1
|
Akiyama C, Sakata S, Ono F. Normal locomotion in zebrafish lacking the sodium channel NaV1.4 suggests that the need for muscle action potentials is not universal. PLoS Biol 2025; 23:e3003137. [PMID: 40273189 PMCID: PMC12021243 DOI: 10.1371/journal.pbio.3003137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Extensive studies over decades have firmly established the concept that action potentials (APs) in muscles are indispensable for muscle contraction. To re-examine the significance of APs, we generated zebrafish lacking APs by editing the scn4aa and scn4ab genes, which together encode NaV1.4 (NaVDKO), using the CRISPR-Cas9 system. Surprisingly, the escape response of NaVDKOs to tactile stimuli, both in the embryonic and adult stages, was indistinguishable from that of wild-type (WT) fish. Ca2+ imaging using the calcium indicator protein GCaMP revealed that myofibers isolated from WT fish could be excited by the application of acetylcholine (ACh), even in the presence of tetrodotoxin (TTX) indicating that NaVs are dispensable for skeletal muscle contraction in zebrafish. Mathematical simulations showed that the end-plate potential was able to elicit a change in membrane potential large enough to activate the dihydropyridine receptors of the entire muscle fiber owing to the small fiber size and the disseminated distribution of neuromuscular synapses in both adults and embryos. Our data demonstrate that NaVs are not essential for muscle contraction in zebrafish and that the physiological significance of NaV1.4 in muscle is not uniform across vertebrates.
Collapse
Affiliation(s)
- Chifumi Akiyama
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Souhei Sakata
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Fumihito Ono
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
2
|
Aluru N, Chapman DP, W Becker K, Van Mooy BAS, Karchner SI, Stegeman JJ, Hahn ME. Developmental exposure of zebrafish to saxitoxin causes altered expression of genes associated with axonal growth. Neurotoxicology 2024; 105:303-312. [PMID: 39571800 PMCID: PMC11645194 DOI: 10.1016/j.neuro.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Saxitoxin (STX) is a potent neurotoxin naturally produced by dinoflagellates and cyanobacteria. STX inhibits voltage-gated sodium channels (VGSCs), affecting the propagation of action potentials. Consumption of seafood contaminated with STX is responsible for paralytic shellfish poisoning (PSP). Humans are among the species most sensitive to PSP; neurological symptoms of exposure range from tingling of the extremities to severe paralysis. The objective of this study was to determine the effects of STX exposure on developmental processes during early embryogenesis. This study was designed to test the hypothesis that early developmental exposure to STX would disrupt key processes, particularly those related to neural development. Zebrafish embryos were exposed to STX (24 or 48 pg) or vehicle (0.3 mM HCl) at 6 h post fertilization (hpf) via microinjection. There was no overt toxicity but starting at 36 hpf there was a temporary lack of pigmentation in STX-injected embryos, which resolved by 72 hpf. Using high performance liquid chromatography, we found that STX was retained in embryos up to 72 hpf in a dose-dependent manner. Temporal transcriptional profiling of embryos exposed to 48 pg STX per embryo revealed no differentially expressed genes (DEGs) at 24 hpf, but at 36 and 48 hpf, there were 3547 and 3356 DEGs, respectively. KEGG pathway analysis revealed significant enrichment of genes related to focal adhesion, adherens junction and regulation of actin cytoskeleton, suggesting that cell-cell and cell-extracellular matrix interactions were affected by STX. Genes affected are critical for axonal growth and the development of functional neural networks. We confirmed these findings by visualizing axonal defects in transgenic zebrafish with fluorescently labeled sensory neurons. In addition, our gene expression results suggest that STX exposure affects both canonical and noncanonical functions of VGSCs. Given the fundamental role of VGSCs in both physiology and development, these findings offer valuable insights into effects of exposure to neurotoxins.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| | - Daniel P Chapman
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA; Eckerd College, 4200 54th Ave S, St. Petersburg, FL 33711, USA; Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington DC 20057, USA
| | - Kevin W Becker
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA; GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, Kiel 24148, Germany
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Sibel I Karchner
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - John J Stegeman
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Mark E Hahn
- Biology Department and Center for Oceans and Human Health,Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
3
|
Navajas Acedo J. Complete persistence of the primary somatosensory system in zebrafish. Dev Biol 2024; 515:178-185. [PMID: 39021074 DOI: 10.1016/j.ydbio.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024]
Abstract
The somatosensory system detects peripheral stimuli that are translated into behaviors necessary for survival. Fishes and amphibians possess two somatosensory systems in the trunk: the primary somatosensory system, formed by the Rohon-Beard neurons, and the secondary somatosensory system, formed by the neural crest cell-derived neurons of the Dorsal Root Ganglia. Rohon-Beard neurons have been characterized as a transient population that mostly disappears during the first days of life and is functionally replaced by the Dorsal Root Ganglia. Here, I follow Rohon-Beard neurons in vivo and show that the entire repertoire remains present in zebrafish from 1-day post-fertilization until the juvenile stage, 15-days post-fertilization. These data indicate that zebrafish retain two complete somatosensory systems until at least a developmental stage when the animals display complex behavioral repertoires.
Collapse
Affiliation(s)
- Joaquín Navajas Acedo
- Biozentrum at University of Basel, Spitalstrasse 41, Basel, Switzerland; Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Tuttle AM, Miller LN, Royer LJ, Wen H, Kelly JJ, Calistri NL, Heiser LM, Nechiporuk AV. Single-cell analysis of Rohon-Beard neurons implicates Fgf signaling in axon maintenance and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554953. [PMID: 37693470 PMCID: PMC10491107 DOI: 10.1101/2023.08.26.554953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular make up of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely non-overlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Collapse
|
5
|
CRISPR/Cas9-Induced Inactivation of the Autism-Risk Gene setd5 Leads to Social Impairments in Zebrafish. Int J Mol Sci 2022; 24:ijms24010167. [PMID: 36613611 PMCID: PMC9820161 DOI: 10.3390/ijms24010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Haploinsufficiency of the SETD5 gene, encoding a SET domain-containing histone methyltransferase, has been identified as a cause of intellectual disability and Autism Spectrum Disorder (ASD). Recently, the zebrafish has emerged as a valuable model to study neurodevelopmental disorders because of its genetic tractability, robust behavioral traits and amenability to high-throughput drug screening. To model human SETD5 haploinsufficiency, we generated zebrafish setd5 mutants using the CRISPR/Cas9 technology and characterized their morphological, behavioral and molecular phenotypes. According to our observation that setd5 is expressed in adult zebrafish brain, including those areas controlling social behavior, we found that setd5 heterozygous mutants exhibit defective aggregation and coordination abilities required for shoaling interactions, as well as indifference to social stimuli. Interestingly, impairment in social interest is rescued by risperidone, an antipsychotic drug used to treat behavioral traits in ASD individuals. The molecular analysis underscored the downregulation of genes encoding proteins involved in the synaptic structure and function in the adult brain, thus suggesting that brain hypo-connectivity could be responsible for the social impairments of setd5 mutant fishes. The zebrafish setd5 mutants display ASD-like features and are a promising setd5 haploinsufficiency model for drug screening aimed at reversing the behavioral phenotypes.
Collapse
|
6
|
Osorio-Méndez D, Miller A, Begeman IJ, Kurth A, Hagle R, Rolph D, Dickson AL, Chen CH, Halloran M, Poss KD, Kang J. Voltage-gated sodium channel scn8a is required for innervation and regeneration of amputated adult zebrafish fins. Proc Natl Acad Sci U S A 2022; 119:e2200342119. [PMID: 35867745 PMCID: PMC9282381 DOI: 10.1073/pnas.2200342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Teleost fishes and urodele amphibians can regenerate amputated appendages, whereas this ability is restricted to digit tips in adult mammals. One key component of appendage regeneration is reinnervation of the wound area. However, how innervation is regulated in injured appendages of adult vertebrates has seen limited research attention. From a forward genetics screen for temperature-sensitive defects in zebrafish fin regeneration, we identified a mutation that disrupted regeneration while also inducing paralysis at the restrictive temperature. Genetic mapping and complementation tests identify a mutation in the major neuronal voltage-gated sodium channel (VGSC) gene scn8ab. Conditional disruption of scn8ab impairs early regenerative events, including blastema formation, but does not affect morphogenesis of established regenerates. Whereas scn8ab mutations reduced neural activity as expected, they also disrupted axon regrowth and patterning in fin regenerates, resulting in hypoinnervation. Our findings indicate that the activity of VGSCs plays a proregenerative role by promoting innervation of appendage stumps.
