1
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
2
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
3
|
Polanska UM, Edwards E, Fernig DG, Kinnunen TK. The cooperation of FGF receptor and Klotho is involved in excretory canal development and regulation of metabolic homeostasis in Caenorhabditis elegans. J Biol Chem 2011; 286:5657-66. [PMID: 21177529 PMCID: PMC3037679 DOI: 10.1074/jbc.m110.173039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/10/2010] [Indexed: 01/27/2023] Open
Abstract
FGFs have traditionally been associated with cell proliferation, morphogenesis, and development; yet, a subfamily of FGFs (FGF19, -21, and -23) functions as hormones to regulate glucose, lipid, phosphate, and vitamin D metabolism with impact on energy balance and aging. In mammals, Klotho and beta-Klotho are type 1 transmembrane proteins that function as obligatory co-factors for endocrine FGFs to bind to their cognate FGF receptors (FGFRs). Mutations in Klotho/beta-Klotho or fgf19, -21, or -23 are associated with a number of human diseases, including autosomal dominant hypophosphatemic rickets, premature aging disorders, and diabetes. The Caenorhabditis elegans genome contains two paralogues of Klotho/beta-Klotho, klo-1, and klo-2. klo-1 is expressed in the C. elegans excretory canal, which is structurally and functionally paralogous to the vertebrate kidney. KLO-1 associates with EGL-15/FGFR, suggesting a role for KLO-1 in the fluid homeostasis phenotype described previously for egl-15/fgfr mutants. Altered levels of EGL-15/FGFR signaling lead to defects in excretory canal development and function in C. elegans. These results suggest an evolutionarily conserved function for the FGFR-Klotho complex in the development of excretory organs such as the mammalian kidney and the worm excretory canal. These results also suggest an evolutionarily conserved function for the FGFR-Klotho axis in metabolic regulation.
Collapse
Affiliation(s)
- Urszula M. Polanska
- From the Institute of Integrative Biology, University of Liverpool, Bioscience Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Elisabeth Edwards
- From the Institute of Integrative Biology, University of Liverpool, Bioscience Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - David G. Fernig
- From the Institute of Integrative Biology, University of Liverpool, Bioscience Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Tarja K. Kinnunen
- From the Institute of Integrative Biology, University of Liverpool, Bioscience Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
4
|
Polanska UM, Duchesne L, Harries JC, Fernig DG, Kinnunen TK. N-Glycosylation regulates fibroblast growth factor receptor/EGL-15 activity in Caenorhabditis elegans in vivo. J Biol Chem 2009; 284:33030-9. [PMID: 19801543 DOI: 10.1074/jbc.m109.058925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The regulation of cell function by fibroblast growth factors (FGFs) classically occurs through a dual receptor system of a tyrosine kinase receptor (FGFR) and a heparan sulfate proteoglycan co-receptor. Mutations in some consensus N-glycosylation sites in human FGFR result in skeletal disorders and craniosynostosis syndromes, and biophysical studies in vitro suggest that N-glycosylation of FGFR alters ligand and heparan sulfate binding properties. The evolutionarily conserved FGFR signaling system of Caenorhabditis elegans has been used to assess the role of N-glycosylation in the regulation of FGFR signaling in vivo. The C. elegans FGF receptor, EGL-15, is N-glycosylated in vivo, and genetic substitution of specific consensus N-glycosylation sites leads to defects in the maintenance of fluid homeostasis and differentiation of sex muscles, both of which are phenotypes previously associated with hyperactive EGL-15 signaling. These phenotypes are suppressed by hypoactive mutations in EGL-15 downstream signaling components or activating mutations in the phosphatidylinositol 3-kinase pathway, respectively. The results show that N-glycans negatively regulate FGFR activity in vivo supporting the notion that mutation of N-glycosylation sites in human FGFR may lead to inappropriate activation of the receptor.
