1
|
Yang X, Li Y, Peng Y, Chang Y, He B, Zhang T, Zhang S, Geng C, Liu Y, Li X, Hao J, Ma L. An integrative analysis of ASCL1 in breast cancer and inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Front Immunol 2025; 16:1546794. [PMID: 39963143 PMCID: PMC11830715 DOI: 10.3389/fimmu.2025.1546794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Our previous study found that Achaete-scute complex homolog 1 (ASCL1) is involved in classifying BC subtypes with different prognostic and pathological characteristics. However, the biological role of ASCL1 in BC still remains largely unexplored. This study aims to elucidate the function of ASCL1 in BC using bioinformatics analyses, as well as in vitro and in vivo experimental approaches. Methods Data from the TCGA, GEO, and Human Protein Atlas databases were utilized to evaluate ASCL1 expression in BC and its association with patient prognosis. Genetic alterations in ASCL1 were assessed through the COSMIC and cBioPortal databases, while the TIMER2.0 database provided insights into the relationship between ASCL1 expression and key gene mutations in BC. The GDSC database was used to examine correlations between ASCL1 levels and sensitivity to standard chemotherapeutic agents. Associations between ASCL1 expression and cytokines, immunomodulatory factors, MHC molecules, and receptors were analyzed using Pearson and Spearman correlation methods. The TIP database was employed to investigate the connection between ASCL1 expression and immunoreactivity scores, and six computational approaches were applied to evaluate immune cell infiltration. Functional assays were conducted on BC cell lines MCF-7 and MDA-MB-231, and nude mouse models were used for in vivo studies. Results ASCL1 was found to be upregulated in BC and correlated with unfavorable prognosis and mutations in key oncogenes. Its expression was linked to immunomodulatory factors, immune cell infiltration, and immunoreactivity scores in the tumor microenvironment. Additionally, ASCL1 influenced tumor immune dynamics and chemosensitivity in BC. Overexpression of ASCL1 enhanced BC cell proliferation, migration and invasion, while its knockdown had the opposite effect. Notably, inhibition of ASCL1 increased BC cell sensitivity to paclitaxel both in vitro and in vivo. In addition, inhibition of ASCL1 activated ferroptosis in BC, including altered mitochondrial morphology, increased MDA and ROS levels, decreased GSH levels and reduced GSH/GSSG ratio. Mechanistically, inhibition of ASCL1 decreases the phosphorylation of CREB1, thus reducing the expression of GPX4. In summary, inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Conclusions ASCL1 exerts oncogenic effects in BC and represents a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Xiaolu Yang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yilun Li
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yaqi Peng
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Chang
- Department of Breast Disease Center, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Binglu He
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Tianqi Zhang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shiyu Zhang
- Department of Breast Disease Center, Xingtai Renmin Hospital, Xingtai, China
| | - Cuizhi Geng
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolong Li
- Department of Breast Disease Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Myers BL, Brayer KJ, Paez-Beltran LE, Villicana E, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara RK, Borromeo MD, Lu QR, Bachoo RM, Johnson JE, Vue TY. Transcription factors ASCL1 and OLIG2 drive glioblastoma initiation and co-regulate tumor cell types and migration. Nat Commun 2024; 15:10363. [PMID: 39609428 PMCID: PMC11605073 DOI: 10.1038/s41467-024-54750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex genetic alterations. The basic-helix-loop-helix (bHLH) transcription factors ASCL1 and OLIG2 are dynamically co-expressed in GBMs; however, their combinatorial roles in regulating the plasticity and heterogeneity of GBM cells are unclear. Here, we show that induction of somatic mutations in subventricular zone (SVZ) progenitor cells leads to the dysregulation of ASCL1 and OLIG2, which then function redundantly and are required for brain tumor formation in a mouse model of GBM. Subsequently, the binding of ASCL1 and OLIG2 to each other's loci and to downstream target genes then determines the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in specifying highly migratory neural stem cell (NSC)/astrocyte-like tumor cell types, which are marked by upregulation of ribosomal protein, oxidative phosphorylation, cancer metastasis, and therapeutic resistance genes.
Collapse
Affiliation(s)
- Bianca L Myers
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Luis E Paez-Beltran
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Estrella Villicana
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew S Keith
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Hideaki Suzuki
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rebekka H Anderson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yunee Lo
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Conner M Mertz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, EHCB, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tou Yia Vue
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
3
|
Coyoy-Salgado A, Segura-Uribe J, Salgado-Ceballos H, Castillo-Mendieta T, Sánchez-Torres S, Freyermuth-Trujillo X, Orozco-Barrios C, Orozco-Suarez S, Feria-Romero I, Pinto-Almazán R, Moralí de la Brena G, Guerra-Araiza C. Evaluating Sex Steroid Hormone Neuroprotection in Spinal Cord Injury in Animal Models: Is It Promising in the Clinic? Biomedicines 2024; 12:1478. [PMID: 39062051 PMCID: PMC11274729 DOI: 10.3390/biomedicines12071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The primary mechanism of traumatic spinal cord injury (SCI) comprises the initial mechanical trauma due to the transmission of energy to the spinal cord, subsequent deformity, and persistent compression. The secondary mechanism of injury, which involves structures that remained undamaged after the initial trauma, triggers alterations in microvascular perfusion, the liberation of free radicals and neurotransmitters, lipid peroxidation, alteration in ionic concentrations, and the consequent cell death by necrosis and apoptosis. Research in the treatment of SCI has sought to develop early therapeutic interventions that mitigate the effects of these pathophysiological mechanisms. Clinical and experimental evidence has demonstrated the therapeutic benefits of sex-steroid hormone administration after traumatic brain injury and SCI. The administration of estradiol, progesterone, and testosterone has been associated with neuroprotective effects, better neurological recovery, and decreased mortality after SCI. This review evaluated evidence supporting hormone-related neuroprotection over SCI and the possible underlying mechanisms in animal models. As neuroprotection has been associated with signaling pathways, the effects of these hormones are observed on astrocytes and microglia, modulating the inflammatory response, cerebral blood flow, and metabolism, mediating glutamate excitotoxicity, and their antioxidant effects. Based on the current evidence, it is essential to analyze the benefit of sex steroid hormone therapy in the clinical management of patients with SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Julia Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Tzayaka Castillo-Mendieta
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Carlos Orozco-Barrios
- CONAHCyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (H.S.-C.); (T.C.-M.); (S.S.-T.); (S.O.-S.)
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Gabriela Moralí de la Brena
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Cordier F, Schouten JW, Geurts M, Kros JM, Dubbink HJ, Verlinden V, Federico A, Kool M, Maas SLN. Diffuse infiltrating tumour with the molecular profile of an atypical teratoid rhabdoid tumour (AT/RT SHH-1B) in an adult patient. Neuropathol Appl Neurobiol 2024; 50:e12983. [PMID: 38708554 DOI: 10.1111/nan.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
We describe a 46-year-old patient with an IDH-wildtype diffusely infiltrating atypical teratoid/rhabdoid tumour (AT/RT), SHH-1B molecular subtype. The unusual histology and subsequent diagnosis in an adult patient will be discussed.
Collapse
Affiliation(s)
- Fleur Cordier
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, University Hospital Ghent, Ghent, Belgium
| | - Joost W Schouten
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjolein Geurts
- Department of Neurology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent Verlinden
- Department of Radiology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aniello Federico
- Hopp Childrens Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Childrens Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sybren L N Maas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Rogujski P, Lukomska B, Janowski M, Stanaszek L. Glial-restricted progenitor cells: a cure for diseased brain? Biol Res 2024; 57:8. [PMID: 38475854 DOI: 10.1186/s40659-024-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.