Collapse
Affiliation(s)
- Daniel Osorio-Méndez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Ryan Hagle
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Daniela Rolph
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Amy L. Dickson
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mary Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
7
|
Levin M, Ribera AB. Editorial: Interplay Between Ion Channels, the Nervous System, and Embryonic Development. Front Mol Neurosci 2021; 14:618815. [PMID: 33841097 PMCID: PMC8024538 DOI: 10.3389/fnmol.2021.618815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, United States
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Denver, CO, United States
| |
Collapse
|
8
|
Katz HR, Menelaou E, Hale ME. Morphological and physiological properties of Rohon-Beard neurons along the zebrafish spinal cord. J Comp Neurol 2020; 529:1499-1515. [PMID: 32935362 DOI: 10.1002/cne.25033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023]
Abstract
Primary mechanosensory neurons play an important role in converting mechanical forces into the sense of touch. In zebrafish, Rohon-Beard (RB) neurons serve this role at embryonic and larval stages of development. Here we examine the morphology and physiology of RBs in larval zebrafish to better understand how mechanosensory stimuli are represented along the spinal cord. We report that the morphology of RB neurons differs along the rostrocaudal body axis. Rostral RB neurons arborize in the skin near the cell body whereas caudal cells arborize at a distance posterior to their cell body. Using a novel electrophysiological approach, we also found longitudinal differences in the mechanosensitivity and physiological properties of RB neurons. Rostral RB neurons respond to mechanical stimulations close to the soma and produce up to three spikes with increasing stimulus intensity, whereas caudal cells respond at more distal locations and can produce four or more spikes when the intensity of the mechanical stimulus increases. The mechanosensory properties of RB neurons are consistent with those of rapidly adapting mechanoreceptors and can signal the onset, offset and intensity of mechanical stimulation. This is the first report of the intensity encoding properties of RB neurons, where an increase in spike number and a decrease in spike latency are observed with increasing stimulation intensity. This study reveals an unappreciated complexity of the larval zebrafish mechanosensory system and demonstrates how differences in the morphological and physiological properties of RBs related to their rostrocaudal location can influence the signals that enter the spinal cord.
Collapse
Affiliation(s)
- Hilary R Katz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA.,Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Evdokia Menelaou
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Williams JS, Hsu JY, Rossi CC, Artinger KB. Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration. Dev Biol 2018; 444 Suppl 1:S274-S286. [PMID: 29604249 DOI: 10.1016/j.ydbio.2018.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 01/13/2023]
Abstract
Melanocytes derive from neural crest cells, which are a highly migratory population of cells that play an important role in pigmentation of the skin and epidermal appendages. In most vertebrates, melanocyte precursor cells migrate solely along the dorsolateral pathway to populate the skin. However, zebrafish melanocyte precursors also migrate along the ventromedial pathway, in route to the yolk, where they interact with other neural crest derivative populations. Here, we demonstrate the requirement for zebrafish paralogs pcdh10a and pcdh10b in zebrafish melanocyte precursor migration. pcdh10a and pcdh10b are expressed in a subset of melanocyte precursor and somatic cells respectively, and knockdown and TALEN mediated gene disruption of pcdh10a results in aberrant migration of melanocyte precursors resulting in fully melanized melanocytes that differentiate precociously in the ventromedial pathway. Live cell imaging analysis demonstrates that loss of pchd10a results in a reduction of directed cell migration of melanocyte precursors, caused by both increased adhesion and a loss of cell-cell contact with other migratory neural crest cells. Also, we determined that the paralog pcdh10b is upregulated and can compensate for the genetic loss of pcdh10a. Disruption of pcdh10b alone by CRISPR mutagenesis results in somite defects, while the loss of both paralogs results in enhanced migratory melanocyte precursor phenotype and embryonic lethality. These results reveal a novel role for pcdh10a and pcdh10b in zebrafish melanocyte precursor migration and suggest that pcdh10 paralogs potentially interact for proper transient migration along the ventromedial pathway.
Collapse
Affiliation(s)
- Jason S Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jessica Y Hsu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Thompson A, Infield DT, Smith AR, Smith GT, Ahern CA, Zakon HH. Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biol 2018; 16:e2004892. [PMID: 29584718 PMCID: PMC5870949 DOI: 10.1371/journal.pbio.2004892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/21/2018] [Indexed: 11/26/2022] Open
Abstract
Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle–specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene. The electrical properties of excitable cells, such as those in muscle and nervous tissue, were enabled in large part by the evolution of voltage-gated ion channel genes. The regulated conduction of ions through these channels results in the propagation of electrical signals, facilitating communication between cells. Here, we investigated how voltage-gated sodium (Nav) channels contributed to the evolution of a novel electric organ system in the Apteronotids—a lineage of weakly electric fish. This organ is developmentally derived from motor neurons and used for communication between individual fish, as well as for probing their nocturnal environment. We used transcriptomic data to show that the gene encoding a broadly conserved muscle-specific sodium channel was duplicated in an ancestral fish. One duplicated gene copy subsequently gained expression in the spinal cord, where the electric organ is located. Through evolutionary analysis and biophysical experiments, we demonstrate that sequence changes in this new sodium channel transformed its function to cause novel electrical properties that can facilitate spontaneous high-frequency action potentials. This study shows that duplicate genes can gain highly novel expression patterns and quickly adapt to contribute to the phenotypic evolution of novel organ systems.
Collapse
Affiliation(s)
- Ammon Thompson
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
- Department of Neuroscience, The University of Texas, Austin, Texas, United States of America
- * E-mail:
| | - Daniel T. Infield
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam R. Smith
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - G. Troy Smith
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| | - Harold H. Zakon
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States of America
- Department of Neuroscience, The University of Texas, Austin, Texas, United States of America
| |
Collapse
|
11
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Haiping Z, Wenhui C, Zhen L, Chunyi L. Deer antler: a unique model for studying mammalian organ morphogenesis. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is now widely accepted that organ morphogenesis in the lower animals, such as amphibians, is encoded by bioelectricity. Whether this finding applies to mammals is not known, a situation which is at least partially caused by the lack of suitable models. Deer antlers are complex mammalian organs, and their morphogenetic information resides in a primordium, the periosteum overlying the frontal crest of a prepubertal deer. The present paper reviews (1) the influence of morphogenetic information on antler formation and regeneration, and proposes that antlers are an appropriate organ for studying mammalian organ morphogenesis and (2) the storage, duplication and transferring pathways of morphogenetic information for deer antlers, and outlines a preliminary idea about how to understand the morphogenesis of mammalian organs through an involvement of bioelectricity. We believe that findings made using the deer antler model will benefit human health and wellbeing.
Collapse
|
13
|
Law R, Levin M. Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells. Theor Biol Med Model 2015; 12:22. [PMID: 26472354 PMCID: PMC4608135 DOI: 10.1186/s12976-015-0019-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. Method To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. Results We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. Conclusion Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts. Electronic supplementary material The online version of this article (doi:10.1186/s12976-015-0019-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Law
- Department of Neuroscience, Brown University, Box G, Providence, RI, 02912, USA.
| | - Michael Levin
- Department of Biology and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.
| |
Collapse
|
14
|
Powell DR, Williams JS, Hernandez-Lagunas L, Salcedo E, O'Brien JH, Artinger KB. Cdon promotes neural crest migration by regulating N-cadherin localization. Dev Biol 2015; 407:289-99. [PMID: 26256768 DOI: 10.1016/j.ydbio.2015.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
Abstract
Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Jason S Williams
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; Cell Biology, Stem Cells, and Development Graduate Program, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Laura Hernandez-Lagunas
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Ernesto Salcedo
- Department of Cell and Developmental biology, School of Medicine and USA Rocky Mountain Taste and Smell Center, Anschutz Medical Campus , University of Colorado, Aurora, CO 80045, USA
| | - Jenean H O'Brien
- Department of Pharmacology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Kristin Bruk Artinger
- Department of Craniofacial Biology, School of Dental Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
15
|
Effects of Atrazine on the Development of Neural System of Zebrafish, Danio rerio. BIOMED RESEARCH INTERNATIONAL 2015; 2015:976068. [PMID: 26114119 PMCID: PMC4465686 DOI: 10.1155/2015/976068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022]
Abstract
By comparative analysis of histomorphology and AChE activity, the changes of physiological and biochemical parameters were determined in zebrafish embryos and larvae dealt with atrazine (ATR) at different concentrations (0.0001, 0.001, 0.01, 0.1, and 1 mg/L). This study showed that the development of the sarcomere and the arrangement of white muscle myofibers were affected by ATR significantly and the length of sarcomere shortened. Further analysis of the results showed that the AChE activity in juvenile fish which was treated with ATR was downregulated, which can indicate that the innervation efficiency to the muscle was impaired. Conversely, the AChE activity in zebrafish embryos which was treated with ATR was upregulated. A parallel phenomenon showed that embryonic primary sensory neurons (Rohon-Beard cells), principally expressing AChE in embryos, survived the physiological apoptosis. These phenomena demonstrated that the motor integration ability of the zebrafish was damaged by ATR which can disturb the development of sensory neurons and sarcomere and the innervations of muscle.
