1
|
Zechini L, Todd H, Sanchez T, Tudor DR, Campbell JS, Antonian E, Jenkins SJ, Lucas CD, Davidson AJ, van den Elsen J, Schumacher LJ, Scopelliti A, Wood W. Drosophila complement-like Mcr acts as a wound-induced inflammatory chemoattractant. Curr Biol 2025; 35:1656-1664.e4. [PMID: 40107264 DOI: 10.1016/j.cub.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/19/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Sterile tissue injury is accompanied by an acute inflammatory response whereby innate immune cells rapidly migrate to the site of injury guided by pro-inflammatory chemotactic damage signals released at the wound. Understanding this immune response is key to improving human health, and recent advances in imaging technology have allowed researchers using different model organisms to observe this inflammatory response in vivo. Over recent decades, offering a unique combination of live time-lapse microscopy and genetics, the fruit fly Drosophila has emerged as a powerful model system to study inflammatory cell migration within a living animal.1,2,3,4 However, we still know relatively little regarding the identity of the earliest signals that drive this immune cell recruitment and the mechanisms by which they act within the complex, in vivo setting of a multicellular organism. Here, we couple the powerful genetics and live imaging of Drosophila with mathematical modeling to identify the fly complement ortholog-macroglobulin complement-related (Mcr)-as an early, wound-induced chemotactic signal responsible for the inflammatory recruitment of immune cells to injury sites in vivo. We show that epithelial-specific knockdown of Mcr suppresses the recruitment of macrophages to wounds and combine predictive mathematical modeling with in vivo genetics to understand macrophage migration dynamics following manipulation of this chemoattractant. We propose a model whereby Mcr operates alongside hydrogen peroxide to ensure a rapid and efficient immune response to damage, uncovering a novel function for this protein that parallels the chemotactic role of the complement component C5a in mammals.
Collapse
Affiliation(s)
- Luigi Zechini
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Henry Todd
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Thibaut Sanchez
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daniel R Tudor
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennie S Campbell
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Edward Antonian
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Stephen J Jenkins
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Christopher D Lucas
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Jean van den Elsen
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Linus J Schumacher
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK; School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, UK.
| | - Alessandro Scopelliti
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Will Wood
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 4-5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
2
|
Countryman AD, Doherty CA, Herrera-Perez RM, Kasza KE. Endogenous OptoRhoGEFs reveal biophysical principles of epithelial tissue furrowing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593711. [PMID: 38766210 PMCID: PMC11100791 DOI: 10.1101/2024.05.12.593711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
During development, epithelia function as malleable substrates that undergo extensive remodeling to shape developing embryos. Optogenetic control of Rho signaling provides an avenue to investigate the mechanisms of epithelial morphogenesis, but transgenic optogenetic tools can be limited by variability in tool expression levels and deleterious effects of transgenic overexpression on development. Here, we use CRISPR/Cas9 to tag Drosophila RhoGEF2 and Cysts/Dp114RhoGEF with components of the iLID/SspB optogenetic heterodimer, permitting light-dependent control over endogenous protein activities. Using quantitative optogenetic perturbations, we uncover a dose-dependence of tissue furrow depth and bending behavior on RhoGEF recruitment, revealing mechanisms by which developing embryos can shape tissues into particular morphologies. We show that at the onset of gastrulation, furrows formed by cell lateral contraction are oriented and size-constrained by a stiff basal actomyosin layer. Our findings demonstrate the use of quantitative, 3D-patterned perturbations of cell contractility to precisely shape tissue structures and interrogate developmental mechanics.
Collapse
|
3
|
Rodríguez A, Foronda D, Córdoba S, Felipe-Cordero D, Baonza A, Miguez DG, Estella C. Cell proliferation and Notch signaling coordinate the formation of epithelial folds in the Drosophila leg. Development 2024; 151:dev202384. [PMID: 38512712 PMCID: PMC11058088 DOI: 10.1242/dev.202384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
The formation of complex three-dimensional organs during development requires precise coordination between patterning networks and mechanical forces. In particular, tissue folding is a crucial process that relies on a combination of local and tissue-wide mechanical forces. Here, we investigate the contribution of cell proliferation to epithelial morphogenesis using the Drosophila leg tarsal folds as a model. We reveal that tissue-wide compression forces generated by cell proliferation, in coordination with the Notch signaling pathway, are essential for the formation of epithelial folds in precise locations along the proximo-distal axis of the leg. As cell numbers increase, compressive stresses arise, promoting the folding of the epithelium and reinforcing the apical constriction of invaginating cells. Additionally, the Notch target dysfusion plays a key function specifying the location of the folds, through the apical accumulation of F-actin and the apico-basal shortening of invaginating cells. These findings provide new insights into the intricate mechanisms involved in epithelial morphogenesis, highlighting the crucial role of tissue-wide forces in shaping a three-dimensional organ in a reproducible manner.
Collapse
Affiliation(s)
- Alonso Rodríguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Sergio Córdoba
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Daniel Felipe-Cordero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Antonio Baonza
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - David G. Miguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Departmento de Física de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Carlos Estella
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
4
|
Liu W, Xiu L, Zhou M, Li T, Jiang N, Wan Y, Qiu C, Li J, Hu W, Zhang W, Wu J. The Critical Role of the Shroom Family Proteins in Morphogenesis, Organogenesis and Disease. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:187-202. [PMID: 38884059 PMCID: PMC11169129 DOI: 10.1007/s43657-023-00119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 06/18/2024]
Abstract
The Shroom (Shrm) family of actin-binding proteins has a unique and highly conserved Apx/Shrm Domain 2 (ASD2) motif. Shroom protein directs the subcellular localization of Rho-associated kinase (ROCK), which remodels the actomyosin cytoskeleton and changes cellular morphology via its ability to phosphorylate and activate non-muscle myosin II. Therefore, the Shrm-ROCK complex is critical for the cellular shape and the development of many tissues, including the neural tube, eye, intestines, heart, and vasculature system. Importantly, the structure and expression of Shrm proteins are also associated with neural tube defects, chronic kidney disease, metastasis of carcinoma, and X-link mental retardation. Therefore, a better understanding of Shrm-mediated signaling transduction pathways is essential for the development of new therapeutic strategies to minimize damage resulting in abnormal Shrm proteins. This paper provides a comprehensive overview of the various Shrm proteins and their roles in morphogenesis and disease.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Lei Xiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Mingzhe Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Tao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yanmin Wan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jian Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wei Hu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030 China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200438 China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052 China
| |
Collapse
|
5
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
6
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
7
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
8
|
Hemkemeyer SA, Liu Z, Vollmer V, Xu Y, Lohmann B, Bähler M. The RhoGAP-myosin Myo9b regulates ocular lens pit morphogenesis. Dev Dyn 2022; 251:1897-1907. [PMID: 36008362 DOI: 10.1002/dvdy.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During eye development the lens placode invaginates to form the lens pit. Further bending of lens epithelium and separation from ectoderm leads eventually to a spherical lens vesicle with enclosed extracellular fluid. Changes in epithelial morphology involve the actin cytoskeleton and its regulators. The myosin Myo9b is simultaneously an actin-based motor and Rho GTPase-activating protein that regulates actin cytoskeleton organization. Myo9b-deficient adult mice and embryos were analyzed for eye malformations and alterations in lens development. RESULTS Myo9b-deficient mice showed a high incidence of microphthalmia and cataracts with occasional blepharitis. Formation of the lens vesicle during embryonic lens development was disordered in virtually all embryos. Lens placode invagination was less deep and gave rise to a conical structure instead of a spherical pit. At later stages either no lens vesicle was formed or a significantly smaller one that was not enclosed by the optic cup. Expression of the cell fate marker Pax6 was not altered. Staining of adherens junctions and F-actin was most intense at the tip of conical invaginations, suggesting that mechanical forces are not properly coordinated between epithelial cells that form the pit. CONCLUSIONS Myo9b is a critical regulator of ocular lens vesicle morphogenesis during eye development.
