from the two eyes overlap in the dorsal lateral geniculate nucleus (LGN) but then undergo a period of refinement and segregate to form distinct eye-specific domains. We report on the changes in synaptic transmission that occur in rodent LGN during the period of retinogeniculate axon segregation by using anterograde labeling techniques in conjunction with an in vitro preparation where large segments of each optic nerve are preserved. Anterograde labeling of retinal projections in early postnatal day (P) rats with cholera toxin beta subunit indicated an age-related recession in uncrossed retinal projections. Between P2 and P5 uncrossed projections occupied as much as 50% of the LGN and overlapped substantially with crossed projections. Between the first and second postnatal week uncrossed projections receded, so by P14 they assumed an adultlike profile occupying 15-20% of LGN and showed little or no overlap with crossed projections. The postsynaptic responses of LGN cells evoked by the separate stimulation of each optic nerve indicated that before P14, many relay cells were binocularly innervated and received at least four to six inputs from each eye. However, these features of retinogeniculate connectivity were transient and their attrition occurred in concert with a retraction of retinal arbors into nonoverlapping, eye-specific regions. By P18 cells were monocularly innervated and received input from one to three retinal ganglion cells. These results provide a better understanding of the underlying changes in synaptic circuitry that occur during the anatomical segregation of retinal inputs into eye-specific territories.
Collapse
Affiliation(s)
- Jokubas Ziburkus
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall St., Richmond, VA 23298-0709, USA.
| | | |
Collapse
|
11
|
Torborg CL, Feller MB. Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 2005; 76:213-35. [PMID: 16280194 DOI: 10.1016/j.pneurobio.2005.09.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/30/2005] [Accepted: 09/22/2005] [Indexed: 11/22/2022]
Abstract
A characteristic feature of sensory circuits is the existence of orderly connections that represent maps of sensory space. A major research focus in developmental neurobiology is to elucidate the relative contributions of neural activity and guidance molecules in sensory map formation. Two model systems for addressing map formation are the retinotopic map formed by retinal projections to the superior colliculus (SC) (or its non-mammalian homolog, the optic tectum (OT)), and the eye-specific map formed by retinal projections to the lateral geniculate nucleus of the thalamus. In mammals, a substantial portion of retinotopic and eye-specific refinement of retinal axons occurs before vision is possible, but at a time when there is a robust, patterned spontaneous retinal activity called retinal waves. Though complete blockade of retinal activity disrupts normal map refinement, attempts at more refined perturbations, such as pharmacological and genetic manipulations that alter features of retinal waves critical for map refinement, remain controversial. Here we review: (1) the mechanisms that underlie the generation of retinal waves; (2) recent experiments that have investigated a role for guidance molecules and retinal activity in map refinement; and (3) experiments that have implicated various signaling cascades, both in retinal ganglion cells (RGCs) and their post-synaptic targets, in map refinement. It is likely that an understanding of retinal activity, guidance molecules, downstream signaling cascades, and the interactions between these biological systems will be critical to elucidating the mechanisms of sensory map formation.
Collapse
Affiliation(s)
- Christine L Torborg
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | |
Collapse
|