1
|
To K, Fei L, Pett JP, Roberts K, Blain R, Polański K, Li T, Yayon N, He P, Xu C, Cranley J, Moy M, Li R, Kanemaru K, Huang N, Megas S, Richardson L, Kapuge R, Perera S, Tuck E, Wilbrey-Clark A, Mulas I, Memi F, Cakir B, Predeus AV, Horsfall D, Murray S, Prete M, Mazin P, He X, Meyer KB, Haniffa M, Barker RA, Bayraktar O, Chédotal A, Buckley CD, Teichmann SA. A multi-omic atlas of human embryonic skeletal development. Nature 2024; 635:657-667. [PMID: 39567793 PMCID: PMC11578895 DOI: 10.1038/s41586-024-08189-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Human embryonic bone and joint formation is determined by coordinated differentiation of progenitors in the nascent skeleton. The cell states, epigenetic processes and key regulatory factors that underlie lineage commitment of these cells remain elusive. Here we applied paired transcriptional and epigenetic profiling of approximately 336,000 nucleus droplets and spatial transcriptomics to establish a multi-omic atlas of human embryonic joint and cranium development between 5 and 11 weeks after conception. Using combined modelling of transcriptional and epigenetic data, we characterized regionally distinct limb and cranial osteoprogenitor trajectories across the embryonic skeleton and further described regulatory networks that govern intramembranous and endochondral ossification. Spatial localization of cell clusters in our in situ sequencing data using a new tool, ISS-Patcher, revealed mechanisms of progenitor zonation during bone and joint formation. Through trajectory analysis, we predicted potential non-canonical cellular origins for human chondrocytes from Schwann cells. We also introduce SNP2Cell, a tool to link cell-type-specific regulatory networks to polygenic traits such as osteoarthritis. Using osteolineage trajectories characterized here, we simulated in silico perturbations of genes that cause monogenic craniosynostosis and implicate potential cell states and disease mechanisms. This work forms a detailed and dynamic regulatory atlas of bone and cartilage maturation and advances our fundamental understanding of cell-fate determination in human skeletal development.
Collapse
Affiliation(s)
- Ken To
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Lijiang Fei
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nadav Yayon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Madelyn Moy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stathis Megas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK
| | | | - Rakesh Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Ilaria Mulas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fani Memi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Simon Murray
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Newcastle University, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.
- CIFAR Macmillan Multi-scale Human Programme, CIFAR, Toronto, Canada.
| |
Collapse
|
2
|
Hehr CL, Halabi R, McFarlane S. Spatial regulation of amacrine cell genesis by Semaphorin 3f. Dev Biol 2022; 491:66-81. [PMID: 36058267 DOI: 10.1016/j.ydbio.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The axonal projections of retinal ganglion cells (RGCs) of the eye are topographically organized so that spatial information from visual images is preserved. This retinotopic organization is established during development by secreted morphogens that pattern domains of transcription factor expression within naso-temporal and dorso-ventral quadrants of the embryonic eye. Poorly understood are the downstream signaling molecules that generate the topographically organized retinal cells and circuits. The secreted signaling molecule Semaphorin 3fa (Sema3fa) belongs to the Sema family of molecules that provide positional information to developing cells. Here, we test a role for Sema3fa in cell genesis of the temporal zebrafish retina. METHODS We compare retinal cell genesis in wild type and sema3fa CRISPR zebrafish mutants by in situ hybridization and immunohistochemistry. RESULTS We find that mRNAs for sema3fa and known receptors, neuropilin2b (nrp2b) and plexina1a (plxna1a), are expressed by progenitors of the temporal, but not nasal zebrafish embryonic retina. In the sema3faca304/ca304 embryo, initially the domains of expression for atoh7 and neurod4, transcription factors necessary for the specification of RGCs and amacrine cells, respectively, are disrupted. Yet, post-embryonically only amacrine cells of the temporal retina are reduced in numbers, with both GABAergic and glycinergic subtypes affected. CONCLUSIONS These data suggest that Sema3fa acts early on embryonic temporal progenitors to control in a spatially-dependent manner the production of amacrine cells, possibly to allow the establishment of neural circuits with domain-specific functions. We propose that spatially restricted extrinsic signals in the neural retina control cell genesis in a domain-dependent manner.
Collapse
Affiliation(s)
- Carrie Lynn Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rami Halabi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
DeLorenzo L, DeBrock V, Carmona Baez A, Ciccotto PJ, Peterson EN, Stull C, Roberts NB, Roberts RB, Powder KE. Morphometric and Genetic Description of Trophic Adaptations in Cichlid Fishes. BIOLOGY 2022; 11:biology11081165. [PMID: 36009792 PMCID: PMC9405370 DOI: 10.3390/biology11081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Since Darwin, biologists have sought to understand the evolution and origins of phenotypic adaptations. The skull is particularly diverse due to intense natural selection on feeding biomechanics. We investigated the genetic and molecular origins of trophic adaptation using Lake Malawi cichlids, which have undergone an exemplary evolutionary radiation. We analyzed morphological differences in the lateral and ventral head shape among an insectivore that eats by suction feeding, an obligate biting herbivore, and their F2 hybrids. We identified variation in a series of morphological traits—including mandible width, mandible length, and buccal length—that directly affect feeding kinematics and function. Using quantitative trait loci (QTL) mapping, we found that many genes of small effects influence these craniofacial adaptations. Intervals for some traits were enriched in genes related to potassium transport and sensory systems, the latter suggesting co-evolution of feeding structures and sensory adaptations for foraging. Despite these indications of co-evolution of structures, morphological traits did not show covariation. Furthermore, phenotypes largely mapped to distinct genetic intervals, suggesting that a common genetic basis does not generate coordinated changes in shape. Together, these suggest that craniofacial traits are mostly inherited as separate modules, which confers a high potential for the evolution of morphological diversity. Though these traits are not restricted by genetic pleiotropy, functional demands of feeding and sensory structures likely introduce constraints on variation. In all, we provide insights into the quantitative genetic basis of trophic adaptation, identify mechanisms that influence the direction of morphological evolution, and provide molecular inroads to craniofacial variation.