Collapse
Affiliation(s)
- Sandra A Hemkemeyer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Zhijun Liu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Veith Vollmer
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Yan Xu
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Birgit Lohmann
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| | - Martin Bähler
- Institute of Integrative Cell Biology and Physiology, University of Muenster, Muenster, Germany
| |
Collapse
|
9
|
Carreira LAM, Szadkowski D, Müller F, Søgaard-Andersen L. Spatiotemporal regulation of switching front–rear cell polarity. Curr Opin Cell Biol 2022; 76:102076. [DOI: 10.1016/j.ceb.2022.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
|
10
|
Tarikere S, Ylla G, Extavour CG. Distinct gene expression dynamics in germ line and somatic tissue during ovariole morphogenesis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2022; 12:jkab305. [PMID: 34849771 PMCID: PMC9210308 DOI: 10.1093/g3journal/jkab305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
The survival and evolution of a species is a function of the number of offspring it can produce. In insects, the number of eggs that an ovary can produce is a major determinant of reproductive capacity. Insect ovaries are made up of tubular egg-producing subunits called ovarioles, whose number largely determines the number of eggs that can be potentially laid. Ovariole number in Drosophila is directly determined by the number of cellular structures called terminal filaments, which are stacks of cells that assemble in the larval ovary. Elucidating the developmental and regulatory mechanisms of terminal filament formation is thus key to understanding the regulation of insect reproduction through ovariole number regulation. We systematically measured mRNA expression of all cells in the larval ovary at the beginning, middle, and end of terminal filament formation. We also separated somatic and germ line cells during these stages and assessed their tissue-specific gene expression during larval ovary development. We found that the number of differentially expressed somatic genes is highest during the late stages of terminal filament formation and includes many signaling pathways that govern ovary development. We also show that germ line tissue, in contrast, shows greater differential expression during early stages of terminal filament formation, and highly expressed germ line genes at these stages largely control cell division and DNA repair. We provide a tissue-specific and temporal transcriptomic dataset of gene expression in the developing larval ovary as a resource to study insect reproduction.
Collapse
Affiliation(s)
- Shreeharsha Tarikere
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
11
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Sánchez-Corrales YE, Blanchard GB, Röper K. Correct regionalization of a tissue primordium is essential for coordinated morphogenesis. eLife 2021; 10:e72369. [PMID: 34723792 PMCID: PMC8612734 DOI: 10.7554/elife.72369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022] Open
Abstract
During organ development, tubular organs often form from flat epithelial primordia. In the placodes of the forming tubes of the salivary glands in the Drosophila embryo, we previously identified spatially defined cell behaviors of cell wedging, tilting, and cell intercalation that are key to the initial stages of tube formation. Here, we address what the requirements are that ensure the continuous formation of a narrow symmetrical tube from an initially asymmetrical primordium whilst overall tissue geometry is constantly changing. We are using live-imaging and quantitative methods to compare wild-type placodes and mutants that either show disrupted cell behaviors or an initial symmetrical placode organization, with both resulting in severe impairment of the invagination. We find that early transcriptional patterning of key morphogenetic transcription factors drives the selective activation of downstream morphogenetic modules, such as GPCR signaling that activates apical-medial actomyosin activity to drive cell wedging at the future asymmetrically placed invagination point. Over time, transcription of key factors expands across the rest of the placode and cells switch their behavior from predominantly intercalating to predominantly apically constricting as their position approaches the invagination pit. Misplacement or enlargement of the initial invagination pit leads to early problems in cell behaviors that eventually result in a defective organ shape. Our work illustrates that the dynamic patterning of the expression of transcription factors and downstream morphogenetic effectors ensures positionally fixed areas of cell behavior with regards to the invagination point. This patterning in combination with the asymmetric geometrical setup ensures functional organ formation.
Collapse
Affiliation(s)
- Yara E Sánchez-Corrales
- MRC Laboratory of Molecular Biology,Cambridge Biomedical CampusCambridgeUnited Kingdom
- Genetics and Genomic Medicine Programme, Institute of Child Health, University College LondonLondonUnited Kingdom
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Katja Röper
- MRC Laboratory of Molecular Biology,Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
13
|
Herrera-Perez RM, Cupo C, Allan C, Lin A, Kasza KE. Using optogenetics to link myosin patterns to contractile cell behaviors during convergent extension. Biophys J 2021; 120:4214-4229. [PMID: 34293302 DOI: 10.1016/j.bpj.2021.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 10/24/2022] Open
Abstract
Distinct patterns of actomyosin contractility are often associated with particular epithelial tissue shape changes during development. For example, a planar-polarized pattern of myosin II localization regulated by Rho1 signaling during Drosophila body axis elongation is thought to drive cell behaviors that contribute to convergent extension. However, it is not well understood how specific aspects of a myosin pattern influence the multiple cell behaviors, including cell intercalation, cell shape changes, and apical cell area fluctuations, that simultaneously occur during morphogenesis. Here, we developed two optogenetic tools, optoGEF and optoGAP, to activate or deactivate Rho1 signaling, respectively. We used these tools to manipulate myosin patterns at the apical side of the germband epithelium during Drosophila axis elongation and analyzed the effects on contractile cell behaviors. We show that uniform activation or inactivation of Rho1 signaling across the apical surface of the germband is sufficient to disrupt the planar-polarized pattern of myosin at cell junctions on the timescale of 3-5 min, leading to distinct changes in junctional and medial myosin patterns in optoGEF and optoGAP embryos. These two perturbations to Rho1 activity both disrupt axis elongation and cell intercalation but have distinct effects on cell area fluctuations and cell packings that are linked with changes in the medial and junctional myosin pools. These studies demonstrate that acute optogenetic perturbations to Rho1 activity are sufficient to rapidly override the endogenous planar-polarized myosin pattern in the germband during axis elongation. Moreover, our results reveal that the levels of Rho1 activity and the balance between medial and junctional myosin play key roles not only in organizing the cell rearrangements that are known to directly contribute to axis elongation but also in regulating cell area fluctuations and cell packings, which have been proposed to be important factors influencing the mechanics of tissue deformation and flow.