Collapse
Affiliation(s)
- Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
6
|
Tran LN, Loew SK, Franco SJ. Notch Signaling Plays a Dual Role in Regulating the Neuron-to-Oligodendrocyte Switch in the Developing Dorsal Forebrain. J Neurosci 2023; 43:6854-6871. [PMID: 37640551 PMCID: PMC10573779 DOI: 10.1523/jneurosci.0144-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Neural progenitor cells in the developing dorsal forebrain generate excitatory neurons followed by oligodendrocytes (OLs) and astrocytes. However, the specific mechanisms that regulate the timing of this neuron-glia switch are not fully understood. In this study, we show that the proper balance of Notch signaling in dorsal forebrain progenitors is required to generate oligodendrocytes during late stages of embryonic development. Using ex vivo and in utero approaches in mouse embryos of both sexes, we found that Notch inhibition reduced the number of oligodendrocyte lineage cells in the dorsal pallium. However, Notch overactivation also prevented oligodendrogenesis and maintained a progenitor state. These results point toward a dual role for Notch signaling in both promoting and inhibiting oligodendrogenesis, which must be fine-tuned to generate oligodendrocyte lineage cells at the right time and in the right numbers. We further identified the canonical Notch downstream factors HES1 and HES5 as negative regulators in this process. CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-mediated knockdown of Hes1 and Hes5 caused increased expression of the pro-oligodendrocyte factor ASCL1 and led to precocious oligodendrogenesis. Conversely, combining Notch overactivation with ASCL1 overexpression robustly promoted oligodendrogenesis, indicating a separate mechanism of Notch that operates synergistically with ASCL1 to specify an oligodendrocyte fate. We propose a model in which Notch signaling works together with ASCL1 to specify progenitors toward the oligodendrocyte lineage but also maintains a progenitor state through Hes-dependent repression of Ascl1 so that oligodendrocytes are not made too early, thus contributing to the precise timing of the neuron-glia switch.SIGNIFICANCE STATEMENT Neural progenitors make oligodendrocytes after neurogenesis starts to wind down, but the mechanisms that control the timing of this switch are poorly understood. In this study, we identify Notch signaling as a critical pathway that regulates the balance between progenitor maintenance and oligodendrogenesis. Notch signaling is required for the oligodendrocyte fate, but elevated Notch signaling prevents oligodendrogenesis and maintains a progenitor state. We provide evidence that these opposing functions are controlled by different mechanisms. Before the switch, Notch signaling through Hes factors represses oligodendrogenesis. Later, Notch signaling through an unknown mechanism promotes oligodendrogenesis synergistically with the transcription factor ASCL1. Our study underscores the complexity of Notch and reveals its importance in regulating the timing and numbers of oligodendrocyte production.
Collapse
Affiliation(s)
- Luuli N Tran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Sarah K Loew
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Santos J Franco
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Program in Pediatric Stem Cell Biology, Children's Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
7
|
Myers BL, Brayer KJ, Paez-Beltran LE, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara R, Borromeo MD, Bachoo RM, Johnson JE, Vue TY. Glioblastoma initiation, migration, and cell types are regulated by core bHLH transcription factors ASCL1 and OLIG2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560206. [PMID: 37873200 PMCID: PMC10592871 DOI: 10.1101/2023.09.30.560206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex driver mutations and glioma stem cells (GSCs). The neurodevelopmental transcription factors ASCL1 and OLIG2 are co-expressed in GBMs, but their role in regulating the heterogeneity and hierarchy of GBM tumor cells is unclear. Here, we show that oncogenic driver mutations lead to dysregulation of ASCL1 and OLIG2, which function redundantly to initiate brain tumor formation in a mouse model of GBM. Subsequently, the dynamic levels and reciprocal binding of ASCL1 and OLIG2 to each other and to downstream target genes then determine the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in defining GSCs by upregulating a collection of ribosomal protein, mitochondrial, neural stem cell (NSC), and cancer metastasis genes - all essential for sustaining the high proliferation, migration, and therapeutic resistance of GSCs.
Collapse
|
8
|
Talley MJ, Nardini D, Ehrman LA, Lu QR, Waclaw RR. Distinct requirements for Tcf3 and Tcf12 during oligodendrocyte development in the mouse telencephalon. Neural Dev 2023; 18:5. [PMID: 37684687 PMCID: PMC10485956 DOI: 10.1186/s13064-023-00173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND E-proteins encoded by Tcf3, Tcf4, and Tcf12 are class I basic helix-loop-helix (bHLH) transcription factors (TFs) that are thought to be widely expressed during development. However, their function in the developing brain, specifically in the telencephalon remains an active area of research. Our study examines for the first time if combined loss of two E-proteins (Tcf3 and Tcf12) influence distinct cell fates and oligodendrocyte development in the mouse telencephalon. METHODS We generated Tcf3/12 double conditional knockouts (dcKOs) using Olig2Cre/+ or Olig1Cre/+ to overcome compensatory mechanisms between E-proteins and to understand the specific requirement for Tcf3 and Tcf12 in the ventral telencephalon and during oligodendrogenesis. We utilized a combination of in situ hybridization, immunohistochemistry, and immunofluorescence to address development of the telencephalon and oligodendrogenesis at embryonic and postnatal stages in Tcf3/12 dcKOs. RESULTS We show that the E-proteins Tcf3 and Tcf12 are expressed in progenitors of the embryonic telencephalon and throughout the oligodendrocyte lineage in the postnatal brain. Tcf3/12 dcKOs showed transient defects in progenitor cells with an enlarged medial ganglionic eminence (MGE) region which correlated with reduced generation of embryonic oligodendrocyte progenitor cells (OPCs) and increased expression of MGE interneuron genes. Postnatal Tcf3/12 dcKOs showed a recovery of OPCs but displayed a sustained reduction in mature oligodendrocytes (OLs). Interestingly, Tcf4 remained expressed in the dcKOs suggesting that it cannot compensate for the loss of Tcf3 and Tcf12. Generation of Tcf3/12 dcKOs with Olig1Cre/+ avoided the MGE morphology defect caused by Olig2Cre/+ but dcKOs still exhibited reduced embryonic OPCs and subsequent reduction in postnatal OLs. CONCLUSION Our data reveal that Tcf3 and Tcf12 play a role in controlling OPC versus cortical interneuron cell fate decisions in MGE progenitors in addition to playing roles in the generation of embryonic OPCs and differentiation of postnatal OLs in the oligodendrocyte lineage.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
9
|
Warhaftig G, Almeida D, Turecki G. Early life adversity across different cell- types in the brain. Neurosci Biobehav Rev 2023; 148:105113. [PMID: 36863603 DOI: 10.1016/j.neubiorev.2023.105113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Early life adversity (ELA)- which includes physical, psychological, emotional, and sexual abuse is one of the most common predictors to diverse psychopathologies later in adulthood. As ELA has a lasting impact on the brain at a developmental stage, recent findings from the field highlighted the specific contributions of different cell types to ELA and their association with long lasting consequences. In this review we will gather recent findings describing morphological, transcriptional and epigenetic alterations within neurons, glia and perineuronal nets and their associated cellular subpopulation. The findings reviewed and summarized here highlight important mechanisms underlying ELA and point to therapeutic approaches for ELA and related psychopathologies later in life.
Collapse
Affiliation(s)
- Gal Warhaftig
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal QC H3A 1A1, Canada.
| |
Collapse
|
10
|
McCaughey-Chapman A, Connor B. Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cell-based remyelination therapies. J Neurosci Res 2023; 101:1000-1028. [PMID: 36749877 DOI: 10.1002/jnr.25173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Oligodendrocytes are a type of glial cells that produce a lipid-rich membrane called myelin. Myelin assembles into a sheath and lines neuronal axons in the brain and spinal cord to insulate them. This not only increases the speed and efficiency of nerve signal transduction but also protects the axons from damage and degradation, which could trigger neuronal cell death. Demyelination, which is caused by a loss of myelin and oligodendrocytes, is a prominent feature of many neurological conditions, including Multiple sclerosis (MS), spinal cord injuries (SCI), and leukodystrophies. Demyelination is followed by a time of remyelination mediated by the recruitment of endogenous oligodendrocyte precursor cells, their migration to the injury site, and differentiation into myelin-producing oligodendrocytes. Unfortunately, endogenous remyelination is not sufficient to overcome demyelination, which explains why there are to date no regenerative-based treatments for MS, SCI, or leukodystrophies. To better understand the role of oligodendrocytes and develop cell-based remyelination therapies, human oligodendrocytes have been derived from somatic cells using cell reprogramming. This review will detail the different cell reprogramming methods that have been developed to generate human oligodendrocytes and their applications to disease modeling and cell-based remyelination therapies. Recent developments in the field have seen the derivation of brain organoids from pluripotent stem cells, and protocols have been devised to incorporate oligodendrocytes within the organoids, which will also be reviewed.