Collapse
Affiliation(s)
- Leah DeLorenzo
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Victoria DeBrock
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Aldo Carmona Baez
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Patrick J Ciccotto
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biology, Warren Wilson College, Swannanoa, NC 28778, USA
| | - Erin N Peterson
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Clare Stull
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Natalie B Roberts
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Reade B Roberts
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Zhao X, Liu H, Pan Y, Liu Y, Zhang F, Ao H, Zhang J, Xing K, Wang C. Identification of Potential Candidate Genes From Co-Expression Module Analysis During Preadipocyte Differentiation in Landrace Pig. Front Genet 2022; 12:753725. [PMID: 35178067 PMCID: PMC8843850 DOI: 10.3389/fgene.2021.753725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Preadipocyte differentiation plays an important role in lipid deposition and affects fattening efficiency in pigs. In the present study, preadipocytes isolated from the subcutaneous adipose tissue of three Landrace piglets were induced into mature adipocytes in vitro. Gene clusters associated with fat deposition were investigated using RNA sequencing data at four time points during preadipocyte differentiation. Twenty-seven co-expression modules were subsequently constructed using weighted gene co-expression network analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed three modules (blue, magenta, and brown) as being the most critical during preadipocyte differentiation. Based on these data and our previous differentially expressed gene analysis, angiopoietin-like 4 (ANGPTL4) was identified as a key regulator of preadipocyte differentiation and lipid metabolism. After inhibition of ANGPTL4, the expression of adipogenesis-related genes was reduced, except for that of lipoprotein lipase (LPL), which was negatively regulated by ANGPTL4 during preadipocyte differentiation. Our findings provide a new perspective to understand the mechanism of fat deposition.
Collapse
Affiliation(s)
- Xitong Zhao
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China.,China Agricultural University, Beijing, China
| | - Huatao Liu
- China Agricultural University, Beijing, China
| | - Yongjie Pan
- Beijing Shunxin Agriculture Co., Ltd., Beijing, China
| | - Yibing Liu
- China Agricultural University, Beijing, China
| | | | - Hong Ao
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jibin Zhang
- City of Hope National Medical Center, Duarte, CA, United States
| | - Kai Xing
- Beijing University of Agriculture, Beijing, China
| | | |
Collapse
|
5
|
Wang Z, Wei Y, An L, Wang K, Hong D, Shi Y, Zang A, Su S, Li W. SEMA3D Plays a Critical Role in Peptic Ulcer Disease-Related Carcinogenesis Induced by H. pylori Infection. Int J Gen Med 2022; 15:1239-1260. [PMID: 35173464 PMCID: PMC8841493 DOI: 10.2147/ijgm.s343635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhiyu Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Yaning Wei
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - lin An
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Kunjie Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Dan Hong
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Shenyong Su
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Wenwen Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
- Correspondence: Wenwen Li, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People’s Republic of China, Email
| |
Collapse
|
6
|
Lettieri A, Oleari R, Paganoni AJJ, Gervasini C, Massa V, Fantin A, Cariboni A. Semaphorin Regulation by the Chromatin Remodeler CHD7: An Emerging Genetic Interaction Shaping Neural Cells and Neural Crest in Development and Cancer. Front Cell Dev Biol 2021; 9:638674. [PMID: 33869187 PMCID: PMC8047133 DOI: 10.3389/fcell.2021.638674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
CHD7 is a chromatin remodeler protein that controls gene expression via the formation of multi-protein complexes with specific transcription factors. During development, CHD7 controls several differentiation programs, mainly by acting on neural progenitors and neural crest (NC) cells. Thus, its roles range from the central nervous system to the peripheral nervous system and the organs colonized by NC cells, including the heart. Accordingly, mutated CHD7 is linked to CHARGE syndrome, which is characterized by several neuronal dysfunctions and by malformations of NC-derived/populated organs. Altered CHD7 has also been associated with different neoplastic transformations. Interestingly, recent evidence revealed that semaphorins, a class of molecules involved in developmental and pathological processes similar to those controlled by CHD7, are regulated by CHD7 in a context-specific manner. In this article, we will review the recent insights that support the existence of genetic interactions between these pathways, both during developmental processes and cancer progression.
Collapse
Affiliation(s)
- Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alyssa J J Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Fantin
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Banu S, Srivastava S, Mohammed A, Kushawah G, Sowpati DT, Mishra RK. Tissue-specific transcriptome recovery on withdrawal from chronic alcohol exposure in zebrafish. Alcohol 2021; 91:29-38. [PMID: 33038458 DOI: 10.1016/j.alcohol.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Alcohol consumption can lead to a wide range of systemic disorders brought about by transcriptional changes. Recent studies have documented altered behavior and physiology in zebrafish exposed to alcohol. In this work, we have identified the changes in the zebrafish transcriptome in response to chronic alcohol exposure. We have further followed the extent of transcriptional recovery upon withdrawal from alcohol and found evidence of tissue-specific responses. Our results indicate a greater extent of recovery of the brain transcriptome compared to the liver. We identify two distinct classes of genes in response to withdrawal from alcohol exposure - those that recover their pre-alcohol expression profile versus those that retain altered expression even after the fish are removed from the alcohol environment. Finally, we have examined gender-specific responses to alcohol exposure in zebrafish and find evidence for distinct alcohol tolerance levels. Upon chronic alcohol exposure, a higher percentage of genes show perturbation in expression profile in males compared to females. Female fish also recover better with more genes regaining the control expression level upon withdrawal from alcohol. Overall, our work identifies genes and pathways perturbed by exposure to alcohol, and demonstrates the extent of gender- and tissue-specific transcriptional changes associated with chronic alcoholism and withdrawal.
Collapse
|
8
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
York JR, McCauley DW. Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates. J Exp Biol 2020; 223:223/Suppl_1/jeb206433. [DOI: 10.1242/jeb.206433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Lampreys and hagfishes are the only surviving relicts of an ancient but ecologically dominant group of jawless fishes that evolved in the seas of the Cambrian era over half a billion years ago. Because of their phylogenetic position as the sister group to all other vertebrates (jawed vertebrates), comparisons of embryonic development between jawless and jawed vertebrates offers researchers in the field of evolutionary developmental biology the unique opportunity to address fundamental questions related to the nature of our earliest vertebrate ancestors. Here, we describe how genetic analysis of embryogenesis in the sea lamprey (Petromyzon marinus) has provided insight into the origin and evolution of developmental-genetic programs in vertebrates. We focus on recent work involving CRISPR/Cas9-mediated genome editing to study gene regulatory mechanisms involved in the development and evolution of neural crest cells and new cell types in the vertebrate nervous system, and transient transgenic assays that have been instrumental in dissecting the evolution of cis-regulatory control of gene expression in vertebrates. Finally, we discuss the broad potential for these functional genomic tools to address previously unanswerable questions related to the evolution of genomic regulatory mechanisms as well as issues related to invasive sea lamprey population control.