Collapse
Affiliation(s)
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Cole Allan
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Annie Lin
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, New York.
| |
Collapse
|
14
|
Tamada M, Shi J, Bourdot KS, Supriyatno S, Palmquist KH, Gutierrez-Ruiz OL, Zallen JA. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity. Dev Cell 2021; 56:1589-1602.e9. [PMID: 33932332 DOI: 10.1016/j.devcel.2021.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors are essential for animal development and survival, with conserved roles in innate immunity, tissue patterning, and cell behavior. The mechanisms by which Toll receptors signal to the nucleus are well characterized, but how Toll receptors generate rapid, localized signals at the cell membrane to produce acute changes in cell polarity and behavior is not known. We show that Drosophila Toll receptors direct epithelial convergent extension by inducing planar-polarized patterns of Src and PI3-kinase (PI3K) activity. Toll receptors target Src activity to specific sites at the membrane, and Src recruits PI3K to the Toll-2 complex through tyrosine phosphorylation of the Toll-2 cytoplasmic domain. Reducing Src or PI3K activity disrupts planar-polarized myosin assembly, cell intercalation, and convergent extension, whereas constitutive Src activity promotes ectopic PI3K and myosin cortical localization. These results demonstrate that Toll receptors direct cell polarity and behavior by locally mobilizing Src and PI3K activity.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jay Shi
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Kia S Bourdot
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sara Supriyatno
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Karl H Palmquist
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Omar L Gutierrez-Ruiz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
15
|
Carreira LAM, Tostevin F, Gerland U, Søgaard-Andersen L. Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity. PLoS Genet 2020; 16:e1008877. [PMID: 32569324 PMCID: PMC7332107 DOI: 10.1371/journal.pgen.1008877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 05/21/2020] [Indexed: 11/19/2022] Open
Abstract
Cell polarity underlies key processes in all cells, including growth, differentiation and division. In the bacterium Myxococcus xanthus, front-rear polarity is crucial for motility. Notably, this polarity can be inverted, independent of the cell-cycle, by chemotactic signaling. However, a precise understanding of the protein network that establishes polarity and allows for its inversion has remained elusive. Here, we use a combination of quantitative experiments and data-driven theory to unravel the complex interplay between the three key components of the M. xanthus polarity module. By studying each of these components in isolation and their effects as we systematically reconstruct the system, we deduce the network of effective interactions between the polarity proteins. RomR lies at the root of this network, promoting polar localization of the other components, while polarity arises from interconnected negative and positive feedbacks mediated by the small GTPase MglA and its cognate GAP MglB, respectively. We rationalize this network topology as operating as a spatial toggle switch, providing stable polarity for persistent cell movement whilst remaining responsive to chemotactic signaling and thus capable of polarity inversions. Our results have implications not only for the understanding of polarity and motility in M. xanthus but also, more broadly, for dynamic cell polarity. The asymmetric localization of cellular components (polarity) is at the core of many important cellular functions including growth, division, differentiation and motility. However, important questions still remain regarding the design principles underlying polarity networks and how their activity can be controlled in space and time. We use the rod-shaped bacterium Myxococcus xanthus as a model to study polarity and its regulation. Like many bacteria, in M. xanthus a well-defined front-rear polarity axis enables efficient translocation. This polarity axis is defined by asymmetric polar localization of a switch-like GTPase and its cognate regulators, and can be reversed in response to signaling cues. Here we use a combination of quantitative experiments and data-driven theory to deduce the network of interactions among the M. xanthus polarity proteins and to show how the combination of positive- and negative-feedback interactions give rise to asymmetric polar protein localization. We rationalize this network topology as operating as a spatial toggle switch, providing stable polarity for persistent cell movement whilst remaining responsive to chemotactic signaling and capable of polarity inversions. Our results have broader implications for our understanding of dynamic cell polarity and GTPase regulation in both bacteria and eukaryotic cells.
Collapse
Affiliation(s)
| | - Filipe Tostevin
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Physik-Department, Technische Universität München, James Franck Straße, Garching, Germany
| | - Ulrich Gerland
- Physik-Department, Technische Universität München, James Franck Straße, Garching, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail:
| |
Collapse
|
16
|
Jevitt A, Chatterjee D, Xie G, Wang XF, Otwell T, Huang YC, Deng WM. A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol 2020; 18:e3000538. [PMID: 32339165 PMCID: PMC7205450 DOI: 10.1371/journal.pbio.3000538] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/07/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Oogenesis is a complex developmental process that involves spatiotemporally regulated coordination between the germline and supporting, somatic cell populations. This process has been modeled extensively using the Drosophila ovary. Although different ovarian cell types have been identified through traditional means, the large-scale expression profiles underlying each cell type remain unknown. Using single-cell RNA sequencing technology, we have built a transcriptomic data set for the adult Drosophila ovary and connected tissues. Using this data set, we identified the transcriptional trajectory of the entire follicle-cell population over the course of their development from stem cells to the oogenesis-to-ovulation transition. We further identify expression patterns during essential developmental events that take place in somatic and germline cell types such as differentiation, cell-cycle switching, migration, symmetry breaking, nurse-cell engulfment, egg-shell formation, and corpus luteum signaling. Extensive experimental validation of unique expression patterns in both ovarian and nearby, nonovarian cells also led to the identification of many new cell type-and stage-specific markers. The inclusion of several nearby tissue types in this data set also led to our identification of functional convergence in expression between distantly related cell types such as the immune-related genes that were similarly expressed in immune cells (hemocytes) and ovarian somatic cells (stretched cells) during their brief phagocytic role in nurse-cell engulfment. Taken together, these findings provide new insight into the temporal regulation of genes in a cell-type specific manner during oogenesis and begin to reveal the relatedness in expression between cell and tissues types.
Collapse
Affiliation(s)
- Allison Jevitt
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Taylor Otwell
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
17
|
Role of Notch Signaling in Leg Development in Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:103-127. [PMID: 32060874 DOI: 10.1007/978-3-030-34436-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Notch pathway plays diverse and fundamental roles during animal development. One of the most relevant, which arises directly from its unique mode of activation, is the specification of cell fates and tissue boundaries. The development of the leg of Drosophila melanogaster is a fine example of this Notch function, as it is required to specify the fate of the cells that will eventually form the leg joints, the flexible structures that separate the different segments of the adult leg. Notch activity is accurately activated and maintained at the distal end of each segment in response to the proximo-distal patterning gene network of the developing leg. Region-specific downstream targets of Notch in turn regulate the formation of the different types of joints. We discuss recent findings that shed light on the molecular and cellular mechanisms that are ultimately governed by Notch to achieve epithelial fold and joint morphogenesis. Finally, we briefly summarize the role that Notch plays in inducing the nonautonomous growth of the leg. Overall, this book chapter aims to highlight leg development as a useful model to study how patterning information is translated into specific cell behaviors that shape the final form of an adult organ.