Collapse
|
16
|
LaMonica K, Ding HL, Artinger KB. prdm1a functions upstream of itga5 in zebrafish craniofacial development. Genesis 2015; 53:270-7. [PMID: 25810090 DOI: 10.1002/dvg.22850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
Cranial neural crest cells are specified and migrate into the pharyngeal arches where they subsequently interact with the surrounding environment. Signaling and transcription factors, such as prdm1a regulate this interaction, but it remains unclear which specific factors are required for posterior pharyngeal arch development. Previous analysis suggests that prdm1a is required for posterior ceratobranchial cartilages in zebrafish and microarray analysis between wildtype and prdm1a mutants at 25 h post fertilization demonstrated that integrin α5 (itga5) is differentially expressed in prdm1a mutants. Here, we further investigate the interaction between prdm1a and itga5 in zebrafish craniofacial development. In situ hybridization for itga5 demonstrates that expression of itga5 is decreased in prdm1a mutants between 18 and 31 h post fertilization and itga5 expression overlaps with prdm1a in the posterior arches, suggesting a temporal window for interaction. Double mutants for prdm1a;itga5 have an additive viscerocranium phenotype more similar to prdm1a mutants, suggesting that prdm1a acts upstream of itga5. Consistent with this, loss of posterior pharyngeal arch expression of dlx2a, ceratobranchial cartilages 2-5, and cell proliferation in prdm1a mutants can be rescued with itga5 mRNA injection. Taken together, these data suggest that prdm1a acts upstream of itga5 and are both necessary for posterior pharyngeal arch development in zebrafish.
Collapse
Affiliation(s)
- Kristi LaMonica
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, Colrado
| | | | | |
Collapse
|
17
|
SRC tyrosine kinases regulate neuronal differentiation of mouse embryonic stem cells via modulation of voltage-gated sodium channel activity. Neurochem Res 2015; 40:674-87. [PMID: 25577147 DOI: 10.1007/s11064-015-1514-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/10/2014] [Accepted: 01/07/2015] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na(+) channel activity is vital for the proper function of excitable cells and has been indicated in nervous system development. Meanwhile, the Src family of non-receptor tyrosine kinases (SFKs) has been implicated in the regulation of Na(+) channel activity. The present investigation tests the hypothesis that Src family kinases influence neuronal differentiation via a chronic regulation of Na(+) channel functionality. In cultured mouse embryonic stem (ES) cells undergoing neural induction and terminal neuronal differentiation, SFKs showed distinct stage-specific expression patterns during the differentiation process. ES cell-derived neuronal cells expressed multiple voltage-gated Na(+) channel proteins (Nav) and underwent a gradual increase in Na(+) channel activity. While acute inhibition of SFKs using the Src family inhibitor PP2 suppressed the Na(+) current, chronic inhibition of SFKs during early neuronal differentiation of ES cells did not change Nav expression. However, a long-lasting block of SFK significantly altered electrophysiological properties of the Na(+) channels, shown as a right shift of the current-voltage relationship of the Na(+) channels, and reduced the amplitude of Na(+) currents recorded in drug-free solutions. Immunocytochemical staining of differentiated cells subjected to the chronic exposure of a SFK inhibitor, or the Na(+) channel blocker tetrodotoxin, showed no changes in the number of NeuN-positive cells; however, both treatments significantly hindered neurite outgrowth. These findings suggest that SFKs not only modulate the Na(+) channel activation acutely, but the tonic activity of SFKs is also critical for normal development of functional Na(+) channels and neuronal differentiation or maturation of ES cells.
Collapse
|
18
|
Borodinsky LN, Belgacem YH, Swapna I, Visina O, Balashova OA, Sequerra EB, Tu MK, Levin JB, Spencer KA, Castro PA, Hamilton AM, Shim S. Spatiotemporal integration of developmental cues in neural development. Dev Neurobiol 2014; 75:349-59. [PMID: 25484201 DOI: 10.1002/dneu.22254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022]
Abstract
Nervous system development relies on the generation of neurons, their differentiation and establishment of synaptic connections. These events exhibit remarkable plasticity and are regulated by many developmental cues. Here, we review the mechanisms of three classes of these cues: morphogenetic proteins, electrical activity, and the environment. We focus on second messenger dynamics and their role as integrators of the action of diverse cues, enabling plasticity in the process of neural development.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, California, 95817
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Friedmann D, Hoagland A, Berlin S, Isacoff EY. A spinal opsin controls early neural activity and drives a behavioral light response. Curr Biol 2014; 25:69-74. [PMID: 25484291 DOI: 10.1016/j.cub.2014.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/04/2023]
Abstract
Nonvisual detection of light by the vertebrate hypothalamus, pineal, and retina is known to govern seasonal and circadian behaviors. However, the expression of opsins in multiple other brain structures suggests a more expansive repertoire for light regulation of physiology, behavior, and development. Translucent zebrafish embryos express extraretinal opsins early on, at a time when spontaneous activity in the developing CNS plays a role in neuronal maturation and circuit formation. Though the presence of extraretinal opsins is well documented, the function of direct photoreception by the CNS remains largely unknown. Here, we show that early activity in the zebrafish spinal central pattern generator (CPG) and the earliest locomotory behavior are dramatically inhibited by physiological levels of environmental light. We find that the photosensitivity of this circuit is conferred by vertebrate ancient long opsin A (VALopA), which we show to be a Gα(i)-coupled receptor that is expressed in the neurons of the spinal network. Sustained photoactivation of VALopA not only suppresses spontaneous activity but also alters the maturation of time-locked correlated network patterns. These results uncover a novel role for nonvisual opsins and a mechanism for environmental regulation of spontaneous motor behavior and neural activity in a circuit previously thought to be governed only by intrinsic developmental programs.
Collapse
Affiliation(s)
- Drew Friedmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shai Berlin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Alteration of bioelectrically-controlled processes in the embryo: a teratogenic mechanism for anticonvulsants. Reprod Toxicol 2014; 47:111-4. [PMID: 24815983 DOI: 10.1016/j.reprotox.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/29/2014] [Accepted: 04/29/2014] [Indexed: 11/21/2022]
Abstract
Maternal use of anticonvulsants during the first trimester of pregnancy has been associated with an elevated risk of major congenital malformations in the offspring. Whether the increased risk is caused by the specific pharmacological mechanisms of certain anticonvulsants, the underlying epilepsy, or common genetic or environmental risk factors shared by epilepsy and malformations has been controversial. We hypothesize that anticonvulsant therapies during pregnancy that attain more successful inhibition of neurotransmission might lead to both better seizure control in the mother and stronger alteration of bioelectrically-controlled processes in the embryo that result in structural malformations. We propose that development of pharmaceuticals that do not alter cell resting transmembrane voltage levels could result in safer drugs.
Collapse
|
21
|
Menelaou E, Udvadia AJ, Tanguay RL, Svoboda KR. Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish. Eur J Neurosci 2014; 40:2225-40. [PMID: 24738729 DOI: 10.1111/ejn.12591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/12/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022]
Abstract
It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as previous evidence suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. To examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChRs are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | | | |
Collapse
|
22
|
Babin PJ, Goizet C, Raldúa D. Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014; 118:36-58. [PMID: 24705136 DOI: 10.1016/j.pneurobio.2014.03.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/08/2023]
Abstract
Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.