Collapse
Affiliation(s)
- Joshua R. York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
10
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Liu ZZ, Guo J, Lu Y, Liu W, Fu X, Yao T, Zhou Y, Xu HA. Sema3E is required for migration of cranial neural crest cells in zebrafish: Implications for the pathogenesis of CHARGE syndrome. Int J Exp Pathol 2019; 100:234-243. [PMID: 31464029 DOI: 10.1111/iep.12331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022] Open
Abstract
CHARGE syndrome is a congenital disorder with multiple malformations in the craniofacial structures, and cardiovascular and genital systems, which are mainly affected by neural crest defects caused by loss-of-function mutations within chromodomain helicase DNA-binding protein 7 (CHD7). However, many patients with CHARGE syndrome test negative for CHD7. Semaphorin 3E (sema3E) is a gene reported to be mutated in patients with CHARGE syndrome. However, its role in the pathogenesis of CHARGE syndrome has not been verified experimentally. Here, we report that the knockdown of sema3E results in severe craniofacial malformations, including small eyes, defective cartilage and an abnormal number of otoliths in zebrafish embryos, which resemble the major features of CHARGE syndrome. Further analysis reveals that the migratory cranial neural crest cells are scattered in the region of the hindbrain, and the postmigratory neural crest cells are reduced in the pharyngeal arches upon sema3E knockdown. Notably, immunostaining and time-lapse imaging analyses of a neural crest cell-labelled transgenic fish line, sox10:EGFP, show that the migration of cranial neural crest cells is severely impaired, and many of these cells are misrouted upon sema3E knockdown. Furthermore, the sox10-expressing cranial neural crest cells are scattered in chd7 homozygous mutants, which phenocopied the phenotype in sema3E morphants. Overexpression of sema3E rescues the phenotype of scattered cranial neural crest cells in chd7 homozygotes, indicating that chd7 may control the expression of sema3E to regulate cranial neural crest cell migration. Collectively, our data demonstrate that sema3E is involved in the pathogenesis of CHARGE syndrome by modulating cranial neural crest cell migration.
Collapse
Affiliation(s)
- Zhi-Zhi Liu
- Lab of Neural Development and Diseases, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Jingjing Guo
- The First Clinical Medical College of Nanchang University, Nanchang University, Nanchang, China
| | - Yanli Lu
- Children's Hospital of Jiang Xi, Nanchang, China
| | - Wenfeng Liu
- Lab of Neural Development and Diseases, Institute of Life Science, Nanchang University, Nanchang, China
| | - Xiaofeng Fu
- Lab of Neural Development and Diseases, Institute of Life Science, Nanchang University, Nanchang, China
| | - Tianbing Yao
- Lab of Neural Development and Diseases, Institute of Life Science, Nanchang University, Nanchang, China
| | - Yanjun Zhou
- Lab of Neural Development and Diseases, Institute of Life Science, Nanchang University, Nanchang, China
| | - Hong A Xu
- Lab of Neural Development and Diseases, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| |
Collapse
|
12
|
York JR, Yuan T, Lakiza O, McCauley DW. An ancestral role for Semaphorin3F-Neuropilin signaling in patterning neural crest within the new vertebrate head. Development 2018; 145:dev.164780. [PMID: 29980564 DOI: 10.1242/dev.164780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
Abstract
The origin of the vertebrate head is one of the great unresolved issues in vertebrate evolutionary developmental biology. Although many of the novelties in the vertebrate head and pharynx derive from the neural crest, it is still unknown how early vertebrates patterned the neural crest within the ancestral body plan they inherited from invertebrate chordates. Here, using a basal vertebrate, the sea lamprey, we show that homologs of Semaphorin3F (Sema3F) ligand and its Neuropilin (Nrp) receptors show complementary and dynamic patterns of expression that correlate with key periods of neural crest development (migration and patterning of cranial neural crest-derived structures). Using CRISPR/Cas9-mediated mutagenesis, we demonstrate that lamprey Sema3F is essential for patterning of neural crest-derived melanocytes, cranial ganglia and the head skeleton, but is not required for neural crest migration or patterning of trunk neural crest derivatives. Based on comparisons with jawed vertebrates, our results suggest that the deployment of Nrp-Sema3F signaling, along with other intercellular guidance cues, was pivotal in allowing early vertebrates to organize and pattern cranial neural crest cells into many of the hallmark structures that define the vertebrate head.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Olga Lakiza
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
13
|
Liu CF, Angelozzi M, Haseeb A, Lefebvre V. SOX9 is dispensable for the initiation of epigenetic remodeling and the activation of marker genes at the onset of chondrogenesis. Development 2018; 145:dev164459. [PMID: 30021842 PMCID: PMC6078338 DOI: 10.1242/dev.164459] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
Abstract
SOX9 controls cell lineage fate and differentiation in major biological processes. It is known as a potent transcriptional activator of differentiation-specific genes, but its earliest targets and its contribution to priming chromatin for gene activation remain unknown. Here, we address this knowledge gap using chondrogenesis as a model system. By profiling the whole transcriptome and the whole epigenome of wild-type and Sox9-deficient mouse embryo limb buds, we uncover multiple structural and regulatory genes, including Fam101a, Myh14, Sema3c and Sema3d, as specific markers of precartilaginous condensation, and we provide evidence of their direct transactivation by SOX9. Intriguingly, we find that SOX9 helps remove epigenetic signatures of transcriptional repression and establish active-promoter and active-enhancer marks at precartilage- and cartilage-specific loci, but is not absolutely required to initiate these changes and activate transcription. Altogether, these findings widen our current knowledge of SOX9 targets in early chondrogenesis and call for new studies to identify the pioneer and transactivating factors that act upstream of or along with SOX9 to prompt chromatin remodeling and specific gene activation at the onset of chondrogenesis and other processes.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Marco Angelozzi
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Abdul Haseeb
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Ahi EP, Sefc KM. Towards a gene regulatory network shaping the fins of the Princess cichlid. Sci Rep 2018; 8:9602. [PMID: 29942008 PMCID: PMC6018552 DOI: 10.1038/s41598-018-27977-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023] Open
Abstract
Variation in fin shape and size contributes to the outstanding morphological diversity of teleost fishes, but the regulation of fin growth has not yet been studied extensively outside the zebrafish model. A previous gene expression study addressing the ornamental elongations of unpaired fins in the African cichlid fish Neolamprologus brichardi identified three genes (cx43, mmp9 and sema3d) with strong and consistent expression differences between short and elongated fin regions. Remarkably, the expression patterns of these genes were not consistent with inferences on their regulatory interactions in zebrafish. Here, we identify a gene expression network (GRN) comprising cx43, mmp9, and possibly also sema3d by a stepwise approach of identifying co-expression modules and predicting their upstream regulators. Among the transcription factors (TFs) predicted as potential upstream regulators of 11 co-expressed genes, six TFs (foxc1, foxp1, foxd3, myc, egr2, irf8) showed expression patterns consistent with their cooperative transcriptional regulation of the gene network. Some of these TFs have already been implicated in teleost fish fin regeneration and formation. We particularly discuss the potential function of foxd3 as driver of the network and its role in the unexpected gene expression correlations observed in N. brichardi.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria.
