1
|
Kuo CJ, Hsu YC, Wang ST, Liou BY, Lim SBY, Chen YW, Chen CS. IGLR-2, a Leucine-Rich Repeat Domain Containing Protein, Is Required for the Host Defense in Caenorhabditis elegans. Front Immunol 2020; 11:561337. [PMID: 33329523 PMCID: PMC7734252 DOI: 10.3389/fimmu.2020.561337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), a human pathogen, also infects Caenorhabditis elegans. We demonstrated previously that C. elegans activates the p38 MAPK innate immune pathway to defend against EHEC infection. However, whether a C. elegans pattern recognition receptor (PRR) exists to regulate the immune pathway remains unknown. PRRs identified in other metazoans contain several conserved domains, including the leucine-rich repeat (LRR). By screening a focused RNAi library, we identified the IGLR-2, a transmembrane protein containing the LRR domain, as a potential immune regulator in C. elegans. Our data showed that iglr-2 regulates the host susceptibility to EHEC infection. Moreover, iglr-2 is required for pathogen avoidance to EHEC. The iglr-2 overexpressed strain, which was more resistant to EHEC originally, showed hypersusceptibility to EHEC upon knockdown of the p38 MAPK pathway. Together, our data suggested that iglr-2 plays an important role in C. elegans to defend EHEC by regulating pathogen-avoidance behavior and the p38 MAPK pathway.
Collapse
Affiliation(s)
- Cheng-Ju Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chu Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Tian Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bang-Yu Liou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Serene Boon-Yuean Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
A Receptor Tyrosine Kinase Network Regulates Neuromuscular Function in Response to Oxidative Stress in Caenorhabditis elegans. Genetics 2019; 211:1283-1295. [PMID: 30782598 DOI: 10.1534/genetics.119.302026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Nrf2 plays a critical role in the organism-wide regulation of the antioxidant stress response. The Nrf2 homolog SKN-1 functions in the intestinal cells nonautonomously to negatively regulate neuromuscular junction (NMJ) function in Caenorhabditis elegans To identify additional molecules that mediate SKN-1 signaling to the NMJ, we performed a candidate screen for suppressors of aldicarb resistance caused by acute treatment with the SKN-1 activator arsenite. We identified two receptor tyrosine kinases, EGL-15 (fibroblast growth factor receptor, FGFR) and DAF-2 (insulin-like peptide receptor), that are required for NMJ regulation in response to stress. Through double-mutant analysis, we found that EGL-15 functions downstream of, or parallel to, SKN-1 and SPHK-1 (sphingosine kinase), and that the EGL-15 ligand EGL-17 FGF and canonical EGL-15 effectors are required for oxidative stress-mediated regulation of NMJ function. DAF-2 also functions downstream of or parallel to SKN-1 to regulate NMJ function. Through tissue-specific rescue experiments, we found that FGFR signaling functions primarily in the hypodermis, whereas insulin-like peptide receptor signaling is required in multiple tissues. Our results support the idea that the regulation of NMJ function by SKN-1 occurs via a complex organism-wide signaling network involving receptor tyrosine kinase signaling in multiple tissues.
Collapse
|
3
|
Ghosh S, Vetrone SA, Sternberg PW. Non-neuronal cell outgrowth in C. elegans. WORM 2017; 6:e1405212. [PMID: 29238627 DOI: 10.1080/21624054.2017.1405212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Cell outgrowth is a hallmark of some non-migratory developing cells during morphogenesis. Understanding the mechanisms that control cell outgrowth not only increases our knowledge of tissue and organ development, but can also shed light on disease pathologies that exhibit outgrowth-like behavior. C. elegans is a highly useful model for the analysis of genes and the function of their respective proteins. In addition, C. elegans also has several cells and tissues that undergo outgrowth during development. Here we discuss the outgrowth mechanisms of nine different C. elegans cells and tissues. We specifically focus on how these cells and tissues grow outward and the interactions they make with their environment. Through our own identification, and a meta-analysis, we also identify gene families involved in multiple cell outgrowth processes, which defined potential C. elegans core components of cell outgrowth, as well as identify a potential stepwise cell behavioral cascade used by cells undergoing outgrowth.
Collapse
Affiliation(s)
- Srimoyee Ghosh
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
4
|
D’Souza SA, Rajendran L, Bagg R, Barbier L, van Pel DM, Moshiri H, Roy PJ. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006010. [PMID: 27123983 PMCID: PMC4849719 DOI: 10.1371/journal.pgen.1006010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/05/2016] [Indexed: 11/25/2022] Open
Abstract
The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. In most animals, the physical meeting of the pre- and post-synaptic membranes of the neuromuscular junction occurs via axonal extension towards the muscle. In nematodes, however, motor axons do not extend towards the muscle and instead form a dorsal and ventral cord with relatively few branches. To make the physical connection, the body wall muscles extend membrane projections called muscle arms to the motor axons within the dorsal and ventral cords. Through previous genetic and biochemical analyses with the nematode C. elegans, we identified a neuronally-expressed muscle arm chemoattractant (MADD-4) and its muscle-expressed co-receptor complex (UNC-40/EVA-1). Here, we report our discovery of madd-3, which encodes a LAMMER kinase that is expressed in muscles to regulate muscle arm extension. Genetic analyses revealed that MADD-3 may inhibit a p38 MAP kinase pathway whose normal function is to decrease the abundance of the EVA-1 receptor. In the presence of MADD-3, the activity of the p38 pathway is relatively low, and EVA-1 levels are consequently relatively high. Without MADD-3, the p38 pathway is freed to decrease the abundance of EVA-1. The relationships that we have uncovered between MADD-3, the p38 Map Kinase pathway, and the EVA-1 receptor provide one explanation for the muscle arm defects observed in madd-3 mutants.
Collapse
Affiliation(s)
- Serena A. D’Souza
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luckshi Rajendran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Bagg
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Louis Barbier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Derek M. van Pel
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Houtan Moshiri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Murakami T, Qamar S, Lin JQ, Schierle GSK, Rees E, Miyashita A, Costa AR, Dodd RB, Chan FTS, Michel CH, Kronenberg-Versteeg D, Li Y, Yang SP, Wakutani Y, Meadows W, Ferry RR, Dong L, Tartaglia GG, Favrin G, Lin WL, Dickson DW, Zhen M, Ron D, Schmitt-Ulms G, Fraser PE, Shneider NA, Holt C, Vendruscolo M, Kaminski CF, St George-Hyslop P. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function. Neuron 2015; 88:678-90. [PMID: 26526393 PMCID: PMC4660210 DOI: 10.1016/j.neuron.2015.10.030] [Citation(s) in RCA: 643] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/18/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins. FUS phase transitions between monomer, liquid droplet, and hydrogel states FUS mutants induce further phase transition into irreversible fibrillar hydrogels Irreversible hydrogels sequester RNP cargo and impair RNP granule function Formation of non-amyloid fibrillar hydrogels provides a compelling causative mechanism for neurodegeneration
Collapse
Affiliation(s)
- Tetsuro Murakami
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Seema Qamar
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Julie Qiaojin Lin
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Akinori Miyashita
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Ana R Costa
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Roger B Dodd
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Fiona T S Chan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Claire H Michel
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Deborah Kronenberg-Versteeg
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Yi Li
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Seung-Pil Yang
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Yosuke Wakutani
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - William Meadows
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Rodylyn Rose Ferry
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Liang Dong
- Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gian Gaetano Tartaglia
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Centre for Genomic Regulation and University Pompeu Fabra, Dr. Aiguader St. 88, and Universitat Pompeu Fabra, 08003, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluís Companys, 08010 Barcelona, Spain
| | - Giorgio Favrin
- Cambridge Systems Biology Center & Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Wen-Lang Lin
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Research, Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Mei Zhen
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - David Ron
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA
| | - Christine Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Departments of Medicine, Medical Biophysics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada; Cambridge Institute for Medical Research, Cambridge National Institute for Health Research - Biomedical Research Unit in Dementia, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
6
|
Chan KKM, Seetharaman A, Bagg R, Selman G, Zhang Y, Kim J, Roy PJ. EVA-1 functions as an UNC-40 Co-receptor to enhance attraction to the MADD-4 guidance cue in Caenorhabditis elegans. PLoS Genet 2014; 10:e1004521. [PMID: 25122090 PMCID: PMC4133157 DOI: 10.1371/journal.pgen.1004521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/03/2014] [Indexed: 01/28/2023] Open
Abstract
We recently discovered a secreted and diffusible midline cue called MADD-4 (an ADAMTSL) that guides migrations along the dorsoventral axis of the nematode Caenorhabditis elegans. We showed that the transmembrane receptor, UNC-40 (DCC), whose canonical ligand is the UNC-6 (netrin) guidance cue, is required for extension towards MADD-4. Here, we demonstrate that MADD-4 interacts with an EVA-1/UNC-40 co-receptor complex to attract cell extensions. EVA-1 is a conserved transmembrane protein with predicted galactose-binding lectin domains. EVA-1 functions in the same pathway as MADD-4, physically interacts with both MADD-4 and UNC-40, and enhances UNC-40's sensitivity to the MADD-4 cue. This enhancement is especially important in the presence of UNC-6. In EVA-1's absence, UNC-6 interferes with UNC-40's responsiveness to MADD-4; in UNC-6's absence, UNC-40's responsiveness to MADD-4 is less dependent on EVA-1. By enabling UNC-40 to respond to MADD-4 in the presence of UNC-6, EVA-1 may increase the precision by which UNC-40-directed processes can reach their MADD-4-expressing targets within a field of the UNC-6 guidance cue.