Collapse
|
18
|
Garcia De Las Bayonas A, Philippe JM, Lellouch AC, Lecuit T. Distinct RhoGEFs Activate Apical and Junctional Contractility under Control of G Proteins during Epithelial Morphogenesis. Curr Biol 2019; 29:3370-3385.e7. [PMID: 31522942 PMCID: PMC6839405 DOI: 10.1016/j.cub.2019.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023]
Abstract
Small RhoGTPases direct cell shape changes and movements during tissue morphogenesis. Their activities are tightly regulated in space and time to specify the desired pattern of actomyosin contractility that supports tissue morphogenesis. This is expected to stem from polarized surface stimuli and from polarized signaling processing inside cells. We examined this general problem in the context of cell intercalation that drives extension of the Drosophila ectoderm. In the ectoderm, G protein-coupled receptors (GPCRs) and their downstream heterotrimeric G proteins (Gα and Gβγ) activate Rho1 both medial-apically, where it exhibits pulsed dynamics, and at junctions, where its activity is planar polarized. However, the mechanisms responsible for polarizing Rho1 activity are unclear. We report that distinct guanine exchange factors (GEFs) activate Rho1 in these two cellular compartments. RhoGEF2 acts uniquely to activate medial-apical Rho1 but is recruited both medial-apically and at junctions by Gα12/13-GTP, also called Concertina (Cta) in Drosophila. On the other hand, Dp114RhoGEF (Dp114), a newly characterized RhoGEF, is required for cell intercalation in the extending ectoderm, where it activates Rho1 specifically at junctions. Its localization is restricted to adherens junctions and is under Gβ13F/Gγ1 control. Furthermore, Gβ13F/Gγ1 activates junctional Rho1 and exerts quantitative control over planar polarization of Rho1. Finally, we found that Dp114RhoGEF is absent in the mesoderm, arguing for a tissue-specific control over junctional Rho1 activity. These results clarify the mechanisms of polarization of Rho1 activity in different cellular compartments and reveal that distinct GEFs are sensitive tuning parameters of cell contractility in remodeling epithelia. Dp114RhoGEF activates junctional Rho1 and is involved in cell intercalation Gα/Cta and Gβγ subunits tune, respectively, RhoGEF2 and Dp114RhoGEF membrane levels Gβγ subunits control planar polarity of junctional Rho1 signaling via Dp114RhoGEF Tissue-specific RhoGEFs could diversify morphogenesis in different tissues
Collapse
Affiliation(s)
| | - Jean-Marc Philippe
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France
| | - Annemarie C Lellouch
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France
| | - Thomas Lecuit
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
19
|
Spatial control of the GTPase MglA by localized RomR–RomX GEF and MglB GAP activities enables Myxococcus xanthus motility. Nat Microbiol 2019; 4:1344-1355. [DOI: 10.1038/s41564-019-0451-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/08/2019] [Indexed: 11/08/2022]
|
20
|
Agarwal P, Zaidel-Bar R. Principles of Actomyosin Regulation In Vivo. Trends Cell Biol 2018; 29:150-163. [PMID: 30385150 DOI: 10.1016/j.tcb.2018.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
The actomyosin cytoskeleton is responsible for most force-driven processes in cells and tissues. How it assembles into the necessary structures at the right time and place is an important question. Here, we focus on molecular mechanisms of actomyosin regulation recently elucidated in animal models, and highlight several common principles that emerge. The architecture of the actomyosin network - an important determinant of its function - results from actin polymerization, crosslinking and turnover, localized myosin activation, and contractility-driven self-organization. Spatiotemporal regulation is achieved by tissue-specific expression and subcellular localization of Rho GTPase regulators. Subcellular anchor points of actomyosin structures control the outcome of their contraction, and molecular feedback mechanisms dictate whether they are transient, cyclic, or persistent.
Collapse
Affiliation(s)
- Priti Agarwal
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
21
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
22
|
Wester JVWC, Lima CAC, Machado MCR, Zampar PV, Tavares SS, Monesi N. Characterization of a novel Drosophila melanogaster cis-regulatory module that drives gene expression to the larval tracheal system and adult thoracic musculature. Genesis 2018; 56:e23222. [PMID: 30096221 DOI: 10.1002/dvg.23222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 11/05/2022]
Abstract
In a previous bioinformatics analysis we identified 10 conserved Drosophila melanogaster sequences that reside upstream from protein coding genes (CGs). Here we characterize one of these genomic regions, which constitutes a Drosophila melanogaster cis-regulatory module (CRM) that we denominate TT-CRM. The TT-CRM is 646 bp long and is located in one of the introns of CG32239 and resides about 3,500 bp upstream of CG13711 and about 620 bp upstream of CG12493. Analysis of 646 bp-lacZ lines revealed that TT-CRM drives gene expression not only to the larval, prepupal, and pupal tracheal system but also to the adult dorsal longitudinal muscles. The patterns of mRNA expression of the transgene and of the CGs that lie in the vicinity of TT-CRM were investigated both in dissected trachea and in adult thoraces. Through RT-qPCR we observed that in the tracheal system the pattern of expression of 646 bp-lacZ is similar to the pattern of expression of CG32239 and CG13711, whereas in the thoracic muscles 646 bp-lacZ expression accompanies the expression of CG12493. Together, these results suggest new functions for two previously characterized D. melanogaster genes and also contribute to the initial characterization of a novel CRM that drives a dynamic pattern of expression throughout development.