| | - Kristina M Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| |
Collapse
|
15
|
Peng WF, Xu SS, Ren X, Lv FH, Xie XL, Zhao YX, Zhang M, Shen ZQ, Ren YL, Gao L, Shen M, Kantanen J, Li MH. A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries). Anim Genet 2017; 48:570-579. [PMID: 28703336 DOI: 10.1111/age.12575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 01/20/2023]
Abstract
Genome-wide association studies (GWASs) have been widely applied in livestock to identify genes associated with traits of economic interest. Here, we conducted the first GWAS of the supernumerary nipple phenotype in Wadi sheep, a native Chinese sheep breed, based on Ovine Infinium HD SNP BeadChip genotypes in a total of 144 ewes (75 cases with four teats, including two normal and two supernumerary teats, and 69 control cases with two teats). We detected 63 significant SNPs at the chromosome-wise threshold. Additionally, one candidate region (chr1: 170.723-170.734 Mb) was identified by haplotype-based association tests, with one SNP (rs413490006) surrounding functional genes BBX and CD47 on chromosome 1 being commonly identified as significant by the two mentioned analyses. Moreover, Gene Ontology enrichment for the significant SNPs identified by the GWAS analysis was functionally clustered into the categories of receptor activity and synaptic membrane. In addition, pathway mapping revealed four promising pathways (Wnt, oxytocin, MAPK and axon guidance) involved in the development of the supernumerary nipple phenotype. Our results provide novel and important insights into the genetic mechanisms underlying the phenotype of supernumerary nipples in mammals, including humans. These findings may be useful for future breeding and genetics in sheep and other livestock.
Collapse
Affiliation(s)
- W-F Peng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - S-S Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - X Ren
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - F-H Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - X-L Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Y-X Zhao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - M Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Z-Q Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - Y-L Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, 256600, China
| | - L Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - M Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - J Kantanen
- Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, 31600, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - M-H Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
16
|
Wang Z, Ding M, Qian N, Song B, Yu J, Tang J, Wang J. Decreased expression of semaphorin 3D is associated with genesis and development in colorectal cancer. World J Surg Oncol 2017; 15:67. [PMID: 28320475 PMCID: PMC5359842 DOI: 10.1186/s12957-017-1128-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
Background Semaphorin 3D (SEMA3D) plays important roles in the genesis and progress of many cancers. However, the relationship between SEMA3D and colorectal cancer (CRC) remains unknown. The aim of this study was to investigate whether SEMA3D can be used as a predictive marker for the diagnosis, metastasis, and prognosis of CRC by assessing the expression of SEMA3D in the tissues and serum of CRC patients. Methods Real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of SEMA3D mRNA in 100 CRC tissues and matched normal tissues. qPCR was also used to detect the expression of SEMA3D mRNA in the CRC cell line RKO. RKO cells were transfected with SEMA3D small-interring RNA (siRNA) to interfere with endogenous SEMA3D. The migratory ability of control and SEMA3D siRNA-transfected RKO cells was determined by transwell assays. Enzyme-linked immunosorbent assay (ELISA) was utilized to detect the levels of SEMA3D in the serum of 80 CRC patients and 100 normal healthy controls. The expression of SEMA3D in 215 CRC tissues was assessed using immunohistochemistry (IHC). Then, statistical analyses were adopted to assess SEMA3D protein levels and clinical pathological characteristics. Results The mRNA expression of SEMA3D was significantly lower in CRC tissues than in paired normal tissues (t = 5.027, P < 0.0001). Compared with normal healthy controls, the serum levels of SEMA3D were decreased significantly in CRC patients (t = 3.656, P = 0.0003). The expression of SEMA3D protein was linked to lymph node metastasis, and low expression led to lymph node metastasis (χ2 = 8.415, P = 0.004). The expression of SEMA3D in CRC tissues was a favorable prognostic factor. Patients with a higher expression of SEMA3D experienced longer survival (P = 0.002, log-rank [Mantel-Cox]; Kaplan-Meier). In addition, multivariate Cox’s proportional hazard model revealed that SEMA3D is an independent prognostic marker (hazard ratio [HR] 1.818, 95% CI 1.063–3.110, P = 0.029). Moreover, transwell assays showed that knocking down SEMA3D significantly increased RKO cell migration (t = 9.268, P = 0.0008). Conclusions SEMA3D might function as a tumor suppressor during the formation and development of CRC. SEMA3D might become a predictive marker for the diagnosis, metastasis, and prognosis of CRC and provide a novel target for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China
| | - Meiman Ding
- The Criminal Investigation Detachment of Jiaxing Public Security Bureau, Zhejiang, People's Republic of China
| | - Naiying Qian
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China
| | - Beifeng Song
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China
| | - Jiayin Yu
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China
| | - Jinlong Tang
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jingyu Wang
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Gilabert-Juan J, Sáez AR, Lopez-Campos G, Sebastiá-Ortega N, González-Martínez R, Costa J, Haro JM, Callado LF, Meana JJ, Nacher J, Sanjuán J, Moltó MD. Semaphorin and plexin gene expression is altered in the prefrontal cortex of schizophrenia patients with and without auditory hallucinations. Psychiatry Res 2015; 229:850-7. [PMID: 26243375 DOI: 10.1016/j.psychres.2015.07.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/24/2015] [Accepted: 07/26/2015] [Indexed: 02/07/2023]
Abstract
Auditory hallucinations (AH) are clinical hallmarks of schizophrenia, however little is known about molecular genetics of these symptoms. In this study, gene expression profiling of postmortem brain samples from prefrontal cortex of schizophrenic patients without AH (SNA), patients with AH (SA) and control subjects were compared. Genome-wide expression analysis was conducted using samples of three individuals of each group and the Affymetrix GeneChip Human-Gene 1.0 ST-Array. This analysis identified the Axon Guidance pathway as one of the most differentially expressed network among SNA, SA and CNT. To confirm the transcriptome results, mRNA level quantification of seventeen genes involved in this pathway was performed in a larger sample. PLXNB1, SEMA3A, SEMA4D and SEM6C were upregulated in SNA or SA patients compared to controls. PLXNA1 and SEMA3D showed down-regulation in their expression in the patient's samples, but differences remained statistically significant between the SNA patients and controls. Differences between SNA and SA were found in PLXNB1 expression which is decreased in SA patients. This study strengthens the contribution of brain plasticity in pathophysiology of schizophrenia and shows that non-hallucinatory patients present more alterations in frontal regions than patients with hallucinations concerning neural plasticity.
