1
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
2
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Draga M, Pröls F, Scaal M. Double electroporation in two adjacent tissues in chicken embryos. Dev Dyn 2018; 247:1211-1216. [DOI: 10.1002/dvdy.24674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Felicitas Pröls
- Institute of Anatomy II; University of Cologne; Cologne Germany
| | - Martin Scaal
- Institute of Anatomy II; University of Cologne; Cologne Germany
| |
Collapse
|
4
|
TiO 2 nanoparticles induce omphalocele in chicken embryo by disrupting Wnt signaling pathway. Sci Rep 2018; 8:4756. [PMID: 29555972 PMCID: PMC5859020 DOI: 10.1038/s41598-018-23215-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are among abundantly used metal oxide NPs but their interactions with biomolecules and subsequent embryonic toxicity in higher vertebrates is not extensively reported. Physicochemical interactions of TiO2 NPs with egg albumen reveals that lower doses of TiO2 NPs (10 and 25 µg/ml) accounted for higher friccohesity and activation energy but an increment in molecular radii was recorded at higher doses (50 and 100 µg/ml). FTIR analysis revealed conformational changes in secondary structure of egg albumen as a result of electrostratic interactions between egg albumen and TiO2 NPs. The morphometric data of chicken embryo recorded a reduction at all the doses of TiO2 NPs, but toxicity and developmental deformity (omphalocele and flexed limbs) were recorded at lower doses only. Inductively coupled plasma optical emission spectrometry (ICP-OES) confirmed presence of Ti in chicken embryos. mRNA levels of genes involved in canonical and non-canonical Wnt signaling were lowered following TiO2 NPs treatment resulting in free radical mediated disruption of lateral plate mesoderm and somite myogenesis. Conformational changes in egg albumen and subsequent developmental deformity in chicken embryo following TiO2 NPs treatment warrants detailed studies of NP toxicity at lower doses prior to their biomedical applications.
Collapse
|
5
|
Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond. Front Immunol 2016; 7:635. [PMID: 28082976 PMCID: PMC5183615 DOI: 10.3389/fimmu.2016.00635] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/12/2016] [Indexed: 12/01/2022] Open
Abstract
In recent years, it has become apparent that the Wnt signaling pathway, known for its essential functions in embryonic development and tissue homeostasis, exerts immunomodulatory functions during inflammation and infection. Most functional studies indicate that Wnt5a exerts pro-inflammatory functions on its cellular targets, which include various types of immune and non-immune cells. Wnt5a expression has also been linked to the pathogenesis of chronic inflammatory diseases. Activation of beta-catenin-dependent Wnt signaling, e.g., by Wnt3a, has however been shown to limit inflammation by interfering with the nuclear factor kappa-light chain-enhancer of activated B-cells (NF-kappaB) pathway. This review focuses on the regulation of Wnt5a, Wnt3a, and the recently identified Wnt6 and their functional role in bacterial infections with a primary focus on pulmonary tuberculosis, a leading infectious cause of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
6
|
Eckei G, Böing M, Brand-Saberi B, Morosan-Puopolo G. Expression Pattern of Axin2 During Chicken Development. PLoS One 2016; 11:e0163610. [PMID: 27680024 PMCID: PMC5040342 DOI: 10.1371/journal.pone.0163610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Canonical Wnt-signalling is well understood and has been extensively described in many developmental processes. The regulation of this signalling pathway is of outstanding relevance for proper development of the vertebrate and invertebrate embryo. Axin2 provides a negative-feedback-loop in the canonical Wnt-pathway, being a target gene and a negative regulator. Here we provide a detailed analysis of the expression pattern in the development of the chicken embryo. By performing in-situ hybridization on chicken embryos from stage HH 04+ to HH 32 we detected a temporally and spatially restricted dynamic expression of Axin2. In particular, data about the expression of Axin2 mRNA in early embryogenesis, somites, neural tube, limbs, kidney and eyes was obtained.