Collapse
Affiliation(s)
- Patrick J Babin
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France.
| | - Cyril Goizet
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Talence, France; CHU Bordeaux, Hôpital Pellegrin, Service de Génétique Médicale, Bordeaux, France
| | | |
Collapse
|
23
|
Levin M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:657-76. [PMID: 23897652 PMCID: PMC3841289 DOI: 10.1002/wsbm.1236] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/16/2013] [Accepted: 06/21/2013] [Indexed: 12/17/2022]
Abstract
Transformative impact in regenerative medicine requires more than the reprogramming of individual cells: advances in repair strategies for birth defects or injuries, tumor normalization, and the construction of bioengineered organs and tissues all require the ability to control large-scale anatomical shape. Much recent work has focused on the transcriptional and biochemical regulation of cell behavior and morphogenesis. However, exciting new data reveal that bioelectrical properties of cells and their microenvironment exert a profound influence on cell differentiation, proliferation, and migration. Ion channels and pumps expressed in all cells, not just excitable nerve and muscle, establish resting potentials that vary across tissues and change with significant developmental events. Most importantly, the spatiotemporal gradients of these endogenous transmembrane voltage potentials (Vmem ) serve as instructive patterning cues for large-scale anatomy, providing organ identity, positional information, and prepattern template cues for morphogenesis. New genetic and pharmacological techniques for molecular modulation of bioelectric gradients in vivo have revealed the ability to initiate complex organogenesis, change tissue identity, and trigger regeneration of whole vertebrate appendages. A large segment of the spatial information processing that orchestrates individual cells' programs toward the anatomical needs of the host organism is electrical; this blurs the line between memory and decision-making in neural networks and morphogenesis in nonneural tissues. Advances in cracking this bioelectric code will enable the rational reprogramming of shape in whole tissues and organs, revolutionizing regenerative medicine, developmental biology, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Tufts University, Department of Biology and Tufts Center for Regenerative and Developmental Biology, 200 Boston Ave., Suite 4600, Medford, MA 02155
| |
Collapse
|
24
|
Powell DR, Hernandez-Lagunas L, LaMonica K, Artinger KB. Prdm1a directly activates foxd3 and tfap2a during zebrafish neural crest specification. Development 2013; 140:3445-55. [PMID: 23900542 DOI: 10.1242/dev.096164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neural crest comprises multipotent precursor cells that are induced at the neural plate border by a series of complex signaling and genetic interactions. Several transcription factors, termed neural crest specifiers, are necessary for early neural crest development; however, the nature of their interactions and regulation is not well understood. Here, we have established that the PR/SET domain-containing transcription factor Prdm1a is co-expressed with two essential neural crest specifiers, foxd3 and tfap2a, at the neural plate border. Through rescue experiments, chromatin immunoprecipitation and reporter assays, we have determined that Prdm1a directly binds to and transcriptionally activates enhancers for foxd3 and tfap2a and that they are functional, direct targets of Prdm1a at the neural plate border. Additionally, analysis of dominant activator and dominant repressor Prdm1a constructs suggests that Prdm1a is required both as a transcriptional activator and transcriptional repressor for neural crest development in zebrafish embryos.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
25
|
Grumbles RM, Liu Y, Thomas CM, Wood PM, Thomas CK. Acute stimulation of transplanted neurons improves motoneuron survival, axon growth, and muscle reinnervation. J Neurotrauma 2013; 30:1062-9. [PMID: 23544978 PMCID: PMC3689928 DOI: 10.1089/neu.2012.2797] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few options exist for treatment of pervasive motoneuron death after spinal cord injury or in neurodegenerative diseases such as amyotrophic lateral sclerosis. Local transplantation of embryonic motoneurons into an axotomized peripheral nerve is a promising approach to arrest the atrophy of denervated muscles; however, muscle reinnervation is limited by poor motoneuron survival. The aim of the present study was to test whether acute electrical stimulation of transplanted embryonic neurons promotes motoneuron survival, axon growth, and muscle reinnervation. The sciatic nerve of adult Fischer rats was transected to mimic the widespread denervation seen after disease or injury. Acutely dissociated rat embryonic ventral spinal cord cells were transplanted into the distal tibial nerve stump as a neuron source for muscle reinnervation. Immediately post-transplantation, the cells were stimulated at 20 Hz for 1 h. Other groups were used to control for the cell transplantation and stimulation. When neurons were stimulated acutely, there were significantly more neurons, including cholinergic neurons, 10 weeks after transplantation. This led to enhanced numbers of myelinated axons, reinnervation of more muscle fibers, and more medial and lateral gastrocnemius muscles were functionally connected to the transplant. Reinnervation reduced muscle atrophy significantly. These data support the concept that electrical stimulation rescues transplanted motoneurons and facilitates muscle reinnervation.
Collapse
Affiliation(s)
- Robert M. Grumbles
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Yang Liu
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Christie M. Thomas
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Patrick M. Wood
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Christine K. Thomas
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
26
|
Asakawa K, Abe G, Kawakami K. Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish. Front Neural Circuits 2013; 7:100. [PMID: 23754985 PMCID: PMC3664770 DOI: 10.3389/fncir.2013.00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Bacterial artificial chromosome (BAC) transgenesis and gene/enhancer trapping are effective approaches for identification of genetically defined neuronal populations in the central nervous system (CNS). Here, we applied these techniques to zebrafish (Danio rerio) in order to obtain insights into the cellular architecture of the axial motor column in vertebrates. First, by using the BAC for the Mnx class homeodomain protein gene mnr2b/mnx2b, we established the mnGFF7 transgenic line expressing the Gal4FF transcriptional activator in a large part of the motor column. Single cell labeling of Gal4FF-expressing cells in the mnGFF7 line enabled a detailed investigation of the morphological characteristics of individual spinal motoneurons, as well as the overall organization of the motor column in a spinal segment. Secondly, from a large-scale gene trap screen, we identified transgenic lines that marked discrete subpopulations of spinal motoneurons with Gal4FF. Molecular characterization of these lines led to the identification of the ADAMTS3 gene, which encodes an evolutionarily conserved ADAMTS family of peptidases and is dynamically expressed in the ventral spinal cord. The transgenic fish established here, along with the identified gene, should facilitate an understanding of the cellular and molecular architecture of the spinal cord motor column and its connection to muscles in vertebrates.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Developmental Genetics, Division of Molecular and Developmental Biology, National Institute of Genetics Mishima, Shizuoka, Japan ; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI) Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
27
|
Selderslaghs IWT, Hooyberghs J, Blust R, Witters HE. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol 2013; 37:44-56. [PMID: 23357511 DOI: 10.1016/j.ntt.2013.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 12/27/2022]
Abstract
The developmental neurotoxic potential of the majority of environmental chemicals and drugs is currently undetermined. Specific in vivo studies provide useful data for hazard assessment but are not amenable to screen thousands of untested compounds. In this study, methods which use zebrafish embryos, eleutheroembryos and larvae as model organisms, were proposed as alternatives for developmental neurotoxicity (DNT) testing. The evaluation of spontaneous tail coilings in zebrafish embryos aged 24-26 hours post fertilization (hpf) and the swimming activity of eleutheroembryos at 120 and larvae at 144 hpf, i.e. parameters for locomotor activity, were investigated as potential endpoints for DNT testing, according to available standard protocols. The overall performance and predictive value of these methods was then examined by testing a training set of 10 compounds, including known developmental neurotoxicants and compounds not considered to be neurotoxic. The classification of the selected compounds as either neurotoxic or non-neurotoxic, based on the effects observed in zebrafish embryos and larvae, was compared to available mammalian data and an overall concordance of 90% was achieved. Furthermore, the specificity of the selected endpoints for DNT was evaluated as well as the potential similarities between zebrafish and mammals with regard to mechanisms of action for the selected compounds. Although further studies, including the screening of a large testing set of compounds are required, we suggest that the proposed methods with zebrafish embryos and larvae might be valuable alternatives for animal testing for the screening and prioritization of compounds for DNT.
Collapse
Affiliation(s)
- Ingrid W T Selderslaghs
- VITO NV, Flemish Institute for Technological Research, Environmental Risk and Health, Boeretang 200, Mol, Belgium.
| | | | | | | |
Collapse
|
28
|
Palanca AMS, Lee SL, Yee LE, Joe-Wong C, Trinh LA, Hiroyasu E, Husain M, Fraser SE, Pellegrini M, Sagasti A. New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Dev Neurobiol 2012; 73:152-67. [PMID: 22865660 DOI: 10.1002/dneu.22049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/26/2012] [Indexed: 12/22/2022]
Abstract
To analyze somatosensory neuron diversity in larval zebrafish, we identified several enhancers from the zebrafish and pufferfish genomes and used them to create five new reporter transgenes. Sequential deletions of three of these enhancers identified small sequence elements sufficient to drive expression in zebrafish trigeminal and Rohon-Beard (RB) neurons. One of these reporters, using the Fru.p2x3-2 enhancer, highlighted a somatosensory neuron subtype that expressed both the p2rx3a and pkcα genes. Comparison with a previously described trpA1b reporter revealed that it highlighted the same neurons as the Fru.p2x3-2 reporter. To determine whether neurons of this subtype possess characteristic peripheral branching morphologies or central axon projection patterns, we analyzed the morphology of single neurons. Surprisingly, although these analyses revealed diversity in peripheral axon branching and central axon projection, PKCα/p2rx3a/trpA1b-expressing RB cells did not possess obvious characteristic morphological features, suggesting that even within this molecularly defined subtype, individual neurons may possess distinct properties. The new transgenes created in this study will be powerful tools for further characterizing the molecular, morphological, and developmental diversity of larval somatosensory neurons.
Collapse
Affiliation(s)
- Ana Marie S Palanca
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Eckrich T, Varakina K, Johnson SL, Franz C, Singer W, Kuhn S, Knipper M, Holley MC, Marcotti W. Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells. PLoS One 2012; 7:e45732. [PMID: 23029208 PMCID: PMC3446918 DOI: 10.1371/journal.pone.0045732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/14/2012] [Indexed: 12/19/2022] Open
Abstract
Inner hair cells (IHCs), the primary sensory receptors of the mammalian cochlea, fire spontaneous Ca2+ action potentials before the onset of hearing. Although this firing activity is mainly sustained by a depolarizing L-type (CaV1.3) Ca2+ current (ICa), IHCs also transiently express a large Na+ current (INa). We aimed to investigate the specific contribution of INa to the action potentials, the nature of the channels carrying the current and whether the biophysical properties of INa differ between low- and high-frequency IHCs. We show that INa is highly temperature-dependent and activates at around −60 mV, close to the action potential threshold. Its size was larger in apical than in basal IHCs and between 5% and 20% should be available at around the resting membrane potential (−55 mV/−60 mV). However, in vivo the availability of INa could potentially increase to >60% during inhibitory postsynaptic potential activity, which transiently hyperpolarize IHCs down to as far as −70 mV. When IHCs were held at −60 mV and INa elicited using a simulated action potential as a voltage command, we found that INa contributed to the subthreshold depolarization and upstroke of an action potential. We also found that INa is likely to be carried by the TTX-sensitive channel subunits NaV1.1 and NaV1.6 in both apical and basal IHCs. The results provide insight into how the biophysical properties of INa in mammalian cochlear IHCs could contribute to the spontaneous physiological activity during cochlear maturation in vivo.
Collapse
Affiliation(s)
- Tobias Eckrich
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Ksenya Varakina
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Christoph Franz
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stephanie Kuhn
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (MH); (WM)
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (MH); (WM)
| |
Collapse
|
30
|
Verkerk AO, Remme CA. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol 2012; 3:255. [PMID: 22934012 PMCID: PMC3429032 DOI: 10.3389/fphys.2012.00255] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/19/2012] [Indexed: 12/19/2022] Open
Abstract
The zebrafish is a cold-blooded tropical freshwater teleost with two-chamber heart morphology. A major advantage of the zebrafish for heart studies is that the embryo is transparent, allowing for easy assessment of heart development, heart rate analysis and phenotypic characterization. Moreover, rapid and effective gene-specific knockdown can be achieved using morpholino oligonucleotides. Lastly, zebrafish are small in size, are easy to maintain and house, grow fast, and have large offspring size, making them a cost-efficient research model. Zebrafish embryonic and adult heart rates as well as action potential (AP) shape and duration and electrocardiogram morphology closely resemble those of humans. However, whether the zebrafish is truly an attractive alternative model for human cardiac electrophysiology depends on the presence and gating properties of the various ion channels in the zebrafish heart, but studies into the latter are as yet limited. The rapid component of the delayed rectifier K+ current (IKr) remains the best characterized and validated ion current in zebrafish myocytes, and zebrafish may represent a valuable model to investigate human IKr channel-related disease, including long QT syndrome. Arguments against the use of zebrafish as model for human cardiac (patho)electrophysiology include its cold-bloodedness and two-chamber heart morphology, absence of t-tubuli, sarcoplamatic reticulum function, and a different profile of various depolarizing and repolarizing ion channels, including a limited Na+ current density. Based on the currently available literature, we propose that zebrafish may constitute a relevant research model for investigating ion channel disorders associated with abnormal repolarization, but may be less suitable for studying depolarization disorders or Ca2+-modulated arrhythmias.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Anatomy, Embryology, and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | |
Collapse
|
31
|
Levin M. The wisdom of the body: future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen Med 2012; 6:667-73. [PMID: 22050517 DOI: 10.2217/rme.11.69] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
32
|
Borodinsky LN, Belgacem YH, Swapna I. Electrical activity as a developmental regulator in the formation of spinal cord circuits. Curr Opin Neurobiol 2012; 22:624-30. [PMID: 22370142 DOI: 10.1016/j.conb.2012.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Spinal cord development is a complex process involving generation of the appropriate number of cells, acquisition of distinctive phenotypes and establishment of functional connections that enable execution of critical functions such as sensation and locomotion. Here we review the basic cellular events occurring during spinal cord development, highlighting studies that demonstrate the roles of electrical activity in this process. We conclude that the participation of different forms of electrical activity is evident from the beginning of spinal cord development and intermingles with other developmental cues and programs to implement dynamic and integrated control of spinal cord function.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Department of Physiology & Membrane Biology, and Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Sacramento, CA 95819, United States.
| | | | | |
Collapse
|
33
|
Hale LA, Fowler DK, Eisen JS. Netrin signaling breaks the equivalence between two identified zebrafish motoneurons revealing a new role of intermediate targets. PLoS One 2011; 6:e25841. [PMID: 22003409 PMCID: PMC3189217 DOI: 10.1371/journal.pone.0025841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022] Open
Abstract
Background We previously showed that equivalence between two identified zebrafish motoneurons is broken by interactions with identified muscle fibers that act as an intermediate target for the axons of these motoneurons. Here we investigate the molecular basis of the signaling interaction between the intermediate target and the motoneurons. Principal Findings We provide evidence that Netrin 1a is an intermediate target-derived signal that causes two equivalent motoneurons to adopt distinct fates. We show that although these two motoneurons express the same Netrin receptors, their axons respond differently to Netrin 1a encountered at the intermediate target. Furthermore, we demonstrate that when Netrin 1a is knocked down, more distal intermediate targets that express other Netrins can also function to break equivalence between these motoneurons. Significance Our results suggest a new role for intermediate targets in breaking neuronal equivalence. The data we present reveal that signals encountered during axon pathfinding can cause equivalent neurons to adopt distinct fates. Such signals may be key in diversifying a neuronal population and leading to correct circuit formation.
Collapse
Affiliation(s)
- Laura A. Hale
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Daniel K. Fowler
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Judith S. Eisen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
34
|
Spinocerebellar ataxia type 13 mutant potassium channel alters neuronal excitability and causes locomotor deficits in zebrafish. J Neurosci 2011; 31:6831-41. [PMID: 21543613 DOI: 10.1523/jneurosci.6572-10.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whether changes in neuronal excitability can cause neurodegenerative disease in the absence of other factors such as protein aggregation is unknown. Mutations in the Kv3.3 voltage-gated K(+) channel cause spinocerebellar ataxia type 13 (SCA13), a human autosomal-dominant disease characterized by locomotor impairment and the death of cerebellar neurons. Kv3.3 channels facilitate repetitive, high-frequency firing of action potentials, suggesting that pathogenesis in SCA13 is triggered by changes in electrical activity in neurons. To investigate whether SCA13 mutations alter excitability in vivo, we expressed the human dominant-negative R420H mutant subunit in zebrafish. The disease-causing mutation specifically suppressed the excitability of Kv3.3-expressing, fast-spiking motor neurons during evoked firing and fictive swimming and, in parallel, decreased the precision and amplitude of the startle response. The dominant-negative effect of the mutant subunit on K(+) current amplitude was directly responsible for the reduced excitability and locomotor phenotype. Our data provide strong evidence that changes in excitability initiate pathogenesis in SCA13 and establish zebrafish as an excellent model system for investigating how changes in neuronal activity impair locomotor control and cause cell death.
Collapse
|
35
|
Hernandez-Lagunas L, Powell DR, Law J, Grant KA, Artinger KB. prdm1a and olig4 act downstream of Notch signaling to regulate cell fate at the neural plate border. Dev Biol 2011; 356:496-505. [PMID: 21689645 DOI: 10.1016/j.ydbio.2011.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 01/23/2023]
Abstract
The zinc finger domain transcription factor prdm1a plays an integral role in the development of the neural plate border cell fates, including neural crest cells and Rohon-Beard (RB) sensory neurons. However, the mechanisms underlying prdm1a function in cell fate specification is unknown. Here, we test more directly how prdm1a functions in this cell fate decision. Rather than affecting cell death or proliferation at the neural plate border, prdm1a acts explicitly on cell fate specification by counteracting olig4 expression in the neighboring interneuron domain. olig4 expression is expanded in prdm1a mutants and olig4 knockdown can rescue the reduced or abrogated neural crest and RB neuron phenotype in prdm1a mutants, suggesting a permissive role for prdm1a in neural plate border-derived cell fates. In addition, prdm1a expression is upregulated in the absence of Notch function, and inhibiting Notch signaling fails to rescue prdm1a mutants. This suggests that prdm1a functions downstream of Notch in the regulation of cell fate at the neural plate border and that Notch regulates the total number of progenitor cells at the neural plate border.
Collapse
Affiliation(s)
- Laura Hernandez-Lagunas
- Department of Craniofacial Biology, University of Colorado Denver, School of Dental Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
36
|
Low SE, Zhou W, Choong I, Saint-Amant L, Sprague SM, Hirata H, Cui WW, Hume RI, Kuwada JY. Na(v)1.6a is required for normal activation of motor circuits normally excited by tactile stimulation. Dev Neurobiol 2010; 70:508-22. [PMID: 20225246 DOI: 10.1002/dneu.20791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active (nav(mi89) and nav(mi130)). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na(V)1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in Na(V)1.6a that eliminated channel activity when assayed heterologously. Furthermore, the injection of RNA encoding wild-type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In-vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore, tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus, mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that Na(V)1.6a was required for touch-induced activation of the swim locomotor network.
Collapse
Affiliation(s)
- Sean E Low
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brain-derived neurotrophic factor mediates non-cell-autonomous regulation of sensory neuron position and identity. J Neurosci 2010; 30:14513-21. [PMID: 20980609 DOI: 10.1523/jneurosci.4025-10.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During development, neurons migrate considerable distances to reside in locations that enable their individual functional roles. Whereas migration mechanisms have been extensively studied, much less is known about how neurons remain in their ideal locations. We sought to identify factors that maintain the position of postmigratory dorsal root ganglion neurons, neural crest derivatives for which migration and final position play an important developmental role. We found that an early developing population of sensory neurons maintains the position of later born dorsal root ganglia neurons in an activity-dependent manner. Further, inhibiting or increasing the function of brain-derived neurotrophic factor induces or prevents, respectively, migration of dorsal root ganglia neurons out of the ganglion to locations where they acquire a new identity. Overall, the results demonstrate that neurotrophins mediate non-cell-autonomous maintenance of position and thereby the identity of differentiated neurons.
Collapse
|
38
|
Lee JS, Padmanabhan A, Shin J, Zhu S, Guo F, Kanki JP, Epstein JA, Look AT. Oligodendrocyte progenitor cell numbers and migration are regulated by the zebrafish orthologs of the NF1 tumor suppressor gene. Hum Mol Genet 2010; 19:4643-53. [PMID: 20858602 DOI: 10.1093/hmg/ddq395] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurofibromatosis type 1 is the most commonly inherited human cancer predisposition syndrome. Neurofibromin (NF1) gene mutations lead to increased risk of neurofibromas, schwannomas, low grade, pilocytic optic pathway gliomas, as well as malignant peripheral nerve sheath tumors and glioblastomas. Despite the evidence for NF1 tumor suppressor function in glial cell tumors, the mechanisms underlying transformation remain poorly understood. In this report, we used morpholinos to knockdown the two nf1 orthologs in zebrafish and show that oligodendrocyte progenitor cell (OPC) numbers are increased in the developing spinal cord, whereas neurons are unaffected. The increased OPC numbers in nf1 morphants resulted from increased proliferation, as detected by increased BrdU labeling, whereas TUNEL staining for apoptotic cells was unaffected. This phenotype could be rescued by the forced expression of the GTPase-activating protein (GAP)-related domain of human NF1. In addition, the in vivo analysis of OPC migration following nf1 loss using time-lapse microscopy demonstrated that olig2-EGFP(+) OPCs exhibit enhanced cell migration within the developing spinal cord. OPCs pause intermittently as they migrate, and in nf1 knockdown animals, they covered greater distances due to a decrease in average pause duration, rather than an increase in velocity while in motion. Interestingly, nf1 knockdown also leads to an increase in ERK signaling, principally in the neurons of the spinal cord. Together, these results show that negative regulation of the Ras pathway through the GAP activity of NF1 limits OPC proliferation and motility during development, providing insight into the oncogenic mechanisms through which NF1 loss contributes to human glial tumors.
Collapse
Affiliation(s)
- Jeong-Soo Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wright MA, Mo W, Nicolson T, Ribera AB. In vivo evidence for transdifferentiation of peripheral neurons. Development 2010; 137:3047-56. [PMID: 20685733 DOI: 10.1242/dev.052696] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is commonly thought that differentiated neurons do not give rise to new cells, severely limiting the potential for regeneration and repair of the mature nervous system. However, we have identified cells in zebrafish larvae that first differentiate into dorsal root ganglia sensory neurons but later acquire a sympathetic neuron phenotype. These transdifferentiating neurons are present in wild-type zebrafish. However, they are increased in number in larvae that have a mutant voltage-gated sodium channel gene, scn8aa. Sodium channel knock-down promotes migration of differentiated sensory neurons away from the ganglia. Once in a new environment, sensory neurons transdifferentiate regardless of sodium channel expression. These findings reveal an unsuspected plasticity in differentiated neurons that points to new strategies for treatment of nervous system disease.
Collapse
Affiliation(s)
- Melissa A Wright
- Department of Physiology and Biophysics, Neuroscience Graduate Program and Medical Scientist Training Program, Anschutz Medical Campus, University of Colorado, 12800 East 19th Avenue, Mail Stop 8307, PO Box 6511, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
40
|
Moreno RL, Ribera AB. Developmental regulation of subtype-specific motor neuron excitability. Ann N Y Acad Sci 2010; 1198:201-7. [PMID: 20536935 DOI: 10.1111/j.1749-6632.2009.05426.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
At early embryonic stages, zebrafish spinal neuron subtypes can be distinguished and accessed for physiological studies. This provides the opportunity to determine electrophysiological properties of different spinal motor neuron subtypes. Such differences have the potential to then regulate, in a subtype-specific manner, activity-dependent developmental events such as axonal outgrowth and pathfinding. The zebrafish spinal cord contains a population of early born neurons. Our recent work has revealed that primary motor neuron (PMN) subtypes in the zebrafish spinal cord differ with respect to electrical properties during early important periods when PMNs extend axons to their specific targets. Here, we review recent findings regarding the development of electrical properties in PMN subtypes. Moreover, we consider the possibility that electrical activity in PMNs may play a cell nonautonomous role and thus influence the development of later developing motor neurons. Further, we discuss findings that support a role for a specific sodium channel isoform, Nav1.6, expressed by specific subtypes of spinal neurons in activity-dependent processes that impact axonal outgrowth and pathfinding.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology and Biophysics, University of Colorado at the Anschutz Medical Center, Aurora, Colorado, USA.
| | | |
Collapse
|
41
|
Nakano Y, Fujita M, Ogino K, Saint-Amant L, Kinoshita T, Oda Y, Hirata H. Biogenesis of GPI-anchored proteins is essential for surface expression of sodium channels in zebrafish Rohon-Beard neurons to respond to mechanosensory stimulation. Development 2010; 137:1689-98. [PMID: 20392743 DOI: 10.1242/dev.047464] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In zebrafish, Rohon-Beard (RB) neurons are primary sensory neurons present during the embryonic and early larval stages. At 2 days post-fertilization (dpf), wild-type zebrafish embryos respond to mechanosensory stimulation and swim away from the stimuli, whereas mi310 mutants are insensitive to touch. During approximately 2-4 dpf, wild-type RB neurons undergo programmed cell death, which is caused by sodium current-mediated electrical activity, whereas mutant RB cells survive past 4 dpf, suggesting a defect of sodium currents in the mutants. Indeed, electrophysiological recordings demonstrated the generation of action potentials in wild-type RB neurons, whereas mutant RB cells failed to fire owing to the reduction of voltage-gated sodium currents. Labeling of dissociated RB neurons with an antibody against voltage-gated sodium channels revealed that sodium channels are expressed at the cell surface in wild-type, but not mutant, RB neurons. Finally, in mi310 mutants, we identified a mis-sense mutation in pigu, a subunit of GPI (glycosylphosphatidylinositol) transamidase, which is essential for membrane anchoring of GPI-anchored proteins. Taken together, biogenesis of GPI-anchored proteins is necessary for cell surface expression of sodium channels and thus for firings of RB neurons, which enable zebrafish embryos to respond to mechanosensory stimulation.
Collapse
Affiliation(s)
- Yuri Nakano
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Moreno RL, Ribera AB. Zebrafish motor neuron subtypes differ electrically prior to axonal outgrowth. J Neurophysiol 2009; 102:2477-84. [PMID: 19692510 PMCID: PMC2775388 DOI: 10.1152/jn.00446.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/13/2009] [Indexed: 11/22/2022] Open
Abstract
Different muscle targets and transcription factor expression patterns reveal the presence of motor neuron subtypes. However, it is not known whether these subtypes also differ with respect to electrical membrane properties. To address this question, we studied primary motor neurons (PMNs) in the spinal cord of zebrafish embryos. PMN genesis occurs during gastrulation and gives rise to a heterogeneous set of motor neurons that differ with respect to transcription factor expression, muscle targets, and soma location within each spinal cord segment. The unique subtype-specific soma locations and axonal trajectories of two PMNs-MiP (middle) and CaP (caudal)-allowed their identification in situ as early as 17 h postfertilization (hpf), prior to axon genesis. Between 17 and 48 hpf, CaPs and MiPs displayed subtype-specific electrical membrane properties. Voltage-dependent inward and outward currents differed significantly between MiPs and CaPs. Moreover, by 48 hpf, CaPs and MiPs displayed subtype-specific firing behaviors. Our results demonstrate that motor neurons that differ with respect to muscle targets and transcription factor expression acquire subtype-specific electrical membrane properties. Moreover, the differences are evident prior to axon genesis and persist to the latest stage studied, 2 days postfertilization.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology and Biophysics, University of Colorado Denver at Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
43
|
Olesnicky Killian EC, Birkholz DA, Artinger KB. A role for chemokine signaling in neural crest cell migration and craniofacial development. Dev Biol 2009; 333:161-72. [PMID: 19576198 DOI: 10.1016/j.ydbio.2009.06.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 12/13/2022]
Abstract
Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b, results in aberrant CNCC migration defects in the neurocranium, as well as cranial ganglia dysmorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues.
Collapse
Affiliation(s)
- Eugenia C Olesnicky Killian
- Department of Craniofacial Biology, University of Colorado Denver School of Dental Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
44
|
scn1bb, a zebrafish ortholog of SCN1B expressed in excitable and nonexcitable cells, affects motor neuron axon morphology and touch sensitivity. J Neurosci 2009; 28:12510-22. [PMID: 19020043 DOI: 10.1523/jneurosci.4329-08.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Voltage-gated Na(+) channels initiate and propagate action potentials in excitable cells. Mammalian Na(+) channels are composed of one pore-forming alpha-subunit and two beta-subunits. SCN1B encodes the Na(+) channel beta1-subunit that modulates channel gating and voltage dependence, regulates channel cell surface expression, and functions as a cell adhesion molecule (CAM). We recently identified scn1ba, a zebrafish ortholog of SCN1B. Here we report that zebrafish express a second beta1-like paralog, scn1bb. In contrast to the restricted expression of scn1ba mRNA in excitable cells, we detected scn1bb transcripts and protein in several ectodermal derivatives including neurons, glia, the lateral line, peripheral sensory structures, and tissues derived from other germ layers such as the pronephros. As expected for beta1-subunits, elimination of Scn1bb protein in vivo by morpholino knock-down reduced Na(+) current amplitudes in Rohon-Beard neurons of zebrafish embryos, consistent with effects observed in heterologous systems. Further, after Scn1bb knock-down, zebrafish embryos displayed defects in Rohon-Beard mediated touch sensitivity, demonstrating the significance of Scn1bb modulation of Na(+) current to organismal behavior. In addition to effects associated with Na(+) current modulation, Scn1bb knockdown produced phenotypes consistent with CAM functions. In particular, morpholino knock-down led to abnormal development of ventrally projecting spinal neuron axons, defasciculation of the olfactory nerve, and increased hair cell number in the inner ear. We propose that, in addition to modulation of electrical excitability, Scn1bb plays critical developmental roles by functioning as a CAM in the zebrafish embryonic nervous system.
Collapse
|
45
|
Yonkers MA, Ribera AB. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons. Neural Dev 2009; 4:20. [PMID: 19505305 PMCID: PMC2704202 DOI: 10.1186/1749-8104-4-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/08/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neurodevelopment requires thyroid hormone, yet the mechanisms and targets of thyroid hormone action during embryonic stages remain ill-defined. We previously showed that the thyroid hormone thyroxine (T4) rapidly increases voltage-gated sodium current in zebrafish Rohon-Beard cells (RBs), a primary sensory neuron subtype present during embryonic development. Here, we determined essential components of the rapid T4 signaling pathway by identifying the involved intracellular messengers, the targeted sodium channel isotype, and the spatial and temporal expression pattern of the nongenomic alphaVbeta3 integrin T4 receptor. RESULTS We first tested which signaling pathways mediate T4's rapid modulation of sodium current (I(Na)) by perturbing specific pathways associated with nongenomic thyroid hormone signaling. We found that pharmacological blockade of protein phosphatase 1 and the mitogen-activated protein kinase p38 isoform decreased and increased tonic sodium current amplitudes, respectively, and blockade of either occluded rapid responses to acute T4 application. We next tested for the ion channel target of rapid T4 signaling via morpholino knock-down of specific sodium channel isotypes. We found that selective knock-down of the sodium channel alpha-subunit Na(v)1.6a, but not Na(v)1.1la, occluded T4's acute effects. We also determined the spatial and temporal distribution of a nongenomic T4 receptor, integrin alphaVbeta3. At 24 hours post fertilization (hpf), immunofluorescent assays showed no specific integrin alphaVbeta3 immunoreactivity in wild-type zebrafish embryos. However, by 48 hpf, embryos expressed integrin alphaVbeta3 in RBs and primary motoneurons. Consistent with this temporal expression, T4 modulated RB I(Na) at 48 but not 24 hpf. We next tested whether T4 rapidly modulated I(Na) of caudal primary motoneurons, which express the receptor (alphaVbeta3) and target (Na(v)1.6a) of rapid T4 signaling. In response to T4, caudal primary motoneurons rapidly increased sodium current peak amplitude 1.3-fold. CONCLUSION T4's nongenomic regulation of sodium current occurs in different neuronal subtypes, requires the activity of specific phosphorylation pathways, and requires both integrin alphaVbeta3 and Na(v)1.6a. Our in vivo analyses identify molecules required for T4's rapid regulation of voltage-gated sodium current.