Collapse
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Dimovasili C, Fair AE, Garza IR, Batterman KV, Mortazavi F, Moore TL, Rosene DL. Aging compromises oligodendrocyte precursor cell maturation and efficient remyelination in the monkey brain. GeroScience 2023; 45:249-264. [PMID: 35930094 PMCID: PMC9886778 DOI: 10.1007/s11357-022-00621-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 02/03/2023] Open
Abstract
Age-associated cognitive decline is common among otherwise healthy elderly people, even in the absence of Alzheimer's disease and neuron loss. Instead, white matter loss and myelin damage are strongly associated with cognitive decline. Myelin is subject to lifelong oxidative stress that damages the myelin sheath, which is repaired by cells of the oligodendrocyte lineage. This process is mediated by oligodendrocyte precursor cells (OPCs) that sense the damage and respond by proliferating locally and migrating to the region, where they differentiate into mature myelinating oligodendrocytes. In aging, extensive myelin damage, in combination with inefficient remyelination, leads to chronically damaged myelin and loss of efficient neuronal conduction. This study used the rhesus monkey model of normal aging to examine how myelin regeneration capacity is affected by age. Results show that older subjects have reduced numbers of new BCAS1 + myelinating oligodendrocytes, which are newly formed cells, and that this reduction is associated with poorer cognitive performance. Interestingly, this does not result from limited proliferation of progenitor OPCs. Instead, the transcription factor NKX2.2, which regulates OPCs differentiation, is significantly decreased in aged OPCs. This suggests that these OPCs have a diminished potential for differentiation into mature oligodendrocytes. In addition, mature oligodendrocytes have reduced RNA expression of two essential myelin protein markers, MBP and PLP. These data collectively suggest that in the normal aging brain, there is a reduction in regenerative OPCs as well as myelin production that impairs the capacity for remyelination.
Collapse
Affiliation(s)
- Christina Dimovasili
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| | - Ashley E Fair
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Isabella R Garza
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Katelyn V Batterman
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Farzad Mortazavi
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Tara L Moore
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Douglas L Rosene
- Laboratory for Cognitive Neurobiology, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
13
|
Tribondeau A, Sachs LM, Buisine N. Tetrabromobisphenol A effects on differentiating mouse embryonic stem cells reveals unexpected impact on immune system. Front Genet 2022; 13:996826. [PMID: 36386828 PMCID: PMC9640982 DOI: 10.3389/fgene.2022.996826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 07/27/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a potent flame retardant used in numerous appliances and a major pollutant in households and ecosystems. In vertebrates, it was shown to affect neurodevelopment, the hypothalamic-pituitary-gonadal axis and thyroid signaling, but its toxicity and modes of actions are still a matter of debate. The molecular phenotype resulting from exposure to TBBPA is only poorly described, especially at the level of transcriptome reprogramming, which further limits our understanding of its molecular toxicity. In this work, we combined functional genomics and system biology to provide a system-wide description of the transcriptomic alterations induced by TBBPA acting on differentiating mESCs, and provide potential new toxicity markers. We found that TBBPA-induced transcriptome reprogramming affect a large collection of genes loosely connected within the network of biological pathways, indicating widespread interferences on biological processes. We also found two hotspots of action: at the level of neuronal differentiation markers, and surprisingly, at the level of immune system functions, which has been largely overlooked until now. This effect is particularly strong, as terminal differentiation markers of both myeloid and lymphoid lineages are strongly reduced: the membrane T cell receptor (Cd79a, Cd79b), interleukin seven receptor (Il7r), macrophages cytokine receptor (Csf1r), monocyte chemokine receptor (Ccr2). Also, the high affinity IgE receptor (Fcer1g), a key mediator of allergic reactions, is strongly induced. Thus, the molecular imbalance induce by TBBPA may be stronger than initially realized.
Collapse
|
14
|
Tanabe K, Nobuta H, Yang N, Ang CE, Huie P, Jordan S, Oldham MC, Rowitch DH, Wernig M. Generation of functional human oligodendrocytes from dermal fibroblasts by direct lineage conversion. Development 2022; 149:275808. [PMID: 35748297 PMCID: PMC9357374 DOI: 10.1242/dev.199723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, possess great potential for disease modeling and cell transplantation-based therapies for leukodystrophies. However, caveats to oligodendrocyte differentiation protocols ( Ehrlich et al., 2017; Wang et al., 2013; Douvaras and Fossati, 2015) from human embryonic stem and induced pluripotent stem cells (iPSCs), which include slow and inefficient differentiation, and tumorigenic potential of contaminating undifferentiated pluripotent cells, are major bottlenecks towards their translational utility. Here, we report the rapid generation of human oligodendrocytes by direct lineage conversion of human dermal fibroblasts (HDFs). We show that the combination of the four transcription factors OLIG2, SOX10, ASCL1 and NKX2.2 is sufficient to convert HDFs to induced oligodendrocyte precursor cells (iOPCs). iOPCs resemble human primary and iPSC-derived OPCs based on morphology and transcriptomic analysis. Importantly, iOPCs can differentiate into mature myelinating oligodendrocytes in vitro and in vivo. Finally, iOPCs derived from patients with Pelizaeus Merzbacher disease, a hypomyelinating leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene, showed increased cell death compared with iOPCs from healthy donors. Thus, human iOPCs generated by direct lineage conversion represent an attractive new source for human cell-based disease models and potentially myelinating cell grafts.
Collapse
Affiliation(s)
- Koji Tanabe
- I Peace, Inc, Palo Alto, CA 94303, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiroko Nobuta
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Huie
- Department of Surgical Pathology, Stanford Health Care, Palo Alto, CA 94305, USA
| | - Sacha Jordan
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael C Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Departments of Pediatrics and Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Paediatrics and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Dermitzakis I, Manthou ME, Meditskou S, Miliaras D, Kesidou E, Boziki M, Petratos S, Grigoriadis N, Theotokis P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr Issues Mol Biol 2022; 44:3208-3237. [PMID: 35877446 PMCID: PMC9324160 DOI: 10.3390/cimb44070222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Dimosthenis Miliaras
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC 3004, Australia;
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
- Correspondence:
| |
Collapse
|
16
|
ATRT-SHH comprises three molecular subgroups with characteristic clinical and histopathological features and prognostic significance. Acta Neuropathol 2022; 143:697-711. [PMID: 35501487 PMCID: PMC9107423 DOI: 10.1007/s00401-022-02424-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022]
Abstract
Atypical teratoid/rhabdoid tumor (ATRT) is an aggressive central nervous system tumor characterized by loss of SMARCB1/INI1 protein expression and comprises three distinct molecular groups, ATRT–TYR, ATRT–MYC and ATRT–SHH. ATRT–SHH represents the largest molecular group and is heterogeneous with regard to age, tumor location and epigenetic profile. We, therefore, aimed to investigate if heterogeneity within ATRT–SHH might also have biological and clinical importance. Consensus clustering of DNA methylation profiles and confirmatory t-SNE analysis of 65 ATRT–SHH yielded three robust molecular subgroups, i.e., SHH-1A, SHH-1B and SHH-2. These subgroups differed by median age of onset (SHH-1A: 18 months, SHH-1B: 107 months, SHH-2: 13 months) and tumor location (SHH-1A: 88% supratentorial; SHH-1B: 85% supratentorial; SHH-2: 93% infratentorial, often extending to the pineal region). Subgroups showed comparable SMARCB1 mutational profiles, but pathogenic/likely pathogenic SMARCB1 germline variants were over-represented in SHH-2 (63%) as compared to SHH-1A (20%) and SHH-1B (0%). Protein expression of proneural marker ASCL1 (enriched in SHH-1B) and glial markers OLIG2 and GFAP (absent in SHH-2) as well as global mRNA expression patterns differed, but all subgroups were characterized by overexpression of SHH as well as Notch pathway members. In a Drosophila model, knockdown of Snr1 (the fly homologue of SMARCB1) in hedgehog activated cells not only altered hedgehog signaling, but also caused aberrant Notch signaling and formation of tumor-like structures. Finally, on survival analysis, molecular subgroup and age of onset (but not ASCL1 staining status) were independently associated with overall survival, older patients (> 3 years) harboring SHH-1B experiencing relatively favorable outcome. In conclusion, ATRT–SHH comprises three subgroups characterized by SHH and Notch pathway activation, but divergent molecular and clinical features. Our data suggest that molecular subgrouping of ATRT–SHH has prognostic relevance and might aid to stratify patients within future clinical trials.
Collapse
|
17
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
18
|
Sock E, Wegner M. Using the lineage determinants Olig2 and Sox10 to explore transcriptional regulation of oligodendrocyte development. Dev Neurobiol 2021; 81:892-901. [PMID: 34480425 DOI: 10.1002/dneu.22849] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023]
Abstract
The transcription factors Olig2 and Sox10 jointly define oligodendroglial identity. Because of their continuous presence during development and in the differentiated state they shape the oligodendroglial regulatory network at all times. In this review, we exploit their eminent role and omnipresence to elaborate the central principles that organize the gene regulatory network in oligodendrocytes in such a way that it preserves its identity, but at the same time allows defined and stimulus-dependent changes that result in an ordered lineage progression, differentiation, and myelination. For this purpose, we outline the multiple functional and physical interactions and intricate cross-regulatory relationships with other transcription factors, such as Hes5, Id, and SoxD proteins, in oligodendrocyte precursors and Tcf7l2, Sip1, Nkx2.2, Zfp24, and Myrf during differentiation and myelination, and interpret them in the context of the regulatory network.
Collapse
Affiliation(s)
- Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Sueda R, Kageyama R. Oscillatory expression of Ascl1 in oligodendrogenesis. Gene Expr Patterns 2021; 41:119198. [PMID: 34175456 DOI: 10.1016/j.gep.2021.119198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
The proneural gene Ascl1 promotes formation of both neurons and oligodendrocytes from neural stem cells (NSCs), but it remains to be analyzed how its different functions are coordinated. It was previously shown that Ascl1 enhances proliferation of NSCs when its expression oscillates but induces differentiation into transit-amplifying precursor cells and neurons when its expression is up-regulated and sustained. By time-lapse imaging and immunohistological analyses, we found that Ascl1 expression oscillated in proliferating oligodendrocyte precursor cells (OPCs) at lower levels than in transit-amplifying precursor cells and was repressed when OPCs differentiated into mature oligodendrocytes. Induction of sustained overexpression of Ascl1 reduced oligodendrocyte differentiation and promoted neuronal differentiation. These results suggest that oscillatory expression of Ascl1 plays an important role in proliferating OPCs during oligodendrocyte formation.
Collapse
Affiliation(s)
- Risa Sueda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan; RIKEN Center for Brain Science, Wako, 351-0198, Japan.
| |
Collapse
|
20
|
Wei H, Dong X, You Y, Hai B, Duran RCD, Wu X, Kharas N, Wu JQ. OLIG2 regulates lncRNAs and its own expression during oligodendrocyte lineage formation. BMC Biol 2021; 19:132. [PMID: 34172044 PMCID: PMC8235854 DOI: 10.1186/s12915-021-01057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oligodendrocytes, responsible for axon ensheathment, are critical for central nervous system (CNS) development, function, and diseases. OLIG2 is an important transcription factor (TF) that acts during oligodendrocyte development and performs distinct functions at different stages. Previous studies have shown that lncRNAs (long non-coding RNAs; > 200 bp) have important functions during oligodendrocyte development, but their roles have not been systematically characterized and their regulation is not yet clear. RESULTS We performed an integrated study of genome-wide OLIG2 binding and the epigenetic modification status of both coding and non-coding genes during three stages of oligodendrocyte differentiation in vivo: neural stem cells (NSCs), oligodendrocyte progenitor cells (OPCs), and newly formed oligodendrocytes (NFOs). We found that 613 lncRNAs have OLIG2 binding sites and are expressed in at least one cell type, which can potentially be activated or repressed by OLIG2. Forty-eight of them have increased expression in oligodendrocyte lineage cells. Predicting lncRNA functions by using a "guilt-by-association" approach revealed that the functions of these 48 lncRNAs were enriched in "oligodendrocyte development and differentiation." Additionally, bivalent genes are known to play essential roles during embryonic stem cell differentiation. We identified bivalent genes in NSCs, OPCs, and NFOs and found that some bivalent genes bound by OLIG2 are dynamically regulated during oligodendrocyte development. Importantly, we unveiled a previously unknown mechanism that, in addition to transcriptional regulation via DNA binding, OLIG2 could self-regulate through the 3' UTR of its own mRNA. CONCLUSIONS Our studies have revealed the missing links in the mechanisms regulating oligodendrocyte development at the transcriptional level and after transcription. The results of our research have improved the understanding of fundamental cell fate decisions during oligodendrocyte lineage formation, which can enable insights into demyelination diseases and regenerative medicine.
Collapse
Affiliation(s)
- Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Xiaomin Dong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Bo Hai
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L., Mexico
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Natasha Kharas
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
21
|
Neurod4 converts endogenous neural stem cells to neurons with synaptic formation after spinal cord injury. iScience 2021; 24:102074. [PMID: 33644710 PMCID: PMC7889987 DOI: 10.1016/j.isci.2021.102074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/05/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
The transcriptome analysis of injured Xenopus laevis tadpole and mice suggested that Neurod4L.S., a basic-helix-loop-helix transcription factor, was the most promising transcription factor to exert neuroregeneration after spinal cord injury (SCI) in mammals. We generated a pseudotyped retroviral vector with the neurotropic lymphocytic choriomeningitis virus (LCMV) envelope to deliver murine Neurod4 to mice undergoing SCI. SCI induced ependymal cells to neural stem cells (NSCs) in the central canal. The LCMV envelope-based pseudotypedvector preferentially introduced Neurod4 into activated NSCs, which converted to neurons with axonal regrowth and suppressed the scar-forming glial lineage. Neurod4-induced inhibitory neurons predominantly projected to the subsynaptic domains of motor neurons at the epicenter, and Neurod4-induced excitatory neurons predominantly projected to subsynaptic domains of motor neurons caudal to the injury site suggesting the formation of functional synapses. Thus, Neurod4 is a potential therapeutic factor that can improve anatomical and functional recovery after SCI. Neurod4 is predominantly expressed in injured Xenopus laevis tadpole An LCMV-based pseudotyped retroviral vector has tropism to neural stem cells Neurod4 converts endogenous neural stem cells to neurons after spinal cord injury The new excitatory and inhibitory synaptic formation leads to functional recovery
Collapse
|
22
|
Wedel M, Fröb F, Elsesser O, Wittmann MT, Lie DC, Reis A, Wegner M. Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res 2020; 48:4839-4857. [PMID: 32266943 PMCID: PMC7229849 DOI: 10.1093/nar/gkaa218] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Development of oligodendrocytes and myelin formation in the vertebrate central nervous system is under control of several basic helix-loop-helix transcription factors such as Olig2, Ascl1, Hes5 and the Id proteins. The class I basic helix-loop-helix proteins Tcf3, Tcf4 and Tcf12 represent potential heterodimerization partners and functional modulators for all, but have not been investigated in oligodendrocytes so far. Using mouse mutants, organotypic slice and primary cell cultures we here show that Tcf4 is required in a cell-autonomous manner for proper terminal differentiation and myelination in vivo and ex vivo. Partial compensation is provided by the paralogous Tcf3, but not Tcf12. On the mechanistic level Tcf4 was identified as the preferred heterodimerization partner of the central regulator of oligodendrocyte development Olig2. Both genetic studies in the mouse as well as functional studies on enhancer regions of myelin genes confirmed the relevance of this physical interaction for oligodendrocyte differentiation. Considering that alterations in TCF4 are associated with syndromic and non-syndromic forms of intellectual disability, schizophrenia and autism in humans, our findings point to the possibility of an oligodendroglial contribution to these disorders.
Collapse
Affiliation(s)
- Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - D Chichung Lie
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
23
|
Vue TY, Kollipara RK, Borromeo MD, Smith T, Mashimo T, Burns DK, Bachoo RM, Johnson JE. ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia 2020; 68:2613-2630. [PMID: 32573857 PMCID: PMC7587013 DOI: 10.1002/glia.23873] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem‐like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic‐helix–loop–helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA‐seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.
Collapse
Affiliation(s)
- Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyler Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tomoyuki Mashimo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Flitsch LJ, Laupman KE, Brüstle O. Transcription Factor-Based Fate Specification and Forward Programming for Neural Regeneration. Front Cell Neurosci 2020; 14:121. [PMID: 32508594 PMCID: PMC7251072 DOI: 10.3389/fncel.2020.00121] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Traditionally, in vitro generation of donor cells for brain repair has been dominated by the application of extrinsic growth factors and morphogens. Recent advances in cell engineering strategies such as reprogramming of somatic cells into induced pluripotent stem cells and direct cell fate conversion have impressively demonstrated the feasibility to manipulate cell identities by the overexpression of cell fate-determining transcription factors. These strategies are now increasingly implemented for transcription factor-guided differentiation of neural precursors and forward programming of pluripotent stem cells toward specific neural subtypes. This review covers major achievements, pros and cons, as well as future prospects of transcription factor-based cell fate specification and the applicability of these approaches for the generation of donor cells for brain repair.
Collapse
Affiliation(s)
- Lea J Flitsch
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Karen E Laupman
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life & Brain Center, University of Bonn Medical Faculty and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
25
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
26
|
Sock E, Wegner M. Transcriptional control of myelination and remyelination. Glia 2019; 67:2153-2165. [PMID: 31038810 DOI: 10.1002/glia.23636] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Myelination is an evolutionary recent differentiation program that has been independently acquired in vertebrates by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. Therefore, it is not surprising that regulating transcription factors differ substantially between both cell types. However, overall principles are similar as transcriptional control in Schwann cells and oligodendrocytes combines lineage determining and stage-specific factors in complex regulatory networks. Myelination does not only occur during development, but also as remyelination in the adult. In line with the different conditions during developmental myelination and remyelination and the distinctive properties of Schwann cells and oligodendrocytes, transcriptional regulation of remyelination exhibits unique features and differs between the two cell types. This review gives an overview of the current state in the field.
Collapse
Affiliation(s)
- Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
27
|
Elbaz B, Popko B. Molecular Control of Oligodendrocyte Development. Trends Neurosci 2019; 42:263-277. [PMID: 30770136 DOI: 10.1016/j.tins.2019.01.002] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
Myelin is a multilayer lipid membrane structure that wraps and insulates axons, allowing for the efficient propagation of action potentials. During developmental myelination of the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) proliferate and migrate to their final destination, where they terminally differentiate into mature oligodendrocytes and myelinate axons. Lineage progression and terminal differentiation of oligodendrocyte lineage cells are under tight transcriptional and post-transcriptional control. The characterization of several recently identified regulatory factors that govern these processes, which are the focus of this review, has greatly increased our understanding of oligodendrocyte development and function. These insights are critical to facilitate efforts to enhance OPC differentiation in neurological disorders that disrupt CNS myelin.
Collapse
Affiliation(s)
- Benayahu Elbaz
- The Center for Peripheral Neuropathy, The Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Brian Popko
- The Center for Peripheral Neuropathy, The Department of Neurology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Jure I, De Nicola AF, Labombarda F. Progesterone effects on oligodendrocyte differentiation in injured spinal cord. Brain Res 2018; 1708:36-46. [PMID: 30527678 DOI: 10.1016/j.brainres.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
Spinal cord lesions result in chronic demyelination as a consequence of secondary injury. Although oligodendrocyte precursor cells proliferate the differentiation program fails. Successful differentiation implies progressive decrease of transcriptional inhibitors followed by upregulation of activators. Progesterone emerges as an anti-inflammatory and pro-myelinating agent which improves locomotor outcome after spinal cord injury. In this study, we have demonstrated that spinal cord injury enhanced oligodendrocyte precursor cell number and decreased mRNA expression of transcriptional inhibitors (Id2, Id4, hes5). However, mRNA expression of transcriptional activators (Olig2, Nkx2.2, Sox10 and Mash1) was down-regulated 3 days post injury. Interestingly, a differentiation factor such as progesterone increased transcriptional activator mRNA levels and the density of Olig2- expressing oligodendrocyte precursor cells. The differentiation program is regulated by extracellular signals which modify transcriptional factors and epigenetic players. As TGFβ1 is a known oligodendrocyte differentiation factor which is regulated by progesterone in reproductive tissues, we assessed whether TGFβ1 could mediate progesterone remyelinating actions after the lesion. Notwithstanding that astrocyte, oligodendrocyte precursor and microglial cell density increased after spinal cord injury, the number of these cells which expressed TGFβ1 remained unchanged regarding sham operated rats. However, progesterone treatment increased TGFβ1 mRNA expression and the number of astrocytes and microglial TGFβ1 expressing cells which would indirectly enhance oligodendrocyte differentiation. Therefore, TGFβ1 arises as a potential mediator of progesterone differentiating effects on oligodendrocyte linage.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155 C1121, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina; Dept. of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155 C1121, Buenos Aires, Argentina.
| |
Collapse
|
29
|
Child abuse associates with an imbalance of oligodendrocyte-lineage cells in ventromedial prefrontal white matter. Mol Psychiatry 2018; 23:2018-2028. [PMID: 29158585 DOI: 10.1038/mp.2017.231] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/14/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022]
Abstract
Child abuse (CA) is a major risk factor for depression, and strongly associates with suicidal behavior during adulthood. Neuroimaging studies have reported widespread changes in white matter integrity and brain connectivity in subjects with a history of CA. Although such observations could reflect changes in myelin and oligodendrocyte function, their cellular underpinnings have never been addressed. Using postmortem brain samples from depressed suicides with or without history of CA and matched controls (18 per group), we aimed to characterize the effects of CA on oligodendrocyte-lineage (OL) cells in the ventromedial prefrontal white matter. Using immunoblotting, double-labeling immunofluorescence and stereological estimates of stage-specific markers, we found that CA is associated with increased numbers of mature myelinating oligodendrocytes, accompanied by decreased numbers of more immature OL cells. This was paralleled by an increased expression of transcription factor MASH1, which is involved in the terminal differentiation of the OL, suggesting that CA may trigger an increased maturation, or bias the populations of OL cells toward a more mature phenotype. Some of these effects, which were absent in the brain of depressed suicides with no history of CA, were also found to recover with age, suggesting that changes in the balance of the OL may reflect a transient adaptive mechanism triggered by early-life adversity. In conclusion, our results indicate that CA in depressed suicides is associated with an imbalance of the OL in the ventromedial prefrontal white matter, an effect that could lead to myelin remodeling and long-term connectivity changes within the limbic network.
Collapse
|
30
|
Kelenis DP, Hart E, Edwards-Fligner M, Johnson JE, Vue TY. ASCL1 regulates proliferation of NG2-glia in the embryonic and adult spinal cord. Glia 2018; 66:1862-1880. [PMID: 29683222 PMCID: PMC6185776 DOI: 10.1002/glia.23344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 01/04/2023]
Abstract
NG2‐glia are highly proliferative oligodendrocyte precursor cells (OPCs) that are widely distributed throughout the central nervous system (CNS). During development, NG2‐glia predominantly differentiate into oligodendrocytes (OLs) to myelinate axon fibers, but they can also remain as OPCs persisting into the mature CNS. Interestingly, NG2‐glia in the gray matter (GM) are intrinsically different from those in the white matter (WM) in terms of proliferation, differentiation, gene expression, and electrophysiological properties. Here we investigate the role of the transcriptional regulator, ASCL1, in controlling NG2‐glia distribution and development in the GM and WM. In the spinal cord, ASCL1 levels are higher in WM NG2‐glia than those in the GM. This differential level of ASCL1 in WM and GM NG2‐glia is maintained into adult stages. Long‐term clonal lineage analysis reveals that the progeny of single ASCL1+ oligodendrocyte progenitors (OLPs) and NG2‐glia are primarily restricted to the GM or WM, even though they undergo extensive proliferation to give rise to large clusters of OLs in the postnatal spinal cord. Conditional deletion of Ascl1 specifically in NG2‐glia in the embryonic or adult spinal cord resulted in a significant reduction in the proliferation but not differentiation of these cells. These findings illustrate that ASCL1 is an intrinsic regulator of the proliferative property of NG2‐glia in the CNS.