Collapse
Affiliation(s)
- Gesa Eckei
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Marion Böing
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
7
|
WNT Signaling in Cutaneous Squamous Cell Carcinoma: A Future Treatment Strategy? J Invest Dermatol 2016; 136:1760-1767. [PMID: 27448706 DOI: 10.1016/j.jid.2016.05.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/10/2016] [Accepted: 05/21/2016] [Indexed: 12/15/2022]
Abstract
The molecular mechanisms underlying cutaneous squamous cell carcinoma are less well established than those for other common skin cancers, but recent evidence has highlighted a potentially critical role for WNT signaling in both the development and progression of cutaneous squamous cell carcinoma. WNT pathways are aberrantly regulated in multiple tumor types (albeit in a context-dependent manner), and this has stimulated the development of WNT inhibitory compounds for cancer treatment. In this review, we examine existing evidence for a role of WNT signaling in cutaneous squamous cell carcinoma and discuss if WNT inhibition represents a realistic therapeutic strategy for the future.
Collapse
|
8
|
Sagar, Pröls F, Wiegreffe C, Scaal M. Communication between distant epithelial cells by filopodia-like protrusions during embryonic development. Development 2015; 142:665-71. [PMID: 25617437 DOI: 10.1242/dev.115964] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Long-range intercellular communication is essential for the regulation of embryonic development. Apart from simple diffusion, various modes of signal transfer have been described in the literature. Here, we describe a novel type of cellular extensions found in epithelial cells of the somites in chicken embryos. These filopodia-like protrusions span the subectodermal space overlying the dorsal surface of the somites and contact the ectoderm. We show that these protrusions are actin- and tubulin-positive and require Rac1 for their formation. The presence of glycophosphatidylinositol-anchored proteins and net retrograde trafficking of the transmembrane Wnt-receptor Frizzled-7 along the protrusions indicate their role in signal transport and distribution. Taken together, our data suggest a role of filopodia-like protrusions in mediating signaling events between distant epithelial cells during embryonic development.
Collapse
Affiliation(s)
- Sagar
- Institute of Anatomy II, Department of Vertebrate Embryology, University of Cologne, Joseph-Stelzmann-Straße 9, Cologne 50931, Germany Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstraße 17, Freiburg 79104, Germany Faculty of Biology, University of Freiburg, Schaenzlestraße 1, Freiburg 79104, Germany
| | - Felicitas Pröls
- Institute of Anatomy II, Department of Vertebrate Embryology, University of Cologne, Joseph-Stelzmann-Straße 9, Cologne 50931, Germany
| | - Christoph Wiegreffe
- Institute of Molecular and Cellular Anatomy, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Martin Scaal
- Institute of Anatomy II, Department of Vertebrate Embryology, University of Cologne, Joseph-Stelzmann-Straße 9, Cologne 50931, Germany Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstraße 17, Freiburg 79104, Germany
| |
Collapse
|
9
|
Dichmann DS, Walentek P, Harland RM. The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. Cell Rep 2015; 10:527-36. [PMID: 25620705 DOI: 10.1016/j.celrep.2014.12.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing is pervasive in vertebrates, yet little is known about most isoforms or their regulation. transformer-2b (tra2b) encodes a splicing regulator whose endogenous function is poorly understood. Tra2b knockdown in Xenopus results in embryos with multiple defects, including defective somitogenesis. Using RNA sequencing, we identify 142 splice changes (mostly intron retention and exon skipping), 89% of which are not in current annotations. A previously undescribed isoform of wnt11b retains the last intron, resulting in a truncated ligand (Wnt11b-short). We show that this isoform acts as a dominant-negative ligand in cardiac gene induction and pronephric tubule formation. To determine the contribution of Wnt11b-short to the tra2b phenotype, we induce retention of intron 4 in wnt11b, which recapitulates the failure to form somites but not other tra2b morphant defects. This alternative splicing of a Wnt ligand adds intricacy to a complex signaling pathway and highlights intron retention as a regulatory mechanism.
Collapse
Affiliation(s)
- Darwin S Dichmann
- Department of Molecular & Cell Biology, 142 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Peter Walentek
- Department of Molecular & Cell Biology, 142 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Richard M Harland
- Department of Molecular & Cell Biology, 142 Life Sciences Addition #3200, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
10
|
Morosan-Puopolo G, Balakrishnan-Renuka A, Yusuf F, Chen J, Dai F, Zoidl G, Lüdtke THW, Kispert A, Theiss C, Abdelsabour-Khalaf M, Brand-Saberi B. Wnt11 is required for oriented migration of dermogenic progenitor cells from the dorsomedial lip of the avian dermomyotome. PLoS One 2014; 9:e92679. [PMID: 24671096 PMCID: PMC3966816 DOI: 10.1371/journal.pone.0092679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/24/2014] [Indexed: 12/23/2022] Open
Abstract
The embryonic origin of the dermis in vertebrates can be traced back to the dermomyotome of the somites, the lateral plate mesoderm and the neural crest. The dermal precursors directly overlying the neural tube display a unique dense arrangement and are the first to induce skin appendage formation in vertebrate embryos. These dermal precursor cells have been shown to derive from the dorsomedial lip of the dermomyotome (DML). Based on its expression pattern in the DML, Wnt11 is a candidate regulator of dorsal dermis formation. Using EGFP-based cell labelling and time-lapse imaging, we show that the Wnt11 expressing DML is the source of the dense dorsal dermis. Loss-of-function studies in chicken embryos show that Wnt11 is indeed essential for the formation of dense dermis competent to support cutaneous appendage formation. Our findings show that dermogenic progenitors cannot leave the DML to form dense dorsal dermis following Wnt11 silencing. No alterations were noticeable in the patterning or in the epithelial state of the dermomyotome including the DML. Furthermore, we show that Wnt11 expression is regulated in a manner similar to the previously described early dermal marker cDermo-1. The analysis of Wnt11 mutant mice exhibits an underdeveloped dorsal dermis and strongly supports our gene silencing data in chicken embryos. We conclude that Wnt11 is required for dense dermis and subsequent cutaneous appendage formation, by influencing the cell fate decision of the cells in the DML.
Collapse
Affiliation(s)
- Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Ajeesh Balakrishnan-Renuka
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Faisal Yusuf
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Jingchen Chen
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Fangping Dai
- Department of Molecular Embryology, Freiburg University, Freiburg, Germany
| | - Georg Zoidl
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Timo H.-W. Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Theiss
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
| | - Mohammed Abdelsabour-Khalaf
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, Bochum, Germany
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs University, Freiburg, Germany
| |
Collapse
|
11
|
Widelitz RB. Wnt signaling in skin organogenesis. Organogenesis 2012; 4:123-33. [PMID: 19279724 DOI: 10.4161/org.4.2.5859] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 12/18/2022] Open
Abstract
While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research.
Collapse
Affiliation(s)
- Randall B Widelitz
- Department of Pathology; Keck School of Medicine; University of Southern California; Los Angeles, California USA
| |
Collapse
|
12
|
Divergent regulation of Wnt-mediated development of the dorsomedial and ventrolateral dermomyotomal lips. Histochem Cell Biol 2012; 138:503-14. [DOI: 10.1007/s00418-012-0971-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
13
|
Pu Q, Christ B, Huang R. Temporal sequence in the formation of midline dermis and dorsal vertebral elements in avian embryos. J Anat 2012; 221:115-20. [PMID: 22606994 DOI: 10.1111/j.1469-7580.2012.01518.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Somites compartmentalize into a dorsal epithelial dermomyotome and a ventral mesenchymal sclerotome. While sclerotomes give rise to vertebrae and intervertebral discs, dermomyotomes contribute to skeletal muscle and epaxial dermis. Bone morphogenetic protein (BMP)-signals from the lateral mesoderm induce the lateral portion of the dermomyotome to form chondrogenic precursor cells, forming the cartilage of the scapula blade. The fact that BMPs are expressed in the roof plate of the neural tube where they induce cartilage formation led to the question why cells migrating from the medial part of the dermomyotome do not undergo chondrogenic differentiation and do not contribute to the dorsal part of the vertebrae. In the present study, we traced dermomyotomal derivatives by using the quail-chick marker technique. Our study reveals a temporal sequence in the formation of the vertebral cartilage and the midline dermis. The dorsal mesenchyme overlying the roof plate of the neural tube is formed prior to the de-epithelialization of the dermomyotome. Dermomyotomal cells start to migrate medially into the sub-ectodermal space to form the midline dermis after chondrogenesis of the dorsal mesenchyme has occurred. This time delay between chondrogenesis of the dorsal vertebra and dermal formation allows an undisturbed development of these two tissue components within a narrow region of the embryo.
Collapse
Affiliation(s)
- Qin Pu
- Department of Neuroanatomy, Institute of Anatomy, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
14
|
Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:401-23. [PMID: 23801490 DOI: 10.1002/wdev.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vertebral column derives from somites, which are transient paired segments of mesoderm that surround the neural tube in the early embryo. Somites are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt, and fibroblast growth factor (FGF) signaling pathways. These oscillators together with signaling gradients within the presomitic mesoderm help to set somitic boundaries and rostral-caudal polarity that are essential for the precise patterning of the vertebral column. Disruption of this mechanism has been identified as the cause of severe segmentation defects of the vertebrae in humans. These segmentation defects are part of a spectrum of spinal disorders affecting the skeletal elements and musculature of the spine, resulting in curvatures such as scoliosis, kyphosis, and lordosis. While the etiology of most disorders with spinal curvatures is still unknown, genetic and developmental studies of somitogenesis and patterning of the axial skeleton and musculature are yielding insights into the causes of these diseases.
Collapse
|
15
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|
16
|
Wang B, Pu Q, De R, Patel K, Christ B, Wilting J, Huang R. Commitment of chondrogenic precursors of the avian scapula takes place after epithelial-mesenchymal transition of the dermomyotome. BMC DEVELOPMENTAL BIOLOGY 2010; 10:91. [PMID: 20807426 PMCID: PMC2936895 DOI: 10.1186/1471-213x-10-91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/31/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cells of the epithelially organised dermomyotome are traditionally believed to give rise to skeletal muscle and dermis. We have previously shown that the dermomyotome can undergo epithelial-mesenchymal transition (EMT) and give rise to chondrogenic cells, which go on to form the scapula blade in birds. At present we have little understanding regarding the issue of when the chondrogenic fate of dermomyotomal cells is determined. Using quail-chick grafting experiments, we investigated whether scapula precursor cells are committed to a chondrogenic fate while in an epithelial state or whether commitment is established after EMT. RESULTS We show that the hypaxial dermomyotome, which normally forms the scapula, does not generate cartilaginous tissue after it is grafted to the epaxial domain. In contrast engraftment of the epaxial dermomyotome to the hypaxial domain gives rise to scapula-like cartilage. However, the hypaxial sub-ectodermal mesenchyme (SEM), which originates from the hypaxial dermomyotome after EMT, generates cartilaginous elements in the epaxial domain, whereas in reciprocal grafting experiments, the epaxial SEM cannot form cartilage in the hypaxial domain. CONCLUSIONS We suggest that the epithelial cells of the dermomyotome are not committed to the chondrogenic lineage. Commitment to this lineage occurs after it has undergone EMT to form the sub-ectodermal mesenchyme.
Collapse
Affiliation(s)
- Baigang Wang
- Department of Anatomy and Cell Biology, University of Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Doi T, Puri P, Bannigan J, Thompson J. Disruption of noncanonical Wnt/CA2+ pathway in the cadmium-induced omphalocele in the chick model. J Pediatr Surg 2010; 45:1645-9. [PMID: 20713214 DOI: 10.1016/j.jpedsurg.2009.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/23/2009] [Accepted: 11/26/2009] [Indexed: 12/11/2022]
Abstract
PURPOSE Cadmium (Cd) has been found to cause ventral body wall defects (VBWDs) in the chick embryo similar to human omphalocele. The earliest detectable histologic changes in Cd-induced VBWD chick model have been observed 4 hours posttreatment. The exact mechanism by which Cd acts in the early embryogenesis remains unclear. Wnt proteins play a key role during embryogenesis, and altered Wnt signaling has been linked to developmental defects. Noncanonical Wnt/Ca(2+) pathway has been implicated in regulating embryogenesis by controlling cell movement and adhesion. Wnt11 can activate protein kinase C (PKC) and calcium/calmodulin-dependent kinase II (CaMKII) in the Wnt/Ca(2+) pathway. We hypothesized that the Wnt11, PKCalpha, and CaMKII gene expression is downregulated in the Cd-induced VBWD during early embryogenesis. METHODS After 60 hours of incubation, chick embryos were harvested 1 hour (1H), 4H, and 8H after treatment of saline or cadmium and divided into 2 groups: control and Cd (n = 8 at each time-point, respectively). Real-time polymerase chain reaction was performed to evaluate the messenger RNA (mRNA) expression of Wnt11, PKCalpha, and CaMKII in the Cd-induced VBWD chick model. RESULTS The mRNA expression levels of Wnt11, PKCalpha, and CaMKII were significantly decreased at 1H in Cd group compared to controls (P < .05). However, there were no significant differences in the other time-points. CONCLUSION Downregulation of Wnt11, PKCalpha, and CaMKII gene expression during the narrow window of early embryogenesis may cause VBWD, interfering with cell movement and adhesion, disrupting Wnt/Ca(2+) pathway.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Center, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
18
|
Piran R, Halperin E, Guttmann-Raviv N, Keinan E, Reshef R. Algorithm of myogenic differentiation in higher-order organisms. Development 2009; 136:3831-40. [PMID: 19855025 DOI: 10.1242/dev.041764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell fate determination is governed by complex signaling molecules at appropriate concentrations that regulate the cell decision-making process. In vertebrates, however, concentration and kinetic parameters are practically unknown, and therefore the mechanism by which these molecules interact is obscure. In myogenesis, for example, multipotent cells differentiate into skeletal muscle as a result of appropriate interplay between several signaling molecules, which is not sufficiently characterized. Here we demonstrate that treatment of biochemical events with SAT (satisfiability) formalism, which has been primarily applied for solving decision-making problems, can provide a simple conceptual tool for describing the relationship between causes and effects in biological phenomena. Specifically, we applied the Łukasiewicz logic to a diffusible protein system that leads to myogenesis. The creation of an automaton that describes the myogenesis SAT problem has led to a comprehensive overview of this non-trivial phenomenon and also to a hypothesis that was subsequently verified experimentally. This example demonstrates the power of applying Łukasiewicz logic in describing and predicting any decision-making problem in general, and developmental processes in particular.
Collapse
Affiliation(s)
- Ron Piran
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
19
|
Abou-Elhamd A, Cooper O, Münsterberg A. Klhl31 is associated with skeletal myogenesis and its expression is regulated by myogenic signals and Myf-5. Mech Dev 2009; 126:852-62. [PMID: 19643178 DOI: 10.1016/j.mod.2009.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
Klhl31 is an orthologue of Drosophila Kelch and belongs to a family of Kelch-like proteins in vertebrates. Members of this family contain multiple protein domains, including an amino-terminal broad complex/tram-track/bric-a-brac (BTB) or poxvirus and zinc finger (POZ) domain, carboxy-terminal Kelch repeats and a central linker region. We show that Klhl31 is highly expressed in the developing heart, the somite myotome and later in differentiated skeletal muscle and the myocardium. In developing somites expression of Klhl31 was initiated in the epaxial domain of the myotome, shortly after the skeletal muscle specific bHLH transcription factor, MyoD, was first expressed. Klhl31 remained expressed in skeletal muscle throughout embryonic and fetal development. Tissue ablations and rescue experiments that regulate myogenesis also govern expression of Klhl31 expression in somites. In particular, axial tissues, neural tube, floor plate and notochord, and surface ectoderm, provide combinatorial cues for myogenesis and the appropriate expression of Klhl31. We show that a combination of myogenic signals, Shh and either Wnt-1 or Wnt-6, are sufficient for Klhl31 expression in the dorsal somite. Furthermore, ectopic expression of Myf-5 led to expression of Klhl31 in the developing neural tube, indicating that Klhl31 is a novel and integral part of vertebrate myogenesis.
Collapse
Affiliation(s)
- Alaa Abou-Elhamd
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | |
Collapse
|
20
|
The timing of emergence of muscle progenitors is controlled by an FGF/ERK/SNAIL1 pathway. Dev Biol 2009; 333:229-37. [DOI: 10.1016/j.ydbio.2009.05.544] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/30/2009] [Accepted: 05/08/2009] [Indexed: 12/11/2022]
|
21
|
Formation and Differentiation of Avian Somite Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:1-41. [DOI: 10.1007/978-0-387-09606-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Doi T, Puri P, Bannigan J, Thompson J. Downregulation of ROCK-I and ROCK-II gene expression in the cadmium-induced ventral body wall defect chick model. Pediatr Surg Int 2008; 24:1297-301. [PMID: 18956198 DOI: 10.1007/s00383-008-2270-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE In the chick embryo, administration of the heavy metal cadmium (Cd) after 60 h incubation induces the ventral body wall defect (VBW) with similarities to the human omphalocele. Rho-associated coiled-coil-containing protein kinase (ROCK) I and ROCK-II mediate signalling from Rho to the actin cytoskeleton in the Wnt non-canonical pathway. ROCK-I knockout (KO), ROCK-II KO, and ROCK-I/ROCK-II double heterozygous mice have been shown to cause failure of closure of the VBW. The exact mechanism by which Cd acts in the Wnt signalling pathway still remains unclear. We designed this study to test the hypothesis, that the gene expression levels of ROCK-I and ROCK-II are downregulated during the critical period of embryogenesis in the Cd-induced VBW defect chick model. METHODS Chick embryos were harvested 1 h (1H), 4 h (4H), and 8 h (8H) after treatment of cadmium and divided into two groups: control (n = 8 at each time point), and Cd (n = 8 at each time point). Real-time RT-PCR was performed to evaluate the relative mRNA levels of ROCK-I and ROCK-II expression in the Cd-induced VBW defect chick model. Differences between the two groups at each time point were tested by using Mann-Whitney's U test and statistical significance was accepted at P < 0.05. RESULTS The relative mRNA levels of ROCK-I and ROCK-II at 4H were significantly decreased in Cd group compared to controls (P < 0.01 and P < 0.001, respectively). The expression levels of ROCK-I and ROCK-II at 1H and 8H were not significantly different between Cd group and controls. CONCLUSIONS Our results provide evidence, for the first time, that the gene expression levels of ROCK-I and ROCK-II are significantly downregulated at 4 h after treatment of Cd in the VBW defect model of chick embryo. We speculate that the downregulation of ROCK-I and ROCK-II gene expressions during this narrow window of embryogenesis may cause VBW defect by disrupting Wnt non-canonical pathway.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | | | | | | |
Collapse
|
23
|
Cairns DM, Sato ME, Lee PG, Lassar AB, Zeng L. A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol 2008; 323:152-65. [PMID: 18796301 DOI: 10.1016/j.ydbio.2008.08.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/14/2008] [Accepted: 08/23/2008] [Indexed: 11/25/2022]
Abstract
Wnt and Sonic Hedgehog (Shh) signals are known to pattern the somite into dermomyotomal, myotomal and sclerotomal cell fates. By employing explants of presomitic mesoderm cultured with constant levels of Wnt3a conditioned medium and increasing levels of Shh, we found that differing levels of Shh signaling elicit differing responses from somitic cells: the lowest level of Shh signaling allows dermomyotomal gene expression, intermediate levels induce loss of dermomyotomal markers and activation of myogenic differentiation, and higher levels induce loss of myotomal markers and activation of sclerotomal gene expression. In addition, we have found that in the presence of high levels of Wnt signaling, instead of inducing sclerotomal markers, Shh signals act to maintain the expression of dermomyotomal and myotomal markers. One of the sclerotomal genes induced by high levels of Shh signaling is Nkx3.2. Forced expression of Nkx3.2 blocks somitic expression of the dermomyotomal marker Pax3 both in vitro and in vivo. Conversely, forced expression of Pax3 in somites can block Shh-mediated induction of sclerotomal gene expression and chondrocyte differentiation in vitro. Thus we propose that varying levels of Shh signaling act in a morphogen-like manner to elicit differing responses from somitic cells, and that Pax3 and Nkx3.2 set up mutually repressing cell fates that promote either dermomyotome/myotome or sclerotome differentiation, respectively.
Collapse
Affiliation(s)
- Dana M Cairns
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The molecular, genetic and cellular bases for skeletal muscle growth and regeneration have been recently documented in a number of vertebrate species. These studies highlight the role of transient subcompartments of the early somite as a source of distinct waves of myogenic precursors. Individual myogenic progenitor populations undergo a complex series of cell rearrangements and specification events in different regions of the body, all of which are controlled by distinct gene regulatory networks. Collectively, these studies have opened a window into the morphogenetic and molecular bases of the different phases of vertebrate myogenesis, from embryo to adult.
Collapse
Affiliation(s)
- Robert J Bryson-Richardson
- Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | |
Collapse
|
25
|
Venters SJ, Hultner ML, Ordahl CP. Somite cell cycle analysis using somite-staging to measure intrinsic developmental time. Dev Dyn 2008; 237:377-92. [PMID: 18213588 DOI: 10.1002/dvdy.21424] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Somite stages were employed as units of intrinsic developmental time to measure cell doubling rate and other cell cycle parameters of chick forelimb level somites. Somite cell nuclei doubled over an interval corresponding to approximately 7+ somite stages (7+ ss; approximately 11 hr) and approximately 24 new primary myotome cells are born per somite stage ( approximately 16/hr). FACS analysis of DNA content in dissociated paraxial mesoderm cells indicated that slightly more than half are in G1/G0 phase of the cell cycle and that the average combined length of the S phase and G2 phase intervals is approximately 3 ss ( approximately 4.5 hr). A wavefront of increased mitotic nuclei per segment coincident with somite budding potentially reflects a surge in the number of cells entering S phase 3 ss earlier as each PSM segment becomes unresponsive to FGF signaling as it passes through the determination front.
Collapse
Affiliation(s)
- Sara J Venters
- Department of Anatomy, UCSF, HSW 1330, San Francisco, California 94143-0452, USA
| | | | | |
Collapse
|
26
|
Geetha-Loganathan P, Nimmagadda S, Scaal M, Huang R, Christ B. Wnt signaling in somite development. Ann Anat 2008; 190:208-22. [DOI: 10.1016/j.aanat.2007.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/10/2007] [Indexed: 01/30/2023]
|
27
|
Lassiter RN, Dude C, Reynolds SB, Winters NI, Baker CV, Stark MR. Canonical Wnt signaling is required for ophthalmic trigeminal placode cell fate determination and maintenance. Dev Biol 2007; 308:392-406. [PMID: 17604017 PMCID: PMC3983986 DOI: 10.1016/j.ydbio.2007.05.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 12/23/2022]
Abstract
Cranial placodes are ectodermal regions that contribute extensively to the vertebrate peripheral sensory nervous system. The development of the ophthalmic trigeminal (opV) placode, which gives rise only to sensory neurons of the ophthalmic lobe of the trigeminal ganglion, is a useful model of sensory neuron development. While key differentiation processes have been characterized at the tissue and cellular levels, the signaling pathways governing opV placode development have not. Here we tested in chick whether the canonical Wnt signaling pathway regulates opV placode development. By introducing a Wnt reporter into embryonic chick head ectoderm, we show that the canonical pathway is active in Pax3+ opV placode cells as, or shortly after, they are induced to express Pax3. Blocking the canonical Wnt pathway resulted in the failure of targeted cells to adopt or maintain an opV fate, as assayed by the expression of various markers including Pax3, FGFR4, Eya2, and the neuronal differentiation markers Islet1, neurofilament, and NeuN, although, surprisingly, it led to upregulation of Neurogenin2, both in the opV placode and elsewhere in the ectoderm. Activating the canonical Wnt signaling pathway, however, was not sufficient to induce Pax3, the earliest specific marker of the opV placode. We conclude that canonical Wnt signaling is necessary for normal opV placode development, and propose that other molecular cues are required in addition to Wnt signaling to promote cells toward an opV placode fate.
Collapse
Affiliation(s)
| | - Carolynn Dude
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | | | | | - Clare V.H. Baker
- Department of Physiology, Development and Neuroscience, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | - Michael R. Stark
- Author for correspondence – Department of Physiology and Developmental Biology, 574 WIDB, Brigham Young University, Provo, UT 84602, , Phone – 801-422-7498, Fax – 801-422-0700
| |
Collapse
|
28
|
Nimmagadda S, Geetha-Loganathan P, Scaal M, Christ B, Huang R. FGFs, Wnts and BMPs mediate induction of VEGFR-2 (Quek-1) expression during avian somite development. Dev Biol 2007; 305:421-9. [PMID: 17425953 DOI: 10.1016/j.ydbio.2007.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 11/28/2022]
Abstract
Regulation of VEGFR-2 (Quek1) is an important mechanism during blood vessel formation. In the paraxial mesoderm, Quek1 expression is restricted to the lateral portion of the somite and later to sclerotomal cells surrounding the neural tube. By implanting FGF 8b/8c or SU 5402 beads into the paraxial mesoderm, we show that FGF8 in addition to BMP4 from the intermediate mesoderm (IM) is a positive regulator of VEGFR-2 (Quek1) expression in the quail embryo. The expression of Quek1 in the medial somite half is normally repressed by the notochord and Sfrps-expression in the neural tube. Over-expression of Wnt 1/3a also results in an up-regulation of Quek1 expression in the somites. We also show that up-regulation of FGF8/Wnt 1/3a leads to an increase in the number of endothelial cells, whereas inhibition of FGF and Wnt signaling by SU 5402 and Sfrp-2 results in a loss of endothelial cells. Our results demonstrate that the regulation of Quek1 expression in the somites is mediated by the cooperative actions of BMP4, FGF8 and Wnt-signaling pathways.
Collapse
Affiliation(s)
- Suresh Nimmagadda
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Abstract
Somites are segments of paraxial mesoderm that give rise to a multitude of tissues in the vertebrate embryo. Many decades of intensive research have provided a wealth of data on the complex molecular interactions leading to the formation of various somitic derivatives. In this review, we focus on the crucial role of the somites in building the body wall and limbs of amniote embryos. We give an overview on the current knowledge on the specification and differentiation of somitic cell lineages leading to the development of the vertebral column, skeletal muscle, connective tissue, meninges, and vessel endothelium, and highlight the importance of the somites in establishing the metameric pattern of the vertebrate body.
Collapse
Affiliation(s)
- Bodo Christ
- Institute of Anatomy und Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
30
|
Abstract
Somites are a common feature of the phylotypic stage of embryos of all higher chordates. In amniote species like mouse and chick, somite development has been the subject of intense research over many decades, giving insight into the morphological and molecular processes leading to somite compartmentalization and subsequent differentiation. In anamniotes, somite development is much less understood. Except for recent data from zebrafish, and morphological studies in Xenopus, very little is known about the formation of somite compartments and the differentiation of somite derivatives in anamniotes. Here, we give a brief overview on the development of myotome, sclerotome and dermomyotome in various anamniote organisms, and point out the different mechanisms of somite development between anamniotes and the established amniote model systems.
Collapse
Affiliation(s)
- Martin Scaal
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, 79104, Freiburg, Germany.
| | | |
Collapse
|
31
|
Huang R, Christ B, Patel K. Regulation of scapula development. ACTA ACUST UNITED AC 2006; 211 Suppl 1:65-71. [PMID: 17006658 DOI: 10.1007/s00429-006-0126-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2006] [Indexed: 11/26/2022]
Abstract
The scapula is a component of the shoulder girdle. Its structure has changed greatly during evolution. For example, in humans it is a large quite flat triangular bone whereas in chicks it is a long blade like structure. In this review we describe the mechanisms that control the formation of the scapula. To assimilate our understanding regarding the development of the scapula blade we start by addressing the issue concerning the origin of the scapula. Experiments using somite extirpation, chick-quail cell marking system and genetic cell labelling techniques in a variety of species have suggested that the scapula had its origin in the somites. For example we have shown in the chick that the scapula blade originates from the somite, while the cranial part, which articulates with the upper limb, is derived from the somatopleure of the forelimb field. In the second and third part of the review we discuss the compartmental origin of this bone and the signalling molecules that control the scapula development. It is very interesting that the scapula blade originates from the dorsal compartment, dermomyotome, which has been previously been associated as a source of muscle and dermis, but not of cartilage. Thus, the development of the scapula blade can be considered a case of dermomyotomal chondrogenesis. Our results show that the dermomyotomal chondrogenesis differ from the sclerotomal chondrogenesis. Firstly, the scapula precursors are located in the hypaxial domain of the dermomyotome, from which the hypaxial muscles are derived. The fate of the scapula precursors, like the hypaxial muscle, is controlled by ectoderm-derived signals and BMPs from the lateral plate mesoderm. Ectoderm ablation and inhibition of BMP activity interfers the scapula-specific Pax1 expression and scapula blade formation. However, only somite cells in the cervicothoracic transition region appear to be committed to form scapula. This indicates that the intrinsic segment specific information determines the scapula forming competence of the somite cells. Taken together, we conclude that the scapula forming cells located within the hypaxial somitic domain require BMP signals derived from the somatopleure and as yet unidentified signals from ectoderm for activation of their coded intrinsic segment specific chondrogenic programme. In the last part we discuss the new data that provides evidence that neural crest contributes for the development of the scapula.
Collapse
Affiliation(s)
- Ruijin Huang
- Institute of Anatomy and Cell Biology, Albert-Ludwig-University Freiburg, Albertstr 17, 79104, Freiburg, Germany.
| | | | | |
Collapse
|