Collapse
Affiliation(s)
- Urszula M Polanska
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | |
Collapse
|
5
|
Krajacic P, Hermanowski J, Lozynska O, Khurana TS, Lamitina T. C. elegans dysferlin homolog fer-1 is expressed in muscle, and fer-1 mutations initiate altered gene expression of muscle enriched genes. Physiol Genomics 2009; 40:8-14. [PMID: 19755517 DOI: 10.1152/physiolgenomics.00106.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the human dysferlin gene cause Limb Girdle Muscular Dystrophy 2B (LGMD2B). The Caenorhabditis elegans dysferlin homolog, fer-1, affects sperms development but is not known to be expressed in or have a functional roles outside of the male germline. Using several approaches, we show that fer-1 mRNA is present in C. elegans muscle cells but is absent from neurons. In mammals, loss of muscle-expressed dysferlin causes transcriptional deregulation of muscle expressed genes. To determine if similar alterations in gene expression are initiated in C. elegans due to loss of muscle-expressed fer-1, we performed whole genome Affymetrix microarray analysis of two loss-of-function fer-1 mutants. Both mutants gave rise to highly similar changes in gene expression and altered the expression of 337 genes. Using multiple analysis methods, we show that this gene set is enriched for genes known to regulate the structure and function of muscle. However, these transcriptional changes do not appear to be in response to gross sarcomeric damage, since genetically sensitized fer-1 mutants exhibit normal thin filament organization. Our data suggest that processes other than sarcomere stability may be affected by loss of fer-1 in C. elegans muscle. Therefore, C. elegans may be an attractive model system in which to explore new muscle-specific functions of the dysferlin protein and gain insights into the molecular pathogenesis of LGMD2B.
Collapse
Affiliation(s)
- Predrag Krajacic
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
6
|
Klerkx EPF, Alarcón P, Waters K, Reinke V, Sternberg PW, Askjaer P. Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans. Dev Biol 2009; 335:12-21. [PMID: 19679119 DOI: 10.1016/j.ydbio.2009.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 11/16/2022]
Abstract
The vaccinia-related kinases (VRKs) are highly conserved throughout the animal kingdom and phosphorylate several chromatin proteins and transcription factors. In early Caenorhabditis elegans embryos, VRK-1 is required for proper nuclear envelope formation. In this work, we present the first investigation of the developmental role of VRKs by means of a novel C. elegans vrk-1 mutant allele. We found that VRK-1 is essential in hermaphrodites for formation of the vulva, uterus, and utse and for development and maintenance of the somatic gonad and thus the germ line. VRK-1 regulates anchor cell polarity and the timing of anchor cell invasion through the basement membranes separating vulval and somatic gonadal cells during the L3 larval stage. VRK-1 is also required for proper specification and proliferation of uterine cells and sex myoblasts. Expression of the fibroblast growth factor-like protein EGL-17 and its receptor EGL-15 is reduced in vrk-1 mutants, suggesting that VRK-1 might act at least partially through activation of FGF signaling. Expression of a translational VRK-1Colon, two colonsGFP fusion protein in the ventral nerve cord and vulva precursor cells restores vulva and uterus formation, suggesting both cell autonomous and non-autonomous roles of VRK-1.
Collapse
Affiliation(s)
- Elke P F Klerkx
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville 41013, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Polanska UM, Fernig DG, Kinnunen T. Extracellular interactome of the FGF receptor-ligand system: complexities and the relative simplicity of the worm. Dev Dyn 2009; 238:277-93. [PMID: 18985724 DOI: 10.1002/dvdy.21757] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate a multitude of biological functions in embryonic development and in adult. A major question is how does one family of growth factors and their receptors control such a variety of functions? Classically, specificity was thought to be imparted by alternative splicing of the FGFRs, resulting in isoforms that bind specifically to a subset of the FGFs, and by different saccharide sequences in the heparan sulfate proteoglycan (HSPG) co-receptor. A growing number of noncanonical co-receptors such as integrins and neural cell adhesion molecule (NCAM) are now recognized as imparting additional complexity to classic FGFR signaling. This review will discuss the noncanonical FGFR ligands and speculate on the possibility that they provide additional and alternative means to determining the functional specificity of FGFR signaling. We will also discuss how invertebrate models such as C. elegans may advance our understanding of noncanonical FGFR signaling.