Collapse
Affiliation(s)
- Jorge Victor Wilfredo Cachay Wester
- Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Antonio Couto Lima
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maiaro Cabral Rosa Machado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Vieira Zampar
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Simone Sakagute Tavares
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Córdoba S, Estella C. The transcription factor Dysfusion promotes fold and joint morphogenesis through regulation of Rho1. PLoS Genet 2018; 14:e1007584. [PMID: 30080872 PMCID: PMC6095628 DOI: 10.1371/journal.pgen.1007584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/16/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The mechanisms that control tissue patterning and cell behavior are extensively studied separately, but much less is known about how these two processes are coordinated. Here we show that the Drosophila transcription factor Dysfusion (Dysf) directs leg epithelial folding and joint formation through the regulation of Rho1 activity. We found that Dysf-induced Rho1 activity promotes apical constriction specifically in folding epithelial cells. Here we show that downregulation of Rho1 or its downstream effectors cause defects in fold and joint formation. In addition, Rho1 and its effectors are sufficient to induce the formation of epithelial folds when misexpressed in a flat epithelium. Furthermore, as apoptotic cells can actively control tissue remodeling, we analyzed the role of cell death in the formation of tarsal folds and its relation to Rho1 activity. Surprisingly, we found no defects in this process when apoptosis is inhibited. Our results highlight the coordination between a patterning transcription factor and the cellular processes that cause the cell shape changes necessary to sculpt a flat epithelium into a three dimensional structure. Epithelial morphogenesis drives the formation of organs and the acquisition of body shape. Changes in cell behavior such as cell proliferation, cell shape or apoptosis contribute to the remodeling of the epithelia from a simple layer to a three dimensional structure. These changes have to be precisely regulated by an underlying patterning network to control the final shape of an organ. However, how these two processes are coordinated is mostly unknown. In this work we use the formation of the fly leg joints as a model to study how Dysfusion (Dysf), a patterning transcription factor, regulates the cellular mechanisms that form the folds in the leg discs epithelium. We have found that dysf modulates the localization and activity of Rho1, a key regulator of the acto-myosin cytoskeleton, to drive cell apical constriction and epithelial folding in the leg disc. Furthermore, in this work we provide proof of the direct requirements of Rho1 and its downstream effectors in fold and joint formation. We conclude that Dysf-regulated Rho1 activity controls the cell shape changes that sculpt leg joints.
Collapse
Affiliation(s)
- Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-CSIC, Madrid, Spain
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
Sotillos S, Aguilar-Aragon M, Hombría JCG. Functional analysis of the Drosophila RhoGAP Cv-c protein and its equivalence to the human DLC3 and DLC1 proteins. Sci Rep 2018; 8:4601. [PMID: 29545526 PMCID: PMC5854602 DOI: 10.1038/s41598-018-22794-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 01/21/2023] Open
Abstract
RhoGAP proteins control the precise regulation of the ubiquitous small RhoGTPases. The Drosophila Crossveinless-c (Cv-c) RhoGAP is homologous to the human tumour suppressor proteins Deleted in Liver Cancer 1-3 (DLC1-3) sharing an identical arrangement of SAM, GAP and START protein domains. Here we analyse in Drosophila the requirement of each Cv-c domain to its function and cellular localization. We show that the basolateral membrane association of Cv-c is key for its epithelial function and find that the GAP domain targeted to the membrane can perform its RhoGAP activity independently of the rest of the protein, implying the SAM and START domains perform regulatory roles. We propose the SAM domain has a repressor effect over the GAP domain that is counteracted by the START domain, while the basolateral localization is mediated by a central, non-conserved Cv-c region. We find that DLC3 and Cv-c expression in the Drosophila ectoderm cause identical effects. In contrast, DLC1 is inactive but becomes functional if the central non-conserved DLC1 domain is substituted for that of Cv-c. Thus, these RhoGAP proteins are functionally equivalent, opening up the use of Drosophila as an in vivo model to analyse pharmacologically and genetically the human DLC proteins.
Collapse
Affiliation(s)
- Sol Sotillos
- CABD (CSIC/JA/Univ. Pablo de Olavide), Seville, Spain.
| | - Mario Aguilar-Aragon
- CABD (CSIC/JA/Univ. Pablo de Olavide), Seville, Spain.,The Francis Crick Institute, London, UK
| | | |
Collapse
|
25
|
Inoue Y, Watanabe T, Okuda S, Adachi T. Mechanical role of the spatial patterns of contractile cells in invagination of growing epithelial tissue. Dev Growth Differ 2017; 59:444-454. [PMID: 28707336 PMCID: PMC11520961 DOI: 10.1111/dgd.12374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/29/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022]
Abstract
Epithelial invagination is one of the fundamental deformation modes during morphogenesis, and is essential for deriving the three-dimensional shapes of organs from a flat epithelial sheet. Invagination occurs in an orderly manner according to the spatial pattern of the contractile cells; however, it remains elusive how tissue deformation can be caused by cellular activity in the patterned region. In this study, we investigated the mechanical role of the spatial patterns of the contractile cells in invagination of growing tissue using multicellular dynamics simulations. We found that cell proliferation and apical constriction were responsible for expanding the degree of tissue deformation and determining the location of the deformation, respectively. The direction of invagination depended on the spatial pattern of the contractile cells. Further, comparing the simulation results of surface and line contractions as possible modes of apical constriction, we found that the direction of invagination differed between these two modes even if the spatial pattern was the same. These results indicate that the buckling of the epithelial cell sheet caused by cell proliferation causes the invagination, with the direction and location determined by the configuration of the wedge-shaped cells given by the spatial pattern of the contractile cells.
Collapse
Affiliation(s)
- Yasuhiro Inoue
- Institute for Frontier Life and Medical SciencesKyoto UniversityKyoto606‐8507Japan
| | - Tadashi Watanabe
- Institute for Frontier Life and Medical SciencesKyoto UniversityKyoto606‐8507Japan
| | - Satoru Okuda
- RIKEN Center for Developmental BiologyKobe650‐0047Japan
| | - Taiji Adachi
- Institute for Frontier Life and Medical SciencesKyoto UniversityKyoto606‐8507Japan
| |
Collapse
|
26
|
Abstract
Rho family GTPase signaling regulates the actin cytoskeleton and is critical for behaviors that range from the cell to tissue-scale. A theme in Rho GTPase biology is that there are many more regulators, such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), than GTPases themselves. Here, we review different, modular cases where GEFs and GAPs function together to elicit precise spatial and temporal control of signaling. We focus on examples from metazoan development, where precise regulation of Rho GTPases is critical for proper tissue form and function.
Collapse
Affiliation(s)
- Marlis Denk-Lobnig
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Adam C Martin
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
27
|
Mason FM, Xie S, Vasquez CG, Tworoger M, Martin AC. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis. J Cell Biol 2016; 214:603-17. [PMID: 27551058 PMCID: PMC5004446 DOI: 10.1083/jcb.201603077] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/15/2016] [Indexed: 12/05/2022] Open
Abstract
During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding.
Collapse
Affiliation(s)
- Frank M Mason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Shicong Xie
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Claudia G Vasquez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Michael Tworoger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
28
|
Hunter MV, Lee DM, Harris TJC, Fernandez-Gonzalez R. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair. J Cell Biol 2015; 210:801-16. [PMID: 26304727 PMCID: PMC4555830 DOI: 10.1083/jcb.201501076] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
Clathrin, dynamin, and ARF6 accumulate around wounds in Drosophila embryos in a calcium- and actomyosin-dependent manner and drive polarized E-cadherin endocytosis, which is necessary for actomyosin remodeling during wound repair. Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair.