Collapse
Affiliation(s)
- Kevin Ka Ming Chan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ashwin Seetharaman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Bagg
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Guillermo Selman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yuqian Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Joowan Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
8
|
Mizumoto K, Shen K. Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 2013; 77:655-66. [PMID: 23439119 DOI: 10.1016/j.neuron.2012.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
VIDEO ABSTRACT Cellular interactions between neighboring axons are essential for global topographic map formation. Here we show that axonal interactions also precisely instruct the location of synapses. Motoneurons form en passant synapses in Caenorhabditis elegans. Although axons from the same neuron class significantly overlap, each neuron innervates a unique and tiled segment of the muscle field by restricting its synapses to a distinct subaxonal domain-a phenomenon we term synaptic tiling. Using DA8 and DA9 motoneurons, we found that the synaptic tiling requires the PlexinA4 homolog, PLX-1, and two transmembrane semaphorins. In the plexin or semaphorin mutants, synaptic domains from both neurons expand and overlap with each other without guidance defects. In a semaphorin-dependent manner, PLX-1 is concentrated at the synapse-free axonal segment, delineating the tiling border. Furthermore, plexin inhibits presynapse formation by suppressing synaptic F-actin through its cytoplasmic GTPase-activating protein (GAP) domain. Hence, contact-dependent, intra-axonal plexin signaling specifies synaptic circuits by inhibiting synapse formation at the subcellular loci.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | | |
Collapse
|
9
|
Hsieh HH, Hsu TY, Jiang HS, Wu YC. Integrin α PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans. PLoS Genet 2012; 8:e1002663. [PMID: 22615577 PMCID: PMC3355063 DOI: 10.1371/journal.pgen.1002663] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/06/2012] [Indexed: 11/25/2022] Open
Abstract
Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2–mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level. When cells undergo apoptosis, their corpses are quickly recognized and phagocytosed by engulfing cells. Although many cell types, such as muscle cells and epithelial cells, possess the ability to remove apoptotic cells, little is known about the receptors and signaling pathways used for apoptotic cell uptake by these “amateur” phagocytes. We show that, in Caenorhabditis elegans, integrin PAT-2/PAT-3 functions as an engulfment receptor in muscle cells. The integrin α subunit PAT-2 mediates both the recognition and subsequent phagocytosis of apoptotic cells. PAT-2 signals through UIG-1 for CDC-42 activation, leading to the cytoskeletal reorganization as the engulfing muscle cell extends pseudopods around the apoptotic cell. Furthermore, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, both of which appear to act upstream of small GTPase CED-10 (RAC1), predominantly function in epithelial cells to mediate cell corpse removal. Therefore, epithelial cells and muscle cells employ different engulfment receptors for apoptotic cell recognition, downstream signaling, and specific GTPase activation during apoptotic cell removal.