Collapse
Affiliation(s)
- Urszula M Polanska
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
8
|
Lo TW, Branda CS, Huang P, Sasson IE, Goodman SJ, Stern MJ. Different isoforms of the C. elegans FGF receptor are required for attraction and repulsion of the migrating sex myoblasts. Dev Biol 2008; 318:268-75. [PMID: 18455716 PMCID: PMC2516447 DOI: 10.1016/j.ydbio.2008.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 03/11/2008] [Accepted: 03/16/2008] [Indexed: 11/29/2022]
Abstract
The Caenorhabditis elegans FGF receptor, EGL-15, is alternatively-spliced to yield two major isoforms that differ in their extracellular domains. The EGL-15(5A) isoform is necessary for the gonadal chemoattraction of the migrating sex myoblasts (SMs), while the EGL-15(5B) isoform is required for viability. Here we show that 5A is predominantly expressed in the M lineage, which gives rise to the migrating SMs and their sex muscle descendants, while 5B is predominantly expressed in the hypodermis. Tissue-specific expression, however, explains only part of the functional differences between these two receptor isoforms. 5A can carry out the reciprocal essential function of 5B when expressed in the hypodermis, but 5B is incapable of carrying out SM chemoattraction. Our data, therefore, indicate that the structural differences in these two isoforms contribute to their functional differences. Two lines of evidence indicate that the 5B isoform also plays a role in SM migration, implicating it in the repulsion that is observed when the chemoattraction is compromised. Thus, structural differences in the extracellular domains of these two isoforms can specify either attraction to or repulsion from the gonad.
Collapse
Affiliation(s)
- Te-Wen Lo
- Department of Genetics, Yale University School of Medicine, I-354 SHM, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Catherine S. Branda
- Department of Genetics, Yale University School of Medicine, I-354 SHM, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Peng Huang
- Department of Genetics, Yale University School of Medicine, I-354 SHM, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Isaac E. Sasson
- Department of Genetics, Yale University School of Medicine, I-354 SHM, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - S. Jay Goodman
- Department Cell Biology, Yale University School of Medicine, I-354 SHM, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | - Michael J. Stern
- Department of Genetics, Yale University School of Medicine, I-354 SHM, P.O. Box 208005, New Haven, CT 06520-8005, USA
| |
Collapse
|
9
|
Photos A, Gutierrez A, Sommer RJ. sem-4/spalt and egl-17/FGF have a conserved role in sex myoblast specification and migration in P. pacificus and C. elegans. Dev Biol 2006; 293:142-53. [PMID: 16515780 DOI: 10.1016/j.ydbio.2006.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/23/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Evolutionary comparisons between Caenorhabditis elegans and the satellite organism Pristionchus pacificus revealed major differences in the regulation of nematode vulva development. For example, Wnt signaling is part of a negative signaling system that prevents vulva formation in P. pacificus, whereas it plays a positive role in C. elegans. We wondered if the genetic control of the second major part of the nematode egg-laying system, the sex muscles, has diverged similarly between P. pacificus and C. elegans. The sex muscles derive from the mesoblast M, which has an identical lineage in both species. Here, we describe a large-scale mutagenesis screen for mutations that disrupt the M lineage and the sex myoblast (SM) sublineage. We isolated and characterized mutations that result in a failure of proper SM fate specification and SM migration and showed that the corresponding genes encode Ppa-sem-4 and Ppa-egl-17, respectively. Ppa-sem-4 mutants have additional defects in the specification of the vulva precursor cells P(5, 7).p and experimental studies in the Ppa-egl-17 mutant background indicate a complex set of gonad-dependent and gonad-independent mechanisms required for SM migration. Mutations in Cel-sem-4 and Cel-egl-17 cause similar defects. Thus, the molecular mechanisms of SM cell specification and migration are conserved between P. pacificus and C. elegans.
Collapse
Affiliation(s)
- Andreas Photos
- Max Planck Institute for Developmental Biology, Department for Evolutionary Biology, Tübingen, Germany
| | | | | |
Collapse
|
10
|
Huang P, Stern MJ. FGF signaling in flies and worms: more and more relevant to vertebrate biology. Cytokine Growth Factor Rev 2005; 16:151-8. [PMID: 15863031 DOI: 10.1016/j.cytogfr.2005.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
FGF signaling in the invertebrate model systems Drosophila melanogaster and Caenorhabditis elegans was initially most obviously involved in cell motility events. More recently, however, FGFs and FGF signaling in these systems have been shown to affect many additional cellular processes. This recent work has shown that the pleiotropies of these FGF receptors resemble those of their vertebrate counterparts, and, in many cases, serve as excellent models for understanding the fundamental molecular mechanisms controlling these events.
Collapse
Affiliation(s)
- Peng Huang
- Yale University School of Medicine, Department of Genetics, I-354 SHM, P.O. Box 208005, New Haven, CT 06520-8005, USA
| | | |
Collapse
|