1
|
Rajabinejad M, Asadi G, Ranjbar S, Afshar Hezarkhani L, Salari F, Gorgin Karaji A, Rezaiemanesh A. Semaphorin 4A, 4C, and 4D: Function comparison in the autoimmunity, allergy, and cancer. Gene 2020; 746:144637. [PMID: 32244055 DOI: 10.1016/j.gene.2020.144637] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023]
Abstract
Semaphorins are a group of proteins that are divided into eight subclasses and identified by a conserved Sema domain on their carboxyl terminus. Sema4A, 4C, and 4D are the members of the fourth class of semaphorin family, which are known as membrane semaphorins; however, these molecules can be altered to soluble semaphorins by proteolytic cleavage. Semaphorins have various roles in the immune, nervous, and metabolic systems. In the immune system, these molecules contribute to the formation of cellular, humoral, and innate immune responses, such as inflammation, leukocyte migration, immunological synapse formation, and germinal center events. Given the diverse roles of semaphorins in the immune system, in this review, we have tried to give a comprehensive look at the role of these molecules in autoimmunity, allergy, and cancer. Sema4D and 4A seem to play a critical role in the pathogenesis of some autoimmune diseases, such as multiple sclerosis. In contrast, it has been shown that Sema4A and 4C have beneficial effects on allergies, and their absence can exacerbate the severity of the disease. In the case of cancer, an increase in all three of these molecules has been reported. Sema4D and 4C can contribute to tumor progression in human patients or experimental models, while the role of Sema4A has not yet been fully understood. In conclusion, semaphorins seem to be a favorable therapeutic target for autoimmune diseases and allergies. However, in cancer, studies have not yet been able to identify the exact role of semaphorins, and further studies are needed.
Collapse
Affiliation(s)
- Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Gras C, Eiz-Vesper B, Jaimes Y, Immenschuh S, Jacobs R, Witte T, Blasczyk R, Figueiredo C. Secreted Semaphorin 5A Activates Immune Effector Cells and Is a Biomarker for Rheumatoid Arthritis. Arthritis Rheumatol 2014; 66:1461-71. [DOI: 10.1002/art.38425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 02/11/2014] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Yarua Jaimes
- Hannover Medical School, Hannover, Germany, and Deutsches Rheuma-Forschungszentrum, Leibniz Institute; Berlin Germany
| | | | | | | | | | | |
Collapse
|
4
|
Theveneau E, Mayor R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 2012; 366:34-54. [PMID: 22261150 DOI: 10.1016/j.ydbio.2011.12.041] [Citation(s) in RCA: 374] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/26/2011] [Indexed: 10/25/2022]
Abstract
After induction and specification in the ectoderm, at the border of the neural plate, the neural crest (NC) population leaves its original territory through a delamination process. Soon afterwards, the NC cells migrate throughout the embryo and colonize a myriad of tissues and organs where they settle and differentiate. The delamination involves a partial or complete epithelium-to-mesenchyme transition (EMT) regulated by a complex network of transcription factors including several proto-oncogenes. Studying the relationship between these genes at the time of emigration, and their individual or collective impact on cell behavior, provides valuable information about their role in EMT in other contexts such as cancer metastasis. During migration, NC cells are exposed to large number of positive and negative regulators that control where they go by generating permissive and restricted areas and by modulating their motility and directionality. In addition, as most NC cells migrate collectively, cell-cell interactions play a crucial role in polarizing the cells and interpreting external cues. Cell cooperation eventually generates an overall polarity to the population, leading to directional collective cell migration. This review will summarize our current knowledge on delamination, EMT and migration of NC cells using key examples from chicken, Xenopus, zebrafish and mouse embryos. Given the similarities between neural crest migration and cancer invasion, these cells may represent a useful model for understanding the mechanisms of metastasis.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, UK
| | | |
Collapse
|
5
|
Gan Y, Reilkoff R, Peng X, Russell T, Chen Q, Mathai SK, Homer R, Gulati M, Siner J, Elias J, Bucala R, Herzog E. Role of semaphorin 7a signaling in transforming growth factor β1-induced lung fibrosis and scleroderma-related interstitial lung disease. ACTA ACUST UNITED AC 2011; 63:2484-94. [PMID: 21484765 DOI: 10.1002/art.30386] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Semaphorin 7a regulates transforming growth factor β1 (TGFβ1)-induced fibrosis. This study was undertaken to test the hypothesis that semaphorin 7a exerts its profibrotic effects in part by promoting the tissue accumulation of CD45+ fibrocytes. METHODS A murine model of pulmonary fibrosis in which an inducible, bioactive form of the human TGFβ1 gene is overexpressed in the lung was used. Fibrosis and fibrocytes were evaluated in TGFβ1-transgenic mice in which the semaphorin 7a locus had been disrupted. The effect of replacement or deletion of semaphorin 7a on bone marrow-derived cells was ascertained using bone marrow transplantation. The role of the semaphorin 7a receptor β1 integrin was assessed using neutralizing antibodies. The applicability of these findings to TGFβ1-driven fibrosis in humans was examined in patients with scleroderma-related interstitial lung disease (ILD). RESULTS The appearance of fibrocytes in the lungs of TGFβ1-transgenic mice required semaphorin 7a. Replacement of semaphorin 7a on bone marrow-derived cells restored lung fibrosis and fibrocytes. Immunoneutralization of β1 integrin reduced pulmonary fibrocytes and fibrosis. Peripheral blood mononuclear cells (PBMCs) from patients with scleroderma-related ILD showed increased levels of messenger RNA for semaphorin 7a and its receptors, with semaphorin 7a located on collagen-producing fibrocytes and CD19+ lymphocytes. Peripheral blood fibrocyte outgrowth was enhanced in these patients. Stimulation of normal human PBMCs with recombinant semaphorin 7a enhanced fibrocyte differentiation; these effects were attenuated by β1 integrin neutralization. CONCLUSION Our findings indicate that interventions that reduce semaphorin 7a expression or prevent the semaphorin 7a-β1 integrin interaction may ameliorate TGFβ1-driven or fibrocyte-associated autoimmune fibroses.
Collapse
Affiliation(s)
- Ye Gan
- Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gay CM, Zygmunt T, Torres-Vázquez J. Diverse functions for the semaphorin receptor PlexinD1 in development and disease. Dev Biol 2011; 349:1-19. [PMID: 20880496 PMCID: PMC2993764 DOI: 10.1016/j.ydbio.2010.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/14/2010] [Accepted: 09/18/2010] [Indexed: 01/13/2023]
Abstract
Plexins are a family of single-pass transmembrane proteins that serve as cell surface receptors for Semaphorins during the embryonic development of animals. Semaphorin-Plexin signaling is critical for many cellular aspects of organogenesis, including cell migration, proliferation and survival. Until recently, little was known about the function of PlexinD1, the sole member of the vertebrate-specific PlexinD (PlxnD1) subfamily. Here we review novel findings about PlxnD1's roles in the development of the cardiovascular, nervous and immune systems and salivary gland branching morphogenesis and discuss new insights concerning the molecular mechanisms of PlxnD1 activity.
Collapse
Affiliation(s)
- Carl M Gay
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, 540 First Avenue, 4th floor, lab 14, New York, NY 10016, USA
| | | | | |
Collapse
|
7
|
Chen SY, Cheng HJ. Functions of axon guidance molecules in synapse formation. Curr Opin Neurobiol 2009; 19:471-8. [PMID: 19828311 DOI: 10.1016/j.conb.2009.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 09/23/2009] [Indexed: 11/18/2022]
Abstract
Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules specify the synapse formation within the target area. However, accumulative evidence has shown that axon guidance molecules can regulate the localization and formation of pre-synaptic and post-synaptic components during synapse formation. These results demonstrate a role for axon guidance molecules in synapse formation and provide insight into how axon guidance and synapse formation are coordinated at the molecular level.
Collapse
Affiliation(s)
- Shih-Yu Chen
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, United States
| | | |
Collapse
|