Collapse
Affiliation(s)
- Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emma Hart
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico
| | | | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
31
|
Göttle P, Manousi A, Kremer D, Reiche L, Hartung HP, Küry P. Teriflunomide promotes oligodendroglial differentiation and myelination. J Neuroinflammation 2018; 15:76. [PMID: 29534752 PMCID: PMC5851312 DOI: 10.1186/s12974-018-1110-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/28/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease of the central nervous system (CNS) which in most cases initially presents with episodes of transient functional deficits (relapsing-remitting MS; RRMS) and eventually develops into a secondary progressive form (SPMS). Aside from neuroimmunological activities, MS is also characterized by neurodegenerative and regenerative processes. The latter involve the restoration of myelin sheaths-electrically insulating structures which are the primary targets of autoimmune attacks. Spontaneous endogenous remyelination takes place even in the adult CNS and is primarily mediated by activation, recruitment, and differentiation of resident oligodendroglial precursor cells (OPCs). However, the overall efficiency of remyelination is limited and further declines with disease duration and progression. From a therapeutic standpoint, it is therefore key to understand how oligodendroglial maturation can be modulated pharmacologically. Teriflunomide has been approved as a first-line treatment for RRMS in the USA and the European Union. As the active metabolite of leflunomide, an established disease-modifying anti-rheumatic drug, it mainly acts via an inhibition of de novo pyrimidine synthesis exerting a cytostatic effect on proliferating B and T cells. METHODS We investigated teriflunomide-dependent effects on primary rat oligodendroglial homeostasis, proliferation, and differentiation related to cellular processes important for myelin repair hence CNS regeneration in vitro. To this end, several cellular parameters, including specific oligodendroglial maturation markers, in vitro myelination, and p53 family member signaling, were examined by means of gene/protein expression analyses. The rate of myelination was determined using neuron-oligodendrocyte co-cultures. RESULTS Low teriflunomide concentrations resulted in cell cycle exit while higher doses led to decreased cell survival. Short-term teriflunomide pulses can efficiently promote oligodendroglial cell differentiation suggesting that young, immature cells could benefit from such stimulation. In vitro myelination can be boosted by means of an early stimulation window with teriflunomide. p73 signaling is functionally involved in promoting OPC differentiation and myelination. CONCLUSION Our findings indicate a critical window of opportunity during which regenerative oligodendroglial activities including myelination of CNS axons can be stimulated by teriflunomide.
Collapse
Affiliation(s)
- Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Anastasia Manousi
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
32
|
Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 2018; 1705:48-65. [PMID: 29544733 DOI: 10.1016/j.brainres.2018.03.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/16/2023]
Abstract
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate. Transcription factors of the basic-helix-loop-helix (bHLH) family have emerged as key determinants of neural cell fate specification and differentiation, ensuring that appropriate numbers of specific neuronal and glial cell types are produced. Recent studies have further revealed that the functions of these bHLH factors are strictly regulated. Given their essential developmental roles, it is not surprising that bHLH mutations and de-regulated expression are associated with various neurological diseases and cancers. Moreover, the powerful ability of bHLH factors to direct neuronal and glial cell fate specification and differentiation has been exploited in the relatively new field of cellular reprogramming, in which pluripotent stem cells or somatic stem cells are converted to neural lineages, often with a transcription factor-based lineage conversion strategy that includes one or more of the bHLH genes. These concepts are reviewed herein.
Collapse
Affiliation(s)
- Daniel J Dennis
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada
| | - Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Zoupi L, Savvaki M, Kalemaki K, Kalafatakis I, Sidiropoulou K, Karagogeos D. The function of contactin-2/TAG-1 in oligodendrocytes in health and demyelinating pathology. Glia 2017; 66:576-591. [PMID: 29165835 DOI: 10.1002/glia.23266] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The oligodendrocyte maturation process and the transition from the pre-myelinating to the myelinating state are extremely important during development and in pathology. In the present study, we have investigated the role of the cell adhesion molecule CNTN2/TAG-1 on oligodendrocyte proliferation, differentiation, myelination, and function during development and under pathological conditions. With the combination of in vivo, in vitro, ultrastructural, and electrophysiological methods, we have mapped the expression of CNTN2 protein in the oligodendrocyte lineage during the different stages of myelination and its involvement on oligodendrocyte maturation, branching, myelin-gene expression, myelination, and axonal function. The cuprizone model of central nervous system demyelination was further used to assess CNTN2 in pathology. During development, CNTN2 can transiently affect the expression levels of myelin and myelin-regulating genes, while its absence results in reduced oligodendrocyte branching, hypomyelination of fiber tracts and impaired axonal conduction. In pathology, CNTN2 absence does not affect the extent of de- and remyelination. However during remyelination, a novel, CNTN2-independent mechanism is revealed that is able to recluster voltage gated potassium channels (VGKCs) resulting in the improvement of fiber conduction.
Collapse
Affiliation(s)
- Lida Zoupi
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Katerina Kalemaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Ilias Kalafatakis
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Kyriaki Sidiropoulou
- Neurophysiology & Behavior Laboratory, Department of Biology, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Voutes University Campus, GR-70013, P.O. Box 2208, Heraklion, Crete, Greece and 1Institute of Molecular Biology & Biotechnology -FoRTH, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| |
Collapse
|
35
|
Affeldt BM, Obenaus A, Chan J, Pardo AC. Region specific oligodendrocyte transcription factor expression in a model of neonatal hypoxic injury. Int J Dev Neurosci 2017; 61:1-11. [DOI: 10.1016/j.ijdevneu.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022] Open
Affiliation(s)
- Bethann M. Affeldt
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| | - Andre Obenaus
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
- Cell, Molecular and Developmental Biology ProgramUniversity of CaliforniaRiverside, 1140 Bachelor HallRiversideCA92521USA
| | - Jonathan Chan
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| | - Andrea C. Pardo
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| |
Collapse
|
36
|
Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A 2017; 114:E2243-E2252. [PMID: 28246330 DOI: 10.1073/pnas.1614412114] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag-/- mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.
Collapse
|
37
|
Marsters CM, Rosin JM, Thornton HF, Aslanpour S, Klenin N, Wilkinson G, Schuurmans C, Pittman QJ, Kurrasch DM. Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence of Ascl1. Neural Dev 2016; 11:20. [PMID: 27863528 PMCID: PMC5116181 DOI: 10.1186/s13064-016-0075-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/08/2016] [Indexed: 01/28/2023] Open
Abstract
Background Although the vast majority of cells in our brains are glia, we are only beginning to understand programs governing their development, especially within the embryonic hypothalamus. In mice, gliogenesis is a protracted process that begins during embryonic stages and continues into the early postnatal period, with glial progenitors first producing oligodendrocyte precursor cells, which then differentiate into pro-oligodendrocytes, pro-myelinating oligodendrocytes, and finally, mature myelinating oligodendrocytes. The exact timing of the transition from neurogenesis to gliogenesis and the subsequent differentiation of glial lineages remains unknown for most of the Central Nervous System (CNS), and is especially true for the hypothalamus. Methods Here we used mouse embryonic brain samples to determine the onset of gliogenesis and expansion of glial populations in the tuberal hypothalamus using glial markers Sox9, Sox10, Olig2, PdgfRα, Aldh1L1, and MBP. We further employed Ascl1 and Neurog2 mutant mice to probe the influence of these proneual genes on developing embryonic gliogenic populations. Results Using marker analyses for glial precursors, we found that gliogenesis commences just prior to E13.5 in the tuberal hypothalamus, beginning with the detection of glioblast and oligodendrocyte precursor cell markers in a restricted domain adjacent to the third ventricle. Sox9+ and Olig2+ glioblasts are also observed in the mantle region from E13.5 onwards, many of which are Ki67+ proliferating cells, and peaks at E17.5. Using Ascl1 and Neurog2 mutant mice to investigate the influence of these bHLH transcription factors on the progression of gliogenesis in the tuberal hypothalamus, we found that the elimination of Ascl1 resulted in an increase in oligodendrocyte cells throughout the expansive period of oligodendrogenesis. Conclusion Our results are the first to define the timing of gliogenesis in the tuberal hypothalamus and indicate that Ascl1 is required to repress oligodendrocyte differentiation within this brain region. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0075-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Candace M Marsters
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Pharmacology & Physiology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hayley F Thornton
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shaghayegh Aslanpour
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Natasha Klenin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Grey Wilkinson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Quentin J Pittman
- Department of Pharmacology & Physiology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
38
|
Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System. J Neurosci 2016; 36:4339-50. [PMID: 27076429 DOI: 10.1523/jneurosci.0202-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The enteric nervous system (ENS) is organized into neural circuits within the gastrointestinal wall where it controls the peristaltic movements, secretion, and blood flow. Although proper gut function relies on the complex neuronal composition of the ENS, little is known about the transcriptional networks that regulate the diversification into different classes of enteric neurons and glia during development. Here we redefine the role of Ascl1 (Mash1), one of the few regulatory transcription factors described during ENS development. We show that enteric glia and all enteric neuronal subtypes appear to be derived from Ascl1-expressing progenitor cells. In the gut of Ascl1(-/-) mutant mice, neurogenesis is delayed and reduced, and posterior gliogenesis impaired. The ratio of neurons expressing Calbindin, TH, and VIP is selectively decreased while, for instance, 5-HT(+) neurons, which previously were believed to be Ascl1-dependent, are formed in normal numbers. Essentially the same differentiation defects are observed in Ascl1(KINgn2) transgenic mutants, where the proneural activity of Ngn2 replaces Ascl1, demonstrating that Ascl1 is required for the acquisition of specific enteric neuronal subtype features independent of its role in neurogenesis. In this study, we provide novel insights into the expression and function of Ascl1 in the differentiation process of specific neuronal subtypes during ENS development. SIGNIFICANCE STATEMENT The molecular mechanisms underlying the generation of different neuronal subtypes during development of the enteric nervous system are poorly understood despite its pivotal function in gut motility and involvement in gastrointestinal pathology. This report identifies novel roles for the transcription factor Ascl1 in enteric gliogenesis and neurogenesis. Moreover, independent of its proneurogenic activity, Ascl1 is required for the normal expression of specific enteric neuronal subtype characteristics. Distinct enteric neuronal subtypes are formed in a temporally defined order, and we observe that the early-born 5-HT(+) neurons are generated in Ascl1(-/-) mutants, despite the delayed neurogenesis. Enteric nervous system progenitor cells may therefore possess strong intrinsic control over their specification at the initial waves of neurogenesis.
Collapse
|
39
|
Dietz KC, Polanco JJ, Pol SU, Sim FJ. Targeting human oligodendrocyte progenitors for myelin repair. Exp Neurol 2016; 283:489-500. [PMID: 27001544 PMCID: PMC5666574 DOI: 10.1016/j.expneurol.2016.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.
Collapse
Affiliation(s)
- Karen C Dietz
- Program in Neuroscience, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, 119 Farber Hall, Buffalo, NY 14214, United States.
| | - Jessie J Polanco
- Program in Neuroscience, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, 119 Farber Hall, Buffalo, NY 14214, United States.
| | - Suyog U Pol
- Program in Neuroscience, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, 119 Farber Hall, Buffalo, NY 14214, United States.
| | - Fraser J Sim
- Program in Neuroscience, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 3435 Main Street, 119 Farber Hall, Buffalo, NY 14214, United States.
| |
Collapse
|
40
|
Abstract
Oligodendrocytes produce myelin, an insulating sheath required for the saltatory conduction of electrical impulses along axons. Oligodendrocyte loss results in demyelination, which leads to impaired neurological function in a broad array of diseases ranging from pediatric leukodystrophies and cerebral palsy, to multiple sclerosis and white matter stroke. Accordingly, replacing lost oligodendrocytes, whether by transplanting oligodendrocyte progenitor cells (OPCs) or by mobilizing endogenous progenitors, holds great promise as a therapeutic strategy for the diseases of central white matter. In this Primer, we describe the molecular events regulating oligodendrocyte development and how our understanding of this process has led to the establishment of methods for producing OPCs and oligodendrocytes from embryonic stem cells and induced pluripotent stem cells, as well as directly from somatic cells. In addition, we will discuss the safety of engrafted stem cell-derived OPCs, as well as approaches by which to modulate their differentiation and myelinogenesis in vivo following transplantation.
Collapse
Affiliation(s)
- Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA Center for Basic and Translational Neuroscience, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen 2200, Denmark Neuroscience Center, Rigshospitalet, Copenhagen 2100, Denmark
| | - Nicholas J Kuypers
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
41
|
Gao L, Zhu X, Chen G, Ma X, Zhang Y, Khand AA, Shi H, Gu F, Lin H, Chen Y, Zhang H, He L, Tao Q. A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT. Development 2015; 143:492-503. [PMID: 26700681 PMCID: PMC4760308 DOI: 10.1242/dev.126292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023]
Abstract
Maternally expressed proteins function in vertebrates to establish the major body axes of the embryo and to establish a pre-pattern that sets the stage for later-acting zygotic signals. This pre-patterning drives the propensity of Xenopus animal cap cells to adopt neural fates under various experimental conditions. Previous studies found that the maternally expressed transcription factor, encoded by the Xenopus achaete scute-like gene ascl1, is enriched at the animal pole. Asc1l is a bHLH protein involved in neural development, but its maternal function has not been studied. Here, we performed a series of gain- and loss-of-function experiments on maternal ascl1, and present three novel findings. First, Ascl1 is a repressor of mesendoderm induced by VegT, but not of Nodal-induced mesendoderm. Second, a previously uncharacterized N-terminal domain of Ascl1 interacts with HDAC1 to inhibit mesendoderm gene expression. This N-terminal domain is dispensable for its neurogenic function, indicating that Ascl1 acts by different mechanisms at different times. Ascl1-mediated repression of mesendoderm genes was dependent on HDAC activity and accompanied by histone deacetylation in the promoter regions of VegT targets. Finally, maternal Ascl1 is required for animal cap cells to retain their competence to adopt neural fates. These results establish maternal Asc1l as a key factor in establishing pre-patterning of the early embryo, acting in opposition to VegT and biasing the animal pole to adopt neural fates. The data presented here significantly extend our understanding of early embryonic pattern formation. Summary: The proneural factor ASCL1 recruits HDAC1 to repress VegT-induced, but not Nodal-induced, mesendoderm formation via a previously uncharacterized N-terminal domain.
Collapse
Affiliation(s)
- Li Gao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Xuechen Zhu
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Geng Chen
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Xin Ma
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhang
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Aftab A Khand
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Huijuan Shi
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Fei Gu
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Hao Lin
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Yuemeng Chen
- Tianjin Normal University College of Life Science, Binshuixidao (extension line) 393, Xinqing District, Tianjin 300387, China
| | - Haiyan Zhang
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Lei He
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| | - Qinghua Tao
- MOE Key Laboratory of Protein Sciences, Tsinghua University School of Life Sciences, Beijing 100084, China
| |
Collapse
|
42
|
Lopez-Anido C, Sun G, Koenning M, Srinivasan R, Hung HA, Emery B, Keles S, Svaren J. Differential Sox10 genomic occupancy in myelinating glia. Glia 2015; 63:1897-1914. [PMID: 25974668 PMCID: PMC4644515 DOI: 10.1002/glia.22855] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/22/2015] [Indexed: 11/11/2022]
Abstract
Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897-1914.
Collapse
Affiliation(s)
- Camila Lopez-Anido
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Guannan Sun
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthias Koenning
- Department of Anatomy and Neuroscience and the Centre for Neuroscience Research, University of Melbourne, Melbourne, Australia
| | - Rajini Srinivasan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Holly A. Hung
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ben Emery
- Department of Anatomy and Neuroscience and the Centre for Neuroscience Research, University of Melbourne, Melbourne, Australia
| | - Sunduz Keles
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
43
|
Li N, Leung GKK. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:235195. [PMID: 26491661 PMCID: PMC4600489 DOI: 10.1155/2015/235195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gilberto K. K. Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
44
|
Küspert M, Wegner M. SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors. Brain Res 2015; 1638:167-182. [PMID: 26232072 DOI: 10.1016/j.brainres.2015.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 12/26/2022]
Abstract
Glial cells that express the chondroitin sulfate proteoglycan NG2 represent an inherently heterogeneous population. These so-called NG2-glia are present during development and in the adult CNS, where they are referred to as embryonic oligodendrocyte precursors and adult NG2-glia, respectively. They give rise to myelinating oligodendrocytes at all times of life. Over the years much has been learnt about the transcriptional network in embryonic oligodendrocyte precursors, and several transcription factors from the HLH, HMG-domain, zinc finger and homeodomain protein families have been identified as main constituents. Much less is known about the corresponding network in adult NG2-glia. Here we summarize and discuss current knowledge on functions of each of these transcription factor families in NG2-glia, and where possible compare transcriptional regulation in embryonic oligodendrocyte precursors and adult NG2-glia. This article is part of a Special Issue entitled SI:NG2-glia (Invited only).
Collapse
Affiliation(s)
- Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| |
Collapse
|
45
|
Intracellular Protein Shuttling: A Mechanism Relevant for Myelin Repair in Multiple Sclerosis? Int J Mol Sci 2015; 16:15057-85. [PMID: 26151843 PMCID: PMC4519887 DOI: 10.3390/ijms160715057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
A prominent feature of demyelinating diseases such as multiple sclerosis (MS) is the degeneration and loss of previously established functional myelin sheaths, which results in impaired signal propagation and axonal damage. However, at least in early disease stages, partial replacement of lost oligodendrocytes and thus remyelination occur as a result of resident oligodendroglial precursor cell (OPC) activation. These cells represent a widespread cell population within the adult central nervous system (CNS) that can differentiate into functional myelinating glial cells to restore axonal functions. Nevertheless, the spontaneous remyelination capacity in the adult CNS is inefficient because OPCs often fail to generate new oligodendrocytes due to the lack of stimulatory cues and the presence of inhibitory factors. Recent studies have provided evidence that regulated intracellular protein shuttling is functionally involved in oligodendroglial differentiation and remyelination activities. In this review we shed light on the role of the subcellular localization of differentiation-associated factors within oligodendroglial cells and show that regulation of intracellular localization of regulatory factors represents a crucial process to modulate oligodendroglial maturation and myelin repair in the CNS.
Collapse
|
46
|
Emery B, Lu QR. Transcriptional and Epigenetic Regulation of Oligodendrocyte Development and Myelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2015; 7:a020461. [PMID: 26134004 DOI: 10.1101/cshperspect.a020461] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Central nervous system (CNS) myelination by oligodendrocytes (OLs) is a highly orchestrated process involving well-defined steps from specification of neural stem cells into proliferative OL precursors followed by terminal differentiation and subsequent maturation of these precursors into myelinating OLs. These specification and differentiation processes are mediated by profound global changes in gene expression, which are in turn subject to control by both extracellular signals and regulatory networks intrinsic to the OL lineage. Recently, basic transcriptional mechanisms that control OL differentiation and myelination have begun to be elucidated at the molecular level and on a genome scale. The interplay between transcription factors activated by differentiation-promoting signals and master regulators likely exerts a crucial role in controlling stage-specific progression of the OL lineage. In this review, we describe the current state of knowledge regarding the transcription factors and the epigenetic programs including histone methylation, acetylation, chromatin remodeling, micro-RNAs, and noncoding RNAs that regulate development of OLs and myelination.
Collapse
Affiliation(s)
- Ben Emery
- Department of Anatomy and Neurobiology, University of Melbourne, Victoria 3010, Australia Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3010, Australia
| | - Q Richard Lu
- Department of Pediatrics, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
47
|
Hernandez M, Casaccia P. Interplay between transcriptional control and chromatin regulation in the oligodendrocyte lineage. Glia 2015; 63:1357-75. [PMID: 25970296 DOI: 10.1002/glia.22818] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
The recent years have been characterized by a surge of studies on the role of transcription factors and histone modifications in regulating the progression of progenitors into oligodendrocytes. This review summarizes this body of evidence and presents an integrated view of transcriptional networks and epigenetic regulators defining proliferating progenitors and their differentiation along the oligodendrocyte lineage. We suggest that transcription factors in proliferating progenitors have direct access to DNA, due to predominantly euchromatic nuclei. As progenitors differentiate, however, transcriptional competence is modulated by the formation of heterochromatin, which modifies the association of DNA with nucleosomal histones and renders the access of transcription factors dependent on the activity of epigenetic modulators. These concepts are delineated within the context of development, and the potential functional implications are discussed.
Collapse
Affiliation(s)
- Marylens Hernandez
- Department of Neuroscience, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Patrizia Casaccia
- Department of Neuroscience, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Genomics and Multiscale Biology, Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
48
|
Abstract
Multiple sclerosis is an autoimmune disease of the CNS resulting in degeneration of myelin sheaths and loss of oligodendrocytes, which means that protection and electrical insulation of axons and rapid signal propagation are impaired, leading to axonal damage and permanent disabilities. Partial replacement of lost oligodendrocytes and remyelination can occur as a result of activation and recruitment of resident oligodendroglial precursor cells. However, the overall remyelination capacity remains inefficient because precursor cells often fail to generate new oligodendrocytes. Increasing evidence points to the existence of several molecular inhibitors that act on these cells and interfere with their cellular maturation. The p57kip2 gene encodes one such potent inhibitor of oligodendroglial differentiation and this study sheds light on the underlying mode of action. We found that subcellular distribution of the p57kip2 protein changed during differentiation of rat, mouse, and human oligodendroglial cells both in vivo and in vitro. Nuclear export of p57kip2 was correlated with promoted myelin expression, higher morphological phenotypes, and enhanced myelination in vitro. In contrast, nuclear accumulation of p57kip2 resulted in blocked oligodendroglial differentiation. Experimental evidence suggests that the inhibitory role of p57kip2 depends on specific interactions with binding proteins such as LIMK-1, CDK2, Mash1, and Hes5 either by controlling their site of action or their activity. Because functional restoration in demyelinating diseases critically depends on the successful generation of oligodendroglial cells, a therapeutic need that is currently unmet, the regulatory mechanism described here might be of particular interest for identifying suitable drug targets and devising novel therapeutic approaches.
Collapse
|
49
|
Vue TY, Kim EJ, Parras CM, Guillemot F, Johnson JE. Ascl1 controls the number and distribution of astrocytes and oligodendrocytes in the gray matter and white matter of the spinal cord. Development 2014; 141:3721-31. [PMID: 25249462 DOI: 10.1242/dev.105270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glia constitute the majority of cells in the mammalian central nervous system and are crucial for neurological function. However, there is an incomplete understanding of the molecular control of glial cell development. We find that the transcription factor Ascl1 (Mash1), which is best known for its role in neurogenesis, also functions in both astrocyte and oligodendrocyte lineages arising in the mouse spinal cord at late embryonic stages. Clonal fate mapping in vivo reveals heterogeneity in Ascl1-expressing glial progenitors and shows that Ascl1 defines cells that are restricted to either gray matter (GM) or white matter (WM) as astrocytes or oligodendrocytes. Conditional deletion of Ascl1 post-neurogenesis shows that Ascl1 is required during oligodendrogenesis for generating the correct numbers of WM but not GM oligodendrocyte precursor cells, whereas during astrocytogenesis Ascl1 functions in balancing the number of dorsal GM protoplasmic astrocytes with dorsal WM fibrous astrocytes. Thus, in addition to its function in neurogenesis, Ascl1 marks glial progenitors and controls the number and distribution of astrocytes and oligodendrocytes in the GM and WM of the spinal cord.
Collapse
Affiliation(s)
- Tou Yia Vue
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Euiseok J Kim
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos M Parras
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Francois Guillemot
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
50
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|