Collapse
Affiliation(s)
- Javier Gilabert-Juan
- CIBERSAM, Spain; Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain; Unidad de Neurobiología y Programa de Neurociencias Básicas y Aplicadas, Departamento de Biología Celular, Universitat de València, INCLIVA, Valencia, Spain
| | - Ana Rosa Sáez
- Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain
| | | | - Noelia Sebastiá-Ortega
- Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain
| | - Rocio González-Martínez
- Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain; Unidad de Neurobiología y Programa de Neurociencias Básicas y Aplicadas, Departamento de Biología Celular, Universitat de València, INCLIVA, Valencia, Spain
| | - Juan Costa
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Deu, Barcelona, Spain
| | - Josep María Haro
- CIBERSAM, Spain; Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Deu, Barcelona, Spain
| | - Luis F Callado
- CIBERSAM, Spain; Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Spain
| | - J Javier Meana
- CIBERSAM, Spain; Departamento de Farmacología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Spain; BioCruces Health Research Institute, Spain
| | - Juán Nacher
- CIBERSAM, Spain; Unidad de Neurobiología y Programa de Neurociencias Básicas y Aplicadas, Departamento de Biología Celular, Universitat de València, INCLIVA, Valencia, Spain
| | - Julio Sanjuán
- CIBERSAM, Spain; Hospital Clínico de Valencia, Universitat de València INCLIVA, Valencia, Spain
| | - María Dolores Moltó
- CIBERSAM, Spain; Departamento de Genética, Facultad de Biología, Universitat de València, INCLIVA, Valencia, Spain.
| |
Collapse
|
18
|
The Order and Place of Neuronal Differentiation Establish the Topography of Sensory Projections and the Entry Points within the Hindbrain. J Neurosci 2015; 35:7475-86. [PMID: 25972174 DOI: 10.1523/jneurosci.3743-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Establishing topographical maps of the external world is an important but still poorly understood feature of the vertebrate sensory system. To study the selective innervation of hindbrain regions by sensory afferents in the zebrafish embryo, we mapped the fine-grained topographical representation of sensory projections at the central level by specific photoconversion of sensory neurons. Sensory ganglia located anteriorly project more medially than do ganglia located posteriorly, and this relates to the order of sensory ganglion differentiation. By single-plane illumination microscopy (SPIM) in vivo imaging, we show that (1) the sequence of arrival of cranial ganglion inputs predicts the topography of central projections, and (2) delaminated neuroblasts differentiate in close contact with the neural tube, and they never loose contact with the neural ectoderm. Afferent entrance points are established by plasma membrane interactions between primary differentiated peripheral sensory neurons and neural tube border cells with the cooperation of neural crest cells. These first contacts remain during ensuing morphological growth to establish pioneer axons. Neural crest cells and repulsive slit1/robo2 signals then guide axons from later-differentiating neurons toward the neural tube. Thus, this study proposes a new model by which the topographical representation of cranial sensory ganglia is established by entrance order, with the entry points determined by cell contact between the sensory ganglion cell bodies and the hindbrain.
Collapse
|
19
|
Willems B, Tao S, Yu T, Huysseune A, Witten PE, Winkler C. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish. PLoS One 2015; 10:e0131768. [PMID: 26121341 PMCID: PMC4486457 DOI: 10.1371/journal.pone.0131768] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
During vertebrate neurulation, cranial neural crest cells (CNCCs) undergo epithelial to mesenchymal transition (EMT), delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL) receptor-related protein 5 (Lrp5) plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.
Collapse
Affiliation(s)
- Bernd Willems
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore, Singapore
| | - Shijie Tao
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore, Singapore
| | - Tingsheng Yu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore, Singapore
| | - Ann Huysseune
- Biology Department, Ghent University, Ghent, Belgium
| | | | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
20
|
cAMP-induced expression of neuropilin1 promotes retinal axon crossing in the zebrafish optic chiasm. J Neurosci 2013; 33:11076-88. [PMID: 23825413 DOI: 10.1523/jneurosci.0197-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growing axons navigate a complex environment as they respond to attractive and repellent guidance cues. Axons can modulate their responses to cues through a G-protein-coupled, cAMP-dependent signaling pathway. To examine the role of G-protein signaling in axon guidance in vivo, we used the GAL4/UAS system to drive expression of dominant-negative heterotrimeric G-proteins (DNG) in retinal ganglion cells (RGCs) of embryonic zebrafish. Retinal axons normally cross at the ventral midline and project to the contralateral tectum. Expression of DNGα(S) in RGCs causes retinal axons to misproject to the ipsilateral tectum. These errors resemble misprojections in adcy1, adcy8, nrp1a, sema3D, or sema3E morphant embryos, as well as in sema3D mutant embryos. nrp1a is expressed in RGCs as their axons extend toward and across the midline. sema3D and sema3E are expressed adjacent to the chiasm, suggesting that they facilitate retinal midline crossing. We demonstrate synergistic induction of ipsilateral misprojections between adcy8 knockdown and transgenic DNGα(S) expression, adcy8 and nrp1a morphants, or nrp1a morphants and transgenic DNGα(S) expression. Using qPCR analysis, we show that either transgenic DNGα(S)-expressing embryos or adcy8 morphant embryos have decreased levels of nrp1a and nrp1b mRNA. Ipsilateral misprojections in adcy8 morphants are corrected by the expression of an nrp1a rescue construct expressed in RGCs. These findings are consistent with the idea that elevated cAMP levels promote Neuropilin1a expression in RGCs, increasing the sensitivity of retinal axons to Sema3D, Sema3E, or other neuropilin ligands at the midline, and consequently facilitate retinal axon crossing in the chiasm.