Collapse
Affiliation(s)
- Miranda V Hunter
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Donghoon M Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
29
|
Petsakou A, Sapsis TP, Blau J. Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy. Cell 2015; 162:823-35. [PMID: 26234154 DOI: 10.1016/j.cell.2015.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/19/2015] [Accepted: 06/13/2015] [Indexed: 01/02/2023]
Abstract
Neuronal plasticity helps animals learn from their environment. However, it is challenging to link specific changes in defined neurons to altered behavior. Here, we focus on circadian rhythms in the structure of the principal s-LNv clock neurons in Drosophila. By quantifying neuronal architecture, we observed that s-LNv structural plasticity changes the amount of axonal material in addition to cycles of fasciculation and defasciculation. We found that this is controlled by rhythmic Rho1 activity that retracts s-LNv axonal termini by increasing myosin phosphorylation and simultaneously changes the balance of pre-synaptic and dendritic markers. This plasticity is required to change clock network hierarchy and allow seasonal adaptation. Rhythms in Rho1 activity are controlled by clock-regulated transcription of Puratrophin-1-like (Pura), a Rho1 GEF. Since spinocerebellar ataxia is associated with mutations in human Puratrophin-1, our data support the idea that defective actin-related plasticity underlies this ataxia.
Collapse
Affiliation(s)
- Afroditi Petsakou
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Themistoklis P Sapsis
- Courant Institute for Applied Mathematics, New York University, New York, NY 10003, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA; Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Spencer AK, Siddiqui BA, Thomas JH. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin. Dev Biol 2015; 402:192-207. [PMID: 25929228 DOI: 10.1016/j.ydbio.2015.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
Abstract
Invagination of epithelial sheets to form furrows is a fundamental morphogenetic movement and is found in a variety of developmental events including gastrulation and vertebrate neural tube formation. The cephalic furrow is a deep epithelial invagination that forms during Drosophila gastrulation. In the first phase of cephalic furrow formation, the initiator cells that will lead invagination undergo apicobasal shortening and apical constriction in the absence of epithelial invagination. In the second phase of cephalic furrow formation, the epithelium starts to invaginate, accompanied by both basal expansion and continued apicobasal shortening of the initiator cells. The cells adjacent to the initiator cells also adopt wedge shapes, but only after invagination is well underway. Myosin II does not appear to drive apical constriction in cephalic furrow formation. However, cortical F-actin is increased in the apices of the initiator cells and in invaginating cells during both phases of cephalic furrow formation. These findings suggest that a novel mechanism for epithelial invagination is involved in cephalic furrow formation.
Collapse
Affiliation(s)
- Allison K Spencer
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States
| | - Bilal A Siddiqui
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, STOP 6540, Lubbock, TX 79430, United States.
| |
Collapse
|
31
|
Braun AC, Olayioye MA. Rho regulation: DLC proteins in space and time. Cell Signal 2015; 27:1643-51. [PMID: 25889896 DOI: 10.1016/j.cellsig.2015.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Rho GTPases function as molecular switches that connect changes of the external environment to intracellular signaling pathways. They are active at various subcellular sites and require fast and tight regulation to fulfill their role as transducers of extracellular stimuli. New imaging technologies visualizing the active states of Rho proteins in living cells elucidated the necessity of precise spatiotemporal activation of the GTPases. The local regulation of Rho proteins is coordinated by the interaction with different guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that turn on and off GTPase signaling to downstream effectors. GEFs and GAPs thus serve as critical signaling nodes that specify the amplitude and duration of a particular Rho signaling pathway. Despite their importance in Rho regulation, the molecular aspects underlying the spatiotemporal control of the regulators themselves are still largely elusive. In this review we will focus on the Deleted in Liver Cancer (DLC) family of RhoGAP proteins and summarize the evidence gathered over the past years revealing their different subcellular localizations that might account for isoform-specific functions. We will also highlight the importance of their tightly controlled expression in the context of neoplastic transformation.
Collapse
Affiliation(s)
- Anja C Braun
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
32
|
Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res 2014; 24:1288-98. [PMID: 25342558 DOI: 10.1038/cr.2014.137] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/07/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Cell engulfment typically targets dead or dying cells for clearance from metazoan tissues. However, recent evidence demonstrates that live cells can also be targeted and that engulfment can cause cell death. Entosis is one mechanism proposed to mediate the engulfment and killing of live tumor cells by their neighbors, an activity often referred to as cell cannibalism. Here we report that the expression of exogenous epithelial cadherin proteins (E- or P-cadherin) in human breast tumor cells lacking endogenous expression of epithelial cadherins induces entosis and inhibits transformed growth. Entosis induced by cadherin expression is associated with the polarized distribution of Rho and Rho-kinase (ROCK) activity within entotic cells, which is dependent on p190A RhoGAP activity. ROCK inhibition or downregulation of p190A RhoGAP expression reduces entosis and increases the transformed growth of epithelial cadherin-expressing tumor cells. These data define new cell systems for the study of entosis, and identify entosis as a mechanism of cell cannibalism that is induced by the establishment of epithelial adhesion and inhibits transformed growth.
Collapse
Affiliation(s)
- Qiang Sun
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China [2] Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Edmund S Cibas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, China
| | - Louis Hodgson
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Michael Overholtzer
- 1] Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA [2] BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
33
|
Tsikala G, Karagogeos D, Strigini M. Btk-dependent epithelial cell rearrangements contribute to the invagination of nearby tubular structures in the posterior spiracles of Drosophila. Dev Biol 2014; 396:42-56. [PMID: 25305143 DOI: 10.1016/j.ydbio.2014.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
Abstract
The Drosophila respiratory system consists of two connected organs, the tracheae and the spiracles. Together they ensure the efficient delivery of air-borne oxygen to all tissues. The posterior spiracles consist internally of the spiracular chamber, an invaginated tube with filtering properties that connects the main tracheal branch to the environment, and externally of the stigmatophore, an extensible epidermal structure that covers the spiracular chamber. The primordia of both components are first specified in the plane of the epidermis and subsequently the spiracular chamber is internalized through the process of invagination accompanied by apical cell constriction. It has become clear that invagination processes do not always or only rely on apical constriction. We show here that in mutants for the src-like kinase Btk29A spiracle cells constrict apically but do not complete invagination, giving rise to shorter spiracular chambers. This defect can be rescued by using different GAL4 drivers to express Btk29A throughout the ectoderm, in cells of posterior segments only, or in the stigmatophore pointing to a non cell-autonomous role for Btk29A. Our analysis suggests that complete invagination of the spiracular chamber requires Btk29A-dependent planar cell rearrangements of adjacent non-invaginating cells of the stigmatophore. These results highlight the complex physical interactions that take place among organ components during morphogenesis, which contribute to their final form and function.