Collapse
Affiliation(s)
- Hsiao-Han Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Tsung-Yuan Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hang-Shiang Jiang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Jensen LT, Møller TH, Larsen SA, Jakobsen H, Olsen A. A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans. Aging Cell 2012; 11:82-92. [PMID: 22051349 DOI: 10.1111/j.1474-9726.2011.00767.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein misfolding is a common theme in aging and several age-related diseases such as Alzheimer's and Parkinson's disease. The processes involved in the development of these diseases are many and complex. Here, we show that components of the basement membrane (BM), particularly laminin, affect protein integrity of the muscle cells they support. We knocked down gene expression of epi-1, a laminin α-chain, and found that this resulted in increased proteotoxicity in different Caenorhabditis elegans transgenic models, expressing aggregating proteins in the body wall muscle. The effect could partially be rescued by decreased insulin-like signaling, known to slow the aging process and the onset of various age-related diseases. Our data points to an underlying molecular mechanism involving proteasomal degradation and HSP-16 chaperone activity. Furthermore, epi-1-depleted animals had altered synaptic function and displayed hypersensitivity to both levamisole and aldicarb, an acetylcholine receptor agonist and an acetylcholinesterase inhibitor, respectively. Our results implicate the BM as an extracellular modulator of protein homeostasis in the adjacent muscle cells. This is in agreement with previous research showing that imbalance in neuromuscular signaling disturbs protein homeostasis in the postsynaptic cell. In our study, proteotoxicity may indeed be mediated by the neuromuscular junction which is part of the BM, where laminins are present in high concentration, ensuring the proper microenvironment for neuromuscular signaling. Laminins are evolutionarily conserved, and thus the BM may play a much more causal role in protein misfolding diseases than currently recognized.
Collapse
Affiliation(s)
- Louise T Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
11
|
Seetharaman A, Selman G, Puckrin R, Barbier L, Wong E, D'Souza S, Roy P. MADD-4 Is a Secreted Cue Required for Midline-Oriented Guidance in Caenorhabditis elegans. Dev Cell 2011; 21:669-80. [DOI: 10.1016/j.devcel.2011.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/31/2011] [Indexed: 11/28/2022]
|
12
|
Gotenstein JR, Swale RE, Fukuda T, Wu Z, Giurumescu CA, Goncharov A, Jin Y, Chisholm AD. The C. elegans peroxidasin PXN-2 is essential for embryonic morphogenesis and inhibits adult axon regeneration. Development 2010; 137:3603-13. [PMID: 20876652 PMCID: PMC2964093 DOI: 10.1242/dev.049189] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2010] [Indexed: 02/03/2023]
Abstract
Peroxidasins form a highly conserved family of extracellular peroxidases of unknown cellular function. We identified the C. elegans peroxidasin PXN-2 in screens for mutants defective in embryonic morphogenesis. We find that PXN-2 is essential for specific stages of embryonic morphogenesis and muscle-epidermal attachment, and is also required postembryonically for basement membrane integrity. The peroxidase catalytic activity of PXN-2 is necessary for these developmental roles. pxn-2 mutants display aberrant ultrastructure of the extracellular matrix, suggesting a role in basement membrane consolidation. PXN-2 affects specific axon guidance choice points in the developing nervous system but is dispensable for maintenance of process positions. In adults, loss of pxn-2 function promotes regrowth of axons after injury, providing the first evidence that C. elegans extracellular matrix can play an inhibitory role in axon regeneration. Loss of function in the closely related C. elegans peroxidasin pxn-1 does not cause overt developmental defects. Unexpectedly, pxn-2 mutant phenotypes are suppressed by loss of function in pxn-1 and exacerbated by overexpression of wild-type pxn-1, indicating that PXN-1 and PXN-2 have antagonistic functions. These results demonstrate that peroxidasins play crucial roles in development and reveal a new role for peroxidasins as extracellular inhibitors of axonal regeneration.
Collapse
Affiliation(s)
- Jennifer R. Gotenstein
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ryann E. Swale
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | - Tetsuko Fukuda
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zilu Wu
- Howard Hughes Medical Institute
| | - Claudiu A. Giurumescu
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Yishi Jin
- Howard Hughes Medical Institute
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Ziel JW, Sherwood DR. Roles for netrin signaling outside of axon guidance: a view from the worm. Dev Dyn 2010; 239:1296-305. [PMID: 20108323 DOI: 10.1002/dvdy.22225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Netrin family of extracellular ligands and their receptors were the first identified signaling pathway regulating axon guidance. Subsequent work across model systems has begun to reveal the interactions that take place downstream of Netrin reception to facilitate growth cone migration. Though intensely studied, many aspects of this signaling system remain unclear. Even less understood are the growing number of contexts in which Netrin signaling influences cells beyond axon guidance and even outside the nervous system. Genetic and cell-biological studies in C. elegans have played an instrumental role in identifying critical functions for Netrin ligands in setting up specialized and potentially adhesive membrane-associated domains within a broad range of cell types. Here we review recent literature implicating Netrin or its receptors in morphogenetic processes outside of growth cone regulation with a special focus on studies in C. elegans that suggest cell biological mechanisms for Netrin signaling.
Collapse
Affiliation(s)
- Joshua W Ziel
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
14
|
Alexander M, Selman G, Seetharaman A, Chan KKM, D'Souza SA, Byrne AB, Roy PJ. MADD-2, a homolog of the Opitz syndrome protein MID1, regulates guidance to the midline through UNC-40 in Caenorhabditis elegans. Dev Cell 2010; 18:961-72. [PMID: 20627078 DOI: 10.1016/j.devcel.2010.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 03/29/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
The body muscles of Caenorhabditis elegans extend plasma membrane extensions called muscle arms to the midline motor axons to form the postsynaptic membrane of the neuromuscular junction. Through a screen for muscle arm development defective (Madd) mutants, we previously discovered that the UNC-40/DCC guidance receptor directs muscle arm extension through the Rho-GEF UNC-73. Here, we describe a gene identified through our mutant screen called madd-2, and show that it functions in an UNC-40 pathway. MADD-2 is a C1-TRIM protein and a homolog of human MID1, mutations in which cause Opitz Syndrome. We demonstrate that MADD-2 functions cell autonomously to direct muscle and axon extensions to the ventral midline of worms. Our results suggest that MADD-2 may enhance UNC-40 pathway activity by facilitating an interaction between UNC-40 and UNC-73. The analogous phenotypes that result from MADD-2 and MID1 mutations suggest that C1-TRIM proteins may have a conserved biological role in midline-oriented developmental events.
Collapse
Affiliation(s)
- Mariam Alexander
- Department of Molecular Genetics, The Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
16
|
Caenorhabditis elegans fibroblast growth factor receptor signaling can occur independently of the multi-substrate adaptor FRS2. Genetics 2010; 185:537-47. [PMID: 20308281 DOI: 10.1534/genetics.109.113373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The components of receptor tyrosine kinase signaling complexes help to define the specificity of the effects of their activation. The Caenorhabditis elegans fibroblast growth factor receptor (FGFR), EGL-15, regulates a number of processes, including sex myoblast (SM) migration guidance and fluid homeostasis, both of which require a Grb2/Sos/Ras cassette of signaling components. Here we show that SEM-5/Grb2 can bind directly to EGL-15 to mediate SM chemoattraction. A yeast two-hybrid screen identified SEM-5 as able to interact with the carboxy-terminal domain (CTD) of EGL-15, a domain that is specifically required for SM chemoattraction. This interaction requires the SEM-5 SH2-binding motifs present in the CTD (Y(1009) and Y(1087)), and these sites are required for the CTD role of EGL-15 in SM chemoattraction. SEM-5, but not the SEM-5 binding sites located in the CTD, is required for the fluid homeostasis function of EGL-15, indicating that SEM-5 can link to EGL-15 through an alternative mechanism. The multi-substrate adaptor protein FRS2 serves to link vertebrate FGFRs to Grb2. In C. elegans, an FRS2-like gene, rog-1, functions upstream of a Ras/MAPK pathway for oocyte maturation but is not required for EGL-15 function. Thus, unlike the vertebrate FGFRs, which require the multi-substrate adaptor FRS2 to recruit Grb2, EGL-15 can recruit SEM-5/Grb2 directly.
Collapse
|
17
|
Polanska UM, Fernig DG, Kinnunen T. Extracellular interactome of the FGF receptor-ligand system: complexities and the relative simplicity of the worm. Dev Dyn 2009; 238:277-93. [PMID: 18985724 DOI: 10.1002/dvdy.21757] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate a multitude of biological functions in embryonic development and in adult. A major question is how does one family of growth factors and their receptors control such a variety of functions? Classically, specificity was thought to be imparted by alternative splicing of the FGFRs, resulting in isoforms that bind specifically to a subset of the FGFs, and by different saccharide sequences in the heparan sulfate proteoglycan (HSPG) co-receptor. A growing number of noncanonical co-receptors such as integrins and neural cell adhesion molecule (NCAM) are now recognized as imparting additional complexity to classic FGFR signaling. This review will discuss the noncanonical FGFR ligands and speculate on the possibility that they provide additional and alternative means to determining the functional specificity of FGFR signaling. We will also discuss how invertebrate models such as C. elegans may advance our understanding of noncanonical FGFR signaling.
Collapse
Affiliation(s)
- Urszula M Polanska
- School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
18
|
Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 2009; 136:563-74. [PMID: 19168673 DOI: 10.1242/dev.016816] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The shape changes that are required to position a cell to migrate or grow out in a particular direction involve a coordinated reorganization of the actin cytoskeleton. Although it is known that the ARP2/3 complex nucleates actin filament assembly, exactly how the information from guidance cues is integrated to elicit ARP2/3-mediated remodeling during outgrowth remains vague. Previous studies have shown that C. elegans UNC-53 and its vertebrate homolog NAV (Neuronal Navigators) are required for the migration of cells and neuronal processes. We have identified ABI-1 as a novel molecular partner of UNC-53/NAV2 and have found that a restricted calponin homology (CH) domain of UNC-53 is sufficient to bind ABI-1. ABI-1 and UNC-53 have an overlapping expression pattern, and display similar cell migration phenotypes in the excretory cell, and in mechanosensory and motoneurons. Migration defects were also observed after RNAi of proteins known to function with abi-1 in actin dynamics, including nck-1, wve-1 and arx-2. We propose that UNC-53/NAV2, through its CH domain, acts as a scaffold that links ABI-1 to the ARP2/3 complex to regulate actin cytoskeleton remodeling.
Collapse
|
19
|
Alexander M, Chan KKM, Byrne AB, Selman G, Lee T, Ono J, Wong E, Puckrin R, Dixon SJ, Roy PJ. An UNC-40 pathway directs postsynaptic membrane extension in Caenorhabditis elegans. Development 2009; 136:911-22. [PMID: 19211675 DOI: 10.1242/dev.030759] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The postsynaptic membrane of the embryonic neuromuscular junction undergoes a dramatic expansion during later development to facilitate the depolarization of larger muscles. In C. elegans, the postsynaptic membrane resides at the termini of plasma membrane extensions called muscle arms. Membrane extension to the motor axons during larval development doubles the number of muscle arms, making them a tractable model to investigate both postsynaptic membrane expansion and guided membrane extension. To identify genes required for muscle arm extension, we performed a forward screen for mutants with fewer muscle arms. We isolated 23 mutations in 14 genes, including unc-40/Dcc, which encodes a transmembrane receptor that guides the migration of cells and extending axons in response to the secreted UNC-6/Netrin spatial cue. We discovered that UNC-40 is enriched at muscle arm termini and functions cell-autonomously to direct arm extension to the motor axons. Surprisingly, UNC-6 is dispensable for muscle arm extension, suggesting that UNC-40 relies on other spatial cues to direct arm extension. We provide the first evidence that the guanine-nucleotide exchange factor UNC-73/Trio, members of the WAVE actin-polymerization complex, and a homolog of the focal adhesion complex can function downstream of UNC-40 to direct membrane extension. Our work is the first to define a pathway for directed muscle membrane extension and illustrates that axon guidance components can play key roles in postsynaptic membrane expansion.
Collapse
Affiliation(s)
- Mariam Alexander
- Department of Molecular Genetics, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The remarkable gene knockdown technique of RNAi has opened exciting new avenues for genetic screens in model organisms and human cells. Here we describe the current state of the art for RNAi screening, and stress the importance of well-designed assays and of analytical approaches for large-scale screening experiments, from high-throughput screens using simplified homogenous assays to microscopy and whole-animal experiments. Like classical genetic screens in the past, the success of large-scale RNAi surveys depends on a careful development of phenotypic assays and their interpretation in a relevant biological context.
Collapse
|
21
|
Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Dev Biol 2008; 318:153-61. [PMID: 18436204 DOI: 10.1016/j.ydbio.2008.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
Abstract
The body wall muscles (BWMs) of nematodes are connected to motor axons by muscle membrane extensions called muscle arms. To better understand how muscle arm extension is regulated, we screened conserved receptor tyrosine kinases for muscle arm defects in Caenorhabditis elegans. We discovered that mutations in daf-2, which encodes the only insulin-like receptor tyrosine kinase, confer a supernumerary muscle arm (Sna) phenotype. The Sna phenotype of daf-2 mutants is suppressed by loss-of-function in the canonical downstream FOXO-family transcription factor DAF-16 in either the muscles or the intestine, demonstrating that insulin-like signaling can regulate muscle arm extension non-autonomously. Furthermore, supernumerary arm extension requires the B isoform of the down-stream DAF-12 nuclear hormone receptor, which lacks the DNA-binding domain, but retains the ligand-binding domain. daf-2 regulates many processes in C. elegans including entry into dauer, which is a diapause-like state that facilitates survival of harsh environmental conditions. We found that wild-type dauers are also Sna. Unlike other changes associated with dauer, however, the Sna phenotype of dauers persists in recovered adults. Finally, disruption of a TGF-beta pathway that regulates dauer formation in parallel to the insulin-like pathway also confers the Sna phenotype. We conclude that supernumerary muscle arms are a novel dauer-specific modification that may facilitate some aspect of dauer behavior.
Collapse
|
22
|
Byrne AB, Weirauch MT, Wong V, Koeva M, Dixon SJ, Stuart JM, Roy PJ. A global analysis of genetic interactions in Caenorhabditis elegans. J Biol 2007; 6:8. [PMID: 17897480 PMCID: PMC2373897 DOI: 10.1186/jbiol58] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/31/2007] [Accepted: 08/17/2007] [Indexed: 01/10/2023] Open
Abstract
Background Understanding gene function and genetic relationships is fundamental to our efforts to better understand biological systems. Previous studies systematically describing genetic interactions on a global scale have either focused on core biological processes in protozoans or surveyed catastrophic interactions in metazoans. Here, we describe a reliable high-throughput approach capable of revealing both weak and strong genetic interactions in the nematode Caenorhabditis elegans. Results We investigated interactions between 11 'query' mutants in conserved signal transduction pathways and hundreds of 'target' genes compromised by RNA interference (RNAi). Mutant-RNAi combinations that grew more slowly than controls were identified, and genetic interactions inferred through an unbiased global analysis of the interaction matrix. A network of 1,246 interactions was uncovered, establishing the largest metazoan genetic-interaction network to date. We refer to this approach as systematic genetic interaction analysis (SGI). To investigate how genetic interactions connect genes on a global scale, we superimposed the SGI network on existing networks of physical, genetic, phenotypic and coexpression interactions. We identified 56 putative functional modules within the superimposed network, one of which regulates fat accumulation and is coordinated by interactions with bar-1(ga80), which encodes a homolog of β-catenin. We also discovered that SGI interactions link distinct subnetworks on a global scale. Finally, we showed that the properties of genetic networks are conserved between C. elegans and Saccharomyces cerevisiae, but that the connectivity of interactions within the current networks is not. Conclusions Synthetic genetic interactions may reveal redundancy among functional modules on a global scale, which is a previously unappreciated level of organization within metazoan systems. Although the buffering between functional modules may differ between species, studying these differences may provide insight into the evolution of divergent form and function.
Collapse
Affiliation(s)
- Alexandra B Byrne
- Department of Medical Genetics and Microbiology, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Matthew T Weirauch
- Department of Biomolecular Engineering, 1156 High Street, Mail Stop SOE2, University of California, Santa Cruz, CA 95064, USA
| | - Victoria Wong
- Department of Medical Genetics and Microbiology, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Martina Koeva
- Department of Biomolecular Engineering, 1156 High Street, Mail Stop SOE2, University of California, Santa Cruz, CA 95064, USA
| | - Scott J Dixon
- Department of Medical Genetics and Microbiology, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Joshua M Stuart
- Department of Biomolecular Engineering, 1156 High Street, Mail Stop SOE2, University of California, Santa Cruz, CA 95064, USA
| | - Peter J Roy
- Department of Medical Genetics and Microbiology, The Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, ON, M5S 3E1, Canada
| |
Collapse
|