Collapse
|
21
|
Xia Z, Tong X, Liang F, Zhang Y, Kuok C, Zhang Y, Liu X, Zhu Z, Lin S, Zhang B. Eif3ba regulates cranial neural crest development by modulating p53 in zebrafish. Dev Biol 2013; 381:83-96. [PMID: 23791820 DOI: 10.1016/j.ydbio.2013.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 02/05/2023]
Abstract
Congenital diseases caused by abnormal development of the cranial neural crest usually present craniofacial malformations and heart defects while the precise mechanism is not fully understood. Here, we show that the zebrafish eif3ba mutant caused by pseudo-typed retrovirus insertion exhibited a similar phenotype due to the hypogenesis of cranial neural crest cells (NCCs). The derivatives of cranial NCCs, including the NCC-derived cell population of pharyngeal arches, craniofacial cartilage, pigment cells and the myocardium derived from cardiac NCCs, were affected in this mutant. The expression of several neural crest marker genes, including crestin, dlx2a and nrp2b, was specifically reduced in the cranial regions of the eif3ba mutant. Through fluorescence-tracing of the cranial NCC migration marker nrp2b, we observed reduced intensity of NCC-derived cells in the heart. In addition, p53 was markedly up-regulated in the eif3ba mutant embryos, which correlated with pronounced apoptosis in the cranial area as shown by TUNEL staining. These findings suggest a novel function of eif3ba during embryonic development and a novel level of regulation in the process of cranial NCC development, in addition to providing a potential animal model to mimic congenital diseases due to cranial NCC defects. Furthermore, we report the identification of a novel transgenic fish line Et(gata2a:EGFP)pku418 to trace the migration of cranial NCCs (including cardiac NCCs); this may serve as an invaluable tool for investigating the development and dynamics of cranial NCCs during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Zhidan Xia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Degenhardt K, Singh MK, Aghajanian H, Massera D, Wang Q, Li J, Li L, Choi C, Yzaguirre AD, Francey LJ, Gallant E, Krantz ID, Gruber PJ, Epstein JA. Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nat Med 2013; 19:760-5. [PMID: 23685842 DOI: 10.1038/nm.3185] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/04/2013] [Indexed: 01/22/2023]
Abstract
Total anomalous pulmonary venous connection (TAPVC) is a potentially lethal congenital disorder that occurs when the pulmonary veins do not connect normally to the left atrium, allowing mixing of pulmonary and systemic blood. In contrast to the extensive knowledge of arterial vascular patterning, little is known about the patterning of veins. Here we show that the secreted guidance molecule semaphorin 3d (Sema3d) is crucial for the normal patterning of pulmonary veins. Prevailing models suggest that TAPVC occurs when the midpharyngeal endothelial strand (MES), the precursor of the common pulmonary vein, does not form at the proper location on the dorsal surface of the embryonic common atrium. However, we found that TAPVC occurs in Sema3d mutant mice despite normal formation of the MES. In these embryos, the maturing pulmonary venous plexus does not anastomose uniquely with the properly formed MES. In the absence of Sema3d, endothelial tubes form in a region that is normally avascular, resulting in aberrant connections. Normally, Sema3d provides a repulsive cue to endothelial cells in this area, establishing a boundary. Sequencing of SEMA3D in individuals with anomalous pulmonary veins identified a phenylalanine-to-leucine substitution that adversely affects SEMA3D function. These results identify Sema3d as a crucial pulmonary venous patterning cue and provide experimental evidence for an alternate developmental model to explain abnormal pulmonary venous connections.
Collapse
Affiliation(s)
- Karl Degenhardt
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol 2013; 24:179-89. [PMID: 23099250 DOI: 10.1016/j.semcdb.2012.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023]
Abstract
The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding "normal" cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.
Collapse
Affiliation(s)
- Michael Rehman
- Institute for Cancer Research at Candiolo (IRC@C), University of Torino-Dept. of Oncology, 10060 Candiolo, Italy
| | | |
Collapse
|
24
|
Luzón-Toro B, Fernández RM, Torroglosa A, de Agustín JC, Méndez-Vidal C, Segura DI, Antiñolo G, Borrego S. Mutational spectrum of semaphorin 3A and semaphorin 3D genes in Spanish Hirschsprung patients. PLoS One 2013; 8:e54800. [PMID: 23372769 PMCID: PMC3553056 DOI: 10.1371/journal.pone.0054800] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 12/17/2012] [Indexed: 01/16/2023] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic colon segment and functional intestinal obstruction. The RET proto-oncogene is the major gene associated to HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. In addition, many other genes have been described to be associated with this pathology, including the semaphorins class III genes SEMA3A (7p12.1) and SEMA3D (7q21.11) through SNP array analyses and by next-generation sequencing technologies. Semaphorins are guidance cues for developing neurons implicated in the axonal projections and in the determination of the migratory pathway for neural-crest derived neural precursors during enteric nervous system development. In addition, it has been described that increased SEMA3A expression may be a risk factor for HSCR through the upregulation of the gene in the aganglionic smooth muscle layer of the colon in HSCR patients. Here we present the results of a comprehensive analysis of SEMA3A and SEMA3D in a series of 200 Spanish HSCR patients by the mutational screening of its coding sequence, which has led to find a number of potentially deleterious variants. RET mutations have been also detected in some of those patients carrying SEMAs variants. We have evaluated the A131T-SEMA3A, S598G-SEMA3A and E198K-SEMA3D mutations using colon tissue sections of these patients by immunohistochemistry. All mutants presented increased protein expression in smooth muscle layer of ganglionic segments. Moreover, A131T-SEMA3A also maintained higher protein levels in the aganglionic muscle layers. These findings strongly suggest that these mutants have a pathogenic effect on the disease. Furthermore, because of their coexistence with RET mutations, our data substantiate the additive genetic model proposed for this rare disorder and further support the association of SEMAs genes with HSCR.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ton QV, Kathryn Iovine M. Semaphorin3d mediates Cx43-dependent phenotypes during fin regeneration. Dev Biol 2012; 366:195-203. [PMID: 22542598 DOI: 10.1016/j.ydbio.2012.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/14/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
Gap junctions are proteinaceous channels that reside at the plasma membrane and permit the exchange of ions, metabolites, and second messengers between neighboring cells. Connexin proteins are the subunits of gap junction channels. Mutations in zebrafish cx43 cause the short fin (sof(b123)) phenotype which is characterized by short fins due to defects in length of the bony fin rays. Previous findings from our lab demonstrate that Cx43 is required for both cell proliferation and joint formation during fin regeneration. Here we demonstrate that semaphorin3d (sema3d) functions downstream of Cx43. Semas are secreted signaling molecules that have been implicated in diverse cellular functions such as axon guidance, cell migration, cell proliferation, and gene expression. We suggest that Sema3d mediates the Cx43-dependent functions on cell proliferation and joint formation. Using both in situ hybridization and quantitative RT-PCR, we validated that sema3d expression depends on Cx43 activity. Next, we found that knockdown of Sema3d recapitulates all of the sof(b123) and cx43-knockdown phenotypes, providing functional evidence that Sema3d acts downstream of Cx43. To identify the potential Sema3d receptor(s), we evaluated gene expression of neuropilins and plexins. Of these, nrp2a, plxna1, and plxna3 are expressed in the regenerating fin. Morpholino-mediated knockdown of plxna1 did not cause cx43-specific defects, suggesting that PlexinA1 does not function in this pathway. In contrast, morpholino-mediated knockdown of nrp2a caused fin overgrowth and increased cell proliferation, but did not influence joint formation. Moreover, morpholino-mediated knockdown of plxna3 caused short segments, influencing joint formation, but did not alter cell proliferation. Together, our findings reveal that Sema3d functions in a common molecular pathway with Cx43. Furthermore, functional evaluation of putative Sema3d receptors suggests that Cx43-dependent cell proliferation and joint formation utilize independent membrane-bound receptors to mediate downstream cellular phenotypes.
Collapse
Affiliation(s)
- Quynh V Ton
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca B-217, Bethlehem, PA 18015, USA
| | | |
Collapse
|
26
|
Hughes A, Kleine-Albers J, Helfrich MH, Ralston SH, Rogers MJ. A class III semaphorin (Sema3e) inhibits mouse osteoblast migration and decreases osteoclast formation in vitro. Calcif Tissue Int 2012; 90:151-62. [PMID: 22227882 PMCID: PMC3271215 DOI: 10.1007/s00223-011-9560-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/04/2011] [Indexed: 12/11/2022]
Abstract
Originally identified as axonal guidance cues, semaphorins are expressed throughout many different tissues and regulate numerous non-neuronal processes. We demonstrate that most class III semaphorins are expressed in mouse osteoblasts and are differentially regulated by cell growth and differentiation: Sema3d expression is increased and Sema3e expression decreased during proliferation in culture, while expression of Sema3a is unaffected by cell density but increases in cultures of mineralizing osteoblasts. Expression of Sema3a, -3e, and -3d is also differentially regulated by osteogenic stimuli; inhibition of GSK3β decreased expression of Sema3a and -3e, while 1,25-(OH)(2)D(3) increased expression of Sema3e. Parathyroid hormone had no effect on expression of Sema3a, -3b, or -3d. Osteoblasts, macrophages, and osteoclasts express the Sema3e receptor PlexinD1, suggesting an autocrine and paracrine role for Sema3e. No effects of recombinant Sema3e on osteoblast proliferation, differentiation, or mineralization were observed; but Sema3e did inhibit the migration of osteoblasts in a wound-healing assay. The formation of multinucleated, tartrate-resistant acid phosphatase-positive osteoclasts was decreased by 81% in cultures of mouse bone marrow macrophages incubated with 200 ng/mL Sema3e. Correspondingly, decreased expression of osteoclast markers (Itgb3, Acp5, Cd51, Nfatc1, CalcR, and Ctsk) was observed by qPCR in macrophage cultures differentiated in the presence of Sema3e. Our results demonstrate that class III semaphorins are expressed by osteoblasts and differentially regulated by differentiation, mineralization, and osteogenic stimuli. Sema3e is a novel inhibitor of osteoclast formation in vitro and may play a role in maintaining local bone homeostasis, potentially acting as a coupling factor between osteoclasts and osteoblasts.
Collapse
Affiliation(s)
- Alun Hughes
- Musculoskeletal Research Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD UK
| | - Jennifer Kleine-Albers
- Musculoskeletal Research Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD UK
| | - Miep H. Helfrich
- Musculoskeletal Research Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD UK
| | - Stuart H. Ralston
- Molecular Medicine Centre, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH42XU UK
| | - Michael J. Rogers
- Musculoskeletal Research Programme, School of Medicine & Dentistry, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB252ZD UK
| |
Collapse
|
27
|
Jiang Q, Turner T, Sosa MX, Rakha A, Arnold S, Chakravarti A. Rapid and efficient human mutation detection using a bench-top next-generation DNA sequencer. Hum Mutat 2011; 33:281-9. [PMID: 21898659 DOI: 10.1002/humu.21602] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/19/2011] [Indexed: 12/20/2022]
Abstract
Next-generation sequencing (NGS) technologies can be a boon to human mutation detection given their high throughput: consequently, many genes and samples may be simultaneously studied with high coverage for accurate detection of heterozygotes. In circumstances requiring the intensive study of a few genes, particularly in clinical applications, a rapid turn around is another desirable goal. To this end, we assessed the performance of the bench-top 454 GS Junior platform as an optimized solution for mutation detection by amplicon sequencing of three type 3 semaphorin genes SEMA3A, SEMA3C, and SEMA3D implicated in Hirschsprung disease (HSCR). We performed mutation detection on 39 PCR amplicons totaling 14,014 bp in 47 samples studied in pools of 12 samples. Each 10-hr run was able to generate ∼75,000 reads and ∼28 million high-quality bases at an average read length of 371 bp. The overall sequencing error was 0.26 changes per kb at a coverage depth of ≥20 reads. Altogether, 37 sequence variants were found in this study of which 10 were unique to HSCR patients. We identified five missense mutations in these three genes that may potentially be involved in the pathogenesis of HSCR and need to be studied in larger patient samples.
Collapse
Affiliation(s)
- Qian Jiang
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continue migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration, and condensation of these cells. This review elucidates what is currently known about these factors.
Collapse
|
29
|
Tseng CH, Murray KD, Jou MF, Hsu SM, Cheng HJ, Huang PH. Sema3E/plexin-D1 mediated epithelial-to-mesenchymal transition in ovarian endometrioid cancer. PLoS One 2011; 6:e19396. [PMID: 21559368 PMCID: PMC3084850 DOI: 10.1371/journal.pone.0019396] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Cancer cells often employ developmental cues for advantageous growth and metastasis. Here, we report that an axon guidance molecule, Sema3E, is highly expressed in human high-grade ovarian endometrioid carcinoma, but not low-grade or other ovarian epithelial tumors, and facilitates tumor progression. Unlike its known angiogenic activity, Sema3E acted through Plexin-D1 receptors to augment cell migratory ability and concomitant epithelial-to-mesenchymal transition (EMT). Sema3E-induced EMT in ovarian endometrioid cancer cells was dependent on nuclear localization of Snail1 through activation of phosphatidylinositol-3-kinase and ERK/MAPK. RNAi-mediated knockdown of Sema3E, Plexin-D1 or Snail1 in Sema3E-expressing tumor cells resulted in compromised cell motility, concurrent reversion of EMT and diminished nuclear localization of Snail1. By contrast, forced retention of Snail1 within the nucleus of Sema3E-negative tumor cells induced EMT and enhanced cell motility. These results show that in addition to the angiogenic effects of Sema3E on tumor vascular endothelium, an EMT strategy could be exploited by Sema3E/Plexin-D1 signaling in tumor cells to promote cellular invasion/migration.
Collapse
Affiliation(s)
- Chun-Hsien Tseng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Karl D. Murray
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
| | - Mu-Fan Jou
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Su-Ming Hsu
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwai-Jong Cheng
- Center for Neuroscience, University of California Davis, Davis, California, United States of America
- * E-mail: (H-JC); (P-HH)
| | - Pei-Hsin Huang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (H-JC); (P-HH)
| |
Collapse
|
30
|
Billon N, Kolde R, Reimand J, Monteiro MC, Kull M, Peterson H, Tretyakov K, Adler P, Wdziekonski B, Vilo J, Dani C. Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development. Genome Biol 2010; 11:R80. [PMID: 20678241 PMCID: PMC2945782 DOI: 10.1186/gb-2010-11-8-r80] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/02/2010] [Accepted: 08/03/2010] [Indexed: 12/11/2022] Open
Abstract
Background The current epidemic of obesity has caused a surge of interest in the study of adipose tissue formation. While major progress has been made in defining the molecular networks that control adipocyte terminal differentiation, the early steps of adipocyte development and the embryonic origin of this lineage remain largely unknown. Results Here we performed genome-wide analysis of gene expression during adipogenesis of mouse embryonic stem cells (ESCs). We then pursued comprehensive bioinformatic analyses, including de novo functional annotation and curation of the generated data within the context of biological pathways, to uncover novel biological functions associated with the early steps of adipocyte development. By combining in-depth gene regulation studies and in silico analysis of transcription factor binding site enrichment, we also provide insights into the transcriptional networks that might govern these early steps. Conclusions This study supports several biological findings: firstly, adipocyte development in mouse ESCs is coupled to blood vessel morphogenesis and neural development, just as it is during mouse development. Secondly, the early steps of adipocyte formation involve major changes in signaling and transcriptional networks. A large proportion of the transcription factors that we uncovered in mouse ESCs are also expressed in the mouse embryonic mesenchyme and in adipose tissues, demonstrating the power of our approach to probe for genes associated with early developmental processes on a genome-wide scale. Finally, we reveal a plethora of novel candidate genes for adipocyte development and present a unique resource that can be further explored in functional assays.
Collapse
Affiliation(s)
- Nathalie Billon
- Université de Nice Sophia-Antipolis, Institut Biologie du Développement et Cancer, CNRS UMR 6543, Faculté de Médecine Pasteur, 28 avenue de Valombrose, 06108 Nice Cedex 2, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Spencer AY, Lallier TE. Mechanical tension alters semaphorin expression in the periodontium. J Periodontol 2010; 80:1665-73. [PMID: 19792857 DOI: 10.1902/jop.2009.090212] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periodontal remodeling requires coordinated cell movement. Semaphorins are cell-surface signals that regulate cell migration and may be differentially regulated by periodontal cells. Mechanical tension can regulate periodontal ligament (PDL) remodeling. We predicted that mechanical tension alters the expression of the subset of semaphorins in the periodontium likely to be most involved with regulating the remodeling of this tissue. METHODS PDL and gingival cells were exposed to mechanical tension, and their attachment and movement on collagen matrices were evaluated. Alterations in extracellular matrix and semaphorin transcript expression were monitored by semiquantitative reverse transcription-polymerase chain reaction. RESULTS Mechanical tension induced osteoclast regulatory transcripts in the PDL cells to a greater extent than gingival fibroblasts, increasing the expression of osteoprotegerin and decreasing receptor activator of nuclear factor-kappa B ligand. These mechanical forces reduced PDL cell mingling, without altering cell attachment or motility. Concurrently, these forces induced dynamic changes in several semaphorin molecules in PDL cells, increasing semaphorin 3D and 5B and decreasing semaphorin 7A. In addition, plexin transcript expression was altered, decreasing plexin A1 and increasing plexin C1. These changes were different than those observed in gingival fibroblasts. CONCLUSIONS These data suggest that a subset of semaphorins and plexins are dynamically regulated in the PDL. Because these molecules may be involved in cell guidance, changes in semaphorins may play a pivotal role in periodontal remodeling, affecting angiogenesis or PDL cell invasion into sites of injury.
Collapse
Affiliation(s)
- Amber Y Spencer
- Department of Cell Biology and Anatomy, Center of Excellence in Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Science Center, New Orleans, LA 70119, USA
| | | |
Collapse
|
32
|
Kuriyama S, Mayor R. Molecular analysis of neural crest migration. Philos Trans R Soc Lond B Biol Sci 2008; 363:1349-62. [PMID: 18198151 DOI: 10.1098/rstb.2007.2252] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The neural crest (NC) cells have been called the 'explorers of the embryos' because they migrate all over the embryo where they differentiate into a variety of diverse kinds of cells. In this work, we analyse the role of different molecules controlling the migration of NC cells. First, we describe the strong similarity between the process of NC migration and metastasis in tumour cells. The epithelial-mesenchymal transition process that both kinds of cells undergo is controlled by the same molecular machinery, including cadherins, connexins, Snail and Twist genes and matrix metalloproteases. Second, we analysed the molecular signals that control the patterned migration of the cephalic and trunk NC cells. Most of the factors described so far, such as Eph/ephrins, semaphorins/neuropilins and Slit/Robo, are negative signals that prohibit the migration of NC cells into target areas of the embryo. Finally, we analyse how the direction of migration is controlled by regulation of cell polarity and how the planar cell polarity or non-canonical Wnt signalling is involved in this process.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|