Collapse
Affiliation(s)
- Georgia Tsikala
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, P.O. Box 2208, GR-71003 Heraklion, Crete, Greece
| | - Maura Strigini
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece.
| |
Collapse
|
34
|
Das D, Zalewski JK, Mohan S, Plageman TF, VanDemark AP, Hildebrand JD. The interaction between Shroom3 and Rho-kinase is required for neural tube morphogenesis in mice. Biol Open 2014; 3:850-60. [PMID: 25171888 PMCID: PMC4163662 DOI: 10.1242/bio.20147450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shroom3 is an actin-associated regulator of cell morphology that is required for neural tube closure, formation of the lens placode, and gut morphogenesis in mice and has been linked to chronic kidney disease and directional heart looping in humans. Numerous studies have shown that Shroom3 likely regulates these developmental processes by directly binding to Rho-kinase and facilitating the assembly of apically positioned contractile actomyosin networks. We have characterized the molecular basis for the neural tube defects caused by an ENU-induced mutation that results in an arginine-to-cysteine amino acid substitution at position 1838 of mouse Shroom3. We show that this substitution has no effect on Shroom3 expression or localization but ablates Rock binding and renders Shroom3 non-functional for the ability to regulate cell morphology. Our results indicate that Rock is the major downstream effector of Shroom3 in the process of neural tube morphogenesis. Based on sequence conservation and biochemical analysis, we predict that the Shroom-Rock interaction is highly conserved across animal evolution and represents a signaling module that is utilized in a variety of biological processes.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jenna K Zalewski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Swarna Mohan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Timothy F Plageman
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey D Hildebrand
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
35
|
Manning AJ, Rogers SL. The Fog signaling pathway: insights into signaling in morphogenesis. Dev Biol 2014; 394:6-14. [PMID: 25127992 PMCID: PMC4182926 DOI: 10.1016/j.ydbio.2014.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022]
Abstract
Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa.
Collapse
Affiliation(s)
- Alyssa J Manning
- Department of Biochemistry, Box 357350, The University of Washington, Seattle, WA 98195-7350, USA
| | - Stephen L Rogers
- Department of Biology, The University of North Carolina at Chapel Hill, CB ♯3280, Fordham Hall, South Road, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, USA; Carolina Center for Genome Sciences, USA.
| |
Collapse
|
36
|
Abstract
Semaphorin family proteins are well-known axon guidance ligands. Recent studies indicate that certain transmembrane Semaphorins can also function as guidance receptors to mediate axon-axon attraction or repulsion. The mechanisms by which Semaphorin reverse signaling modulates axon-surface affinity, however, remain unknown. In this study, we reveal a novel mechanism underlying upregulation of axon-axon attraction by Semaphorin-1a (Sema1a) reverse signaling in the developing Drosophila visual system. Sema1a promotes the phosphorylation and activation of Moesin (Moe), a member of the ezrin/radixin/moesin family of proteins, and downregulates the level of active Rho1 in photoreceptor axons. We propose that Sema1a reverse signaling activates Moe, which in turn upregulates Fas2-mediated axon-axon attraction by inhibiting Rho1.
Collapse
|
37
|
Simões SDM, Mainieri A, Zallen JA. Rho GTPase and Shroom direct planar polarized actomyosin contractility during convergent extension. ACTA ACUST UNITED AC 2014; 204:575-89. [PMID: 24535826 PMCID: PMC3926966 DOI: 10.1083/jcb.201307070] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rho GTPase signaling establishes a planar polarized actomyosin network within which the actin-binding protein Shroom enhances myosin activity locally to generate robust mechanical forces during axis elongation. Actomyosin contraction generates mechanical forces that influence cell and tissue structure. During convergent extension in Drosophila melanogaster, the spatially regulated activity of the myosin activator Rho-kinase promotes actomyosin contraction at specific planar cell boundaries to produce polarized cell rearrangement. The mechanisms that direct localized Rho-kinase activity are not well understood. We show that Rho GTPase recruits Rho-kinase to adherens junctions and is required for Rho-kinase planar polarity. Shroom, an asymmetrically localized actin- and Rho-kinase–binding protein, amplifies Rho-kinase and myosin II planar polarity and junctional localization downstream of Rho signaling. In Shroom mutants, Rho-kinase and myosin II achieve reduced levels of planar polarity, resulting in decreased junctional tension, a disruption of multicellular rosette formation, and defective convergent extension. These results indicate that Rho GTPase activity is required to establish a planar polarized actomyosin network, and the Shroom actin-binding protein enhances myosin contractility locally to generate robust mechanical forces during axis elongation.
Collapse
Affiliation(s)
- Sérgio de Matos Simões
- Howard Hughes Medical Institute and 2 Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| | | | | |
Collapse
|
38
|
Aguilar-Cuenca R, Juanes-García A, Vicente-Manzanares M. Myosin II in mechanotransduction: master and commander of cell migration, morphogenesis, and cancer. Cell Mol Life Sci 2014; 71:479-92. [PMID: 23934154 PMCID: PMC11113847 DOI: 10.1007/s00018-013-1439-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/30/2013] [Accepted: 07/25/2013] [Indexed: 01/04/2023]
Abstract
Mechanotransduction encompasses the role of mechanical forces in controlling cell behavior by activating signal transduction pathways. Most forces at a cellular level are caused by myosin II, which contracts and cross-links actin. Myosin II-dependent forces are transmitted through the actin cytoskeleton to molecular endpoints that promote specific cellular outcomes, e.g., cell proliferation, adhesion, or migration. For example, most adhesive and migratory phenomena are mechanically linked by a molecular clutch comprised of mechanosensitive scaffolds. Myosin II activation and mechanosensitive molecular mechanisms are finely tuned and spatiotemporally integrated to coordinate morphogenetic events during development. Mechanical events dependent on myosin II also participate in tumor cell proliferation, invasion, and metastatic dissemination. Specifically, tumor cells alter the mechanical properties of the microenvironment to create favorable conditions for proliferation and/or dissemination. These observations position myosin II-dependent force generation and mechanotransduction at the crossroads between normal development and cancer.
Collapse
Affiliation(s)
- Rocío Aguilar-Cuenca
- Universidad Autonoma de Madrid School of Medicine, Department of Medicine, Hospital Universitario de la Princesa, c/Diego de León 62, Madrid, Spain
| | - Alba Juanes-García
- Universidad Autonoma de Madrid School of Medicine, Department of Medicine, Hospital Universitario de la Princesa, c/Diego de León 62, Madrid, Spain
| | - Miguel Vicente-Manzanares
- Universidad Autonoma de Madrid School of Medicine, Department of Medicine, Hospital Universitario de la Princesa, c/Diego de León 62, Madrid, Spain
| |
Collapse
|
39
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
40
|
Bausek N, Zeidler MP. Gα73B is a downstream effector of JAK/STAT signalling and a regulator of Rho1 in Drosophila haematopoiesis. J Cell Sci 2013; 127:101-10. [PMID: 24163435 DOI: 10.1242/jcs.132852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
JAK/STAT signalling regulates many essential developmental processes including cell proliferation and haematopoiesis, whereas its inappropriate activation is associated with the majority of myeloproliferative neoplasias and numerous cancers. Furthermore, high levels of JAK/STAT pathway signalling have also been associated with enhanced metastatic invasion by cancerous cells. Strikingly, gain-of-function mutations in the single Drosophila JAK homologue, Hopscotch, result in haemocyte neoplasia, inappropriate differentiation and the formation of melanised haemocyte-derived 'tumour' masses; phenotypes that are partly orthologous to human gain-of-function JAK2-associated pathologies. Here we show that Gα73B, a novel JAK/STAT pathway target gene, is necessary for JAK/STAT-mediated tumour formation in flies. In addition, although Gα73B does not affect haemocyte differentiation, it does regulate haemocyte morphology and motility under non-pathological conditions. We show that Gα73B is required for constitutive, but not injury-induced, activation of Rho1 and for the localisation of Rho1 into filopodia upon haemocyte activation. Consistent with these results, we also show that Rho1 interacts genetically with JAK/STAT signalling, and that wild-type levels of Rho1 are necessary for tumour formation. Our findings link JAK/STAT transcriptional outputs, Gα73B activity and Rho1-dependent cytoskeletal rearrangements and cell motility, therefore connecting a pathway associated with cancer with a marker indicative of invasiveness. As such, we suggest a mechanism by which JAK/STAT pathway signalling may promote metastasis.