Collapse
Affiliation(s)
- Marc A Yonkers
- Department of Physiology and Biophysics, University of Colorado Denver at Anschutz Medical Center, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
46
|
Rossi CC, Kaji T, Artinger KB. Transcriptional control of Rohon-Beard sensory neuron development at the neural plate border. Dev Dyn 2009; 238:931-43. [PMID: 19301392 DOI: 10.1002/dvdy.21915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rohon-Beard (RB) mechanosensory neurons are among the first sensory neurons to develop, and the process by which they adopt their fate is not completely understood. RBs form at the neural plate border (NPB), the junction between neural and epidermal ectoderm, and require the transcription factor prdm1a. Here, we show that prior to RB differentiation, prdm1a overlaps extensively with the epidermal marker dlx3b but shows little overlap with the neuroectodermal markers sox3 and sox19a. Birthdating analysis reveals that the majority of RBs are born during gastrulation in zebrafish, suggesting that it is during this period that RBs become specified. Expression analysis in prdm1a and neurogenin1 mutant and dlx3b/dlx4b morpholino-injected embryos suggests that prdm1a is upstream of dlx3b, dlx4b, and neurogenin1 at the NPB. mRNA for neurogenin1 or dlx3b/dlx4b can rescue the lack of RBs in prdm1a mutants. Based on these data, we suggest a preliminary gene regulatory network for RB development.
Collapse
Affiliation(s)
- Christy Cortez Rossi
- Department of Craniofacial Biology, University of Colorado, Denver, Colorado 80010, USA
| | | | | |
Collapse
|
47
|
Menelaou E, Svoboda KR. Secondary motoneurons in juvenile and adult zebrafish: axonal pathfinding errors caused by embryonic nicotine exposure. J Comp Neurol 2009; 512:305-22. [PMID: 19006183 PMCID: PMC2798059 DOI: 10.1002/cne.21903] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Nicotine is a drug of abuse that has been reported to have many adverse effects on the developing nervous system. We previously demonstrated that embryonic exposure to nicotine alters axonal pathfinding of spinal secondary motoneurons in zebrafish. We hypothesize that these changes will persist into adulthood. The Tg(isl1:GFP) line of zebrafish, which expresses green fluorescent protein (GFP) in a subtype of spinal secondary motoneurons, was used to investigate potential long-term consequences of nicotine exposure on motoneuron development. Anatomical characterization of Tg(isl1:GFP) zebrafish ranging between 3 and 30 days postfertilization (dpf) was initially performed in fixed tissue to characterize axonal trajectories in larval and juvenile fish. Tg(isl1:GFP) embryos were transiently exposed to 5–30 μM nicotine. They were then rescued from nicotine and raised into later stages of life (3–30 dpf) and fixed for microscopic examination. Morphological analysis revealed that nicotine-induced abnormalities in secondary motoneuron anatomy were still evident in juvenile fish. Live imaging of Tg(isl1:GFP) zebrafish using fluorescent stereomicroscopy revealed that the nicotine-induced changes in motoneuron axonal pathfinding persisted into adulthood. We detected abnormalities in 37-dpf fish that were transiently exposed to nicotine as embryos. These fish were subsequently imaged over a 7-week period of time until they were ≈3 months of age. These pathfinding errors of spinal secondary motoneuron axons detected at 37 dpf persisted within the same fish until 86 dpf, the latest age analyzed. These findings indicate that exposure to nicotine during embryonic development can have permanent consequences for motoneuron anatomy in zebrafish. J. Comp. Neurol. 512:305–322, 2009. © 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
48
|
Wu SH, Chen YH, Huang FL, Chang CH, Chang YF, Tsay HJ. Multiple regulatory elements mediating neuronal-specific expression of zebrafish sodium channel gene, scn8aa. Dev Dyn 2009; 237:2554-65. [PMID: 18729213 DOI: 10.1002/dvdy.21680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Zebrafish scn8aa sodium channels mediate the majority of sodium conductance, which is essential for the embryonic locomotor activities. Here, we investigated the transcriptional regulation of scn8aa in developing zebrafish embryos by constructing a GFP reporter driven by a 15-kb fragment of scn8aa gene designed as scn8aa:GFP. GFP expression patterns of scn8aa:GFP temporally and spatially recapitulated the expression of endogenous scn8aa mRNA during zebrafish embryonic development, with one exception in the inner nuclear layer of the retina. Three novel elements, along with an evolutionarily conserved element shared with mouse SCN8A, modulated neuronal-specific expression of scn8aa. The deletion of each positive element reduced the expression levels in neurons without inducing ectopic GFP expression in non-neuronal cells. Our results demonstrate that these four regulatory elements function cooperatively to enhance scn8aa expression in the zebrafish nervous system.
Collapse
Affiliation(s)
- Si-Huei Wu
- Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Menelaou E, Husbands EE, Pollet RG, Coutts CA, Ali DW, Svoboda KR. Embryonic motor activity and implications for regulating motoneuron axonal pathfinding in zebrafish. Eur J Neurosci 2008; 28:1080-96. [PMID: 18823502 PMCID: PMC2741004 DOI: 10.1111/j.1460-9568.2008.06418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zebrafish embryos exhibit spontaneous contractions of the musculature as early as 18-19 h post fertilization (hpf) when removed from their protective chorion. These movements are likely initiated by early embryonic central nervous system activity. We have made the observation that narrowminded mutant embryos (hereafter, nrd(-/-)) lack normal embryonic motor output upon dechorionation. However, these mutants can swim and respond to tactile stimulation by larval stages of development. nrd(-/-) embryos exhibit defects in neural crest development, slow muscle development and also lack spinal mechanosensory neurons known as Rohon-Beard (RB) neurons. At early developmental stages (i.e. 21-22 hpf) and while still in their chorions, nrd siblings (nrd(+/?)) exhibited contractions of the musculature at a rate similar to wild-type embryos. Anatomical analysis indicated that RB neurons were present in the motile embryos, but absent in the non-motile embryos, indicating that the non-motile embryos were nrd(-/-) embryos. Further anatomical analysis of nrd(-/-) embryos revealed errors in motoneuron axonal pathfinding that persisted into the larval stage of development. These errors were reversed when nrd(-/-) embryos were raised in high [K(+)] beginning at 21 hpf, indicating that the abnormal axonal phenotypes may be related to a lack of depolarizing activity early in development. When activity was blocked with tricaine in wild-type embryos, motoneuron phenotypes were similar to the motoneuron phenotypes in nrd(-/-) embryos. These results implicate early embryonic activity in conjunction with other factors as necessary for normal motoneuron development.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
50
|
Acute nicotine exposure and modulation of a spinal motor circuit in embryonic zebrafish. Toxicol Appl Pharmacol 2008; 239:1-12. [PMID: 19121331 DOI: 10.1016/j.taap.2008.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/17/2008] [Accepted: 08/19/2008] [Indexed: 11/20/2022]
Abstract
The zebrafish model system is ideal for studying nervous system development. Ultimately, one would like to link the developmental biology to various aspects of behavior. We are studying the consequences of nicotine exposure on nervous system development in zebrafish and have previously shown that chronic nicotine exposure produces paralysis. We also have made observations that the embryos moved in the initial minutes of the exposure as the bend rates of the musculature increased. This nicotine induced behavior manifests as an increase in the rate of spinal musculature bends, which spontaneously begin at approximately 17 h post fertilization. The behavioral observations prompted the systematic characterization of nicotine-induced modulation of zebrafish embryonic motor output; bends of the trunk musculature. We first characterized embryonic motor output in zebrafish embryos with and without their chorions. We then characterized the motor output in embryos raised at 28 degrees C and 25 degrees C. The act of dechorionation along with temperature influenced the embryonic bend rate. We show that nicotine exposure increases embryonic motor output. Nicotine exposure caused the musculature bends to alternate in a left-right-left fashion. Nicotine was able to produce this phenotype in embryos lacking supraspinal input. We then characterize the kinetics of nicotine influx and efflux and demonstrate that nicotine as low as 1 microM can disrupt embryonic physiology. Taken together, these results indicate the presence of nicotinic acetylcholine receptors (nAChRs) associated with embryonic spinal motor circuits early in embryogenesis.
Collapse
|