Collapse
Affiliation(s)
- Nina Bausek
- MRC Centre for Development and Biomedical Genetics, and The Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
41
|
Loosli F. ArhGEF18 regulated Rho signaling in vertebrate retina development. Small GTPases 2013; 4:242-6. [PMID: 24231347 PMCID: PMC4011820 DOI: 10.4161/sgtp.27061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/19/2022] Open
Abstract
Epithelia consisting of highly polarized columnar cells contribute to many organs during development, including the central nervous system. Epithelial organization is essential for proliferation and differentiation of progenitor cells and subsequent organ morphology and function. Small GTPases of the Rho family are important regulators of cellular morphology and polarity. We recently identified ArhGEF18 as a key regulator of RhoA-Rock2 signaling that is crucial for maintenance of polarity in the vertebrate retinal epithelium. ArhGEF18 is required to maintain apico-basal polarity, localization of tight junctions and cortical actin, thus shaping cellular morphology. Loss of ArhGEF18 activity results in increased proliferation and reduced cell cycle exit. Together, these perturbations result in a severely misshaped embryonic eye, where the stereotype arrangement of retinal cell types is randomized. Our findings reveal an important role for RhoA-Rock2 signaling to maintain apico-basal polarity in retinal progenitor cells, which is essential for subsequent cellular differentiation, morphology and eventually organ function.
Collapse
Affiliation(s)
- Felix Loosli
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
42
|
Hombría JCG, Sotillos S. JAK-STAT pathway in Drosophila morphogenesis: From organ selector to cell behavior regulator. JAKSTAT 2013; 2:e26089. [PMID: 24069568 PMCID: PMC3772120 DOI: 10.4161/jkst.26089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
One of the main contributions of Drosophila to the JAK-STAT field is the study of morphogenesis. JAK-STAT signaling controls the formation of many different structures through surprisingly different morphogenetic behaviors that include induction of cell rearrangements, invagination, folding of tissues, modulation of cell shape, and migration. This variability may be explained by the many transcription factors and signaling molecules STAT regulates at early stages of development. But is STAT just acting as an upstream inducer of morphogenesis or does it have a more direct role in controlling cell behaviors? Here we review what is known about how the canonical phosphorylation of STAT contributes to shaping the embryonic and imaginal structures.
Collapse
|
43
|
Johnston CA, Manning L, Lu MS, Golub O, Doe CQ, Prehoda KE. Formin-mediated actin polymerization cooperates with Mushroom body defect (Mud)-Dynein during Frizzled-Dishevelled spindle orientation. J Cell Sci 2013; 126:4436-44. [PMID: 23868974 DOI: 10.1242/jcs.129544] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To position the mitotic spindle, cytoskeletal components must be coordinated to generate cortical forces on astral microtubules. Although the dynein motor is common to many spindle orientation systems, 'accessory pathways' are often also required. In this work, we identified an accessory spindle orientation pathway in Drosophila that functions with Dynein during planar cell polarity, downstream of the Frizzled (Fz) effector Dishevelled (Dsh). Dsh contains a PDZ ligand and a Dynein-recruiting DEP domain that are both required for spindle orientation. The Dsh PDZ ligand recruits Canoe/Afadin and ultimately leads to Rho GTPase signaling mediated through RhoGEF2. The formin Diaphanous (Dia) functions as the Rho effector in this pathway, inducing F-actin enrichment at sites of cortical Dsh. Chimeric protein experiments show that the Dia-actin accessory pathway can be replaced by an independent kinesin (Khc73) accessory pathway for Dsh-mediated spindle orientation. Our results define two 'modular' spindle orientation pathways and show an essential role for actin regulation in Dsh-mediated spindle orientation.
Collapse
|
44
|
Matsuda S, Blanco J, Shimmi O. A feed-forward loop coupling extracellular BMP transport and morphogenesis in Drosophila wing. PLoS Genet 2013; 9:e1003403. [PMID: 23555308 PMCID: PMC3605110 DOI: 10.1371/journal.pgen.1003403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 02/06/2013] [Indexed: 11/18/2022] Open
Abstract
A variety of extracellular factors regulate morphogenesis during development. However, coordination between extracellular signaling and dynamic morphogenesis is largely unexplored. We address the fundamental question by studying posterior crossvein (PCV) development in Drosophila as a model, in which long-range BMP transport from the longitudinal veins plays a critical role during the pupal stages. Here, we show that RhoGAP Crossveinless-C (Cv-C) is induced at the PCV primordial cells by BMP signaling and mediates PCV morphogenesis cell-autonomously by inactivating members of the Rho-type small GTPases. Intriguingly, we find that Cv-C is also required non-cell-autonomously for BMP transport into the PCV region, while a long-range BMP transport is guided toward ectopic wing vein regions by loss of the Rho-type small GTPases. We present evidence that low level of ß-integrin accumulation at the basal side of PCV epithelial cells regulated by Cv-C provides an optimal extracellular environment for guiding BMP transport. These data suggest that BMP transport and PCV morphogenesis are tightly coupled. Our study reveals a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise morphogenesis during development and homeostasis. It has been extensively studied how tissue morphogenesis is regulated by a variety of extracellular cues. Given that dynamic morphogenesis coincides with arrival of extracellular factors, there must be also mechanisms that coordinate extracellular signaling and intracellular morphogenesis. However, the coordination is largely unknown, due to the complexity of morphogenesis in vivo. We addressed the fundamental question by studying posterior crossvein (PCV) development in Drosophila as a model, in which a long-range transport of bone morphogenetic protein (BMP) type ligands from adjacent longitudinal veins plays a critical role during the pupal stages. Here, we first showed that RhoGAP Crossveinless-C (Cv-C) is induced at the PCV region by BMP signal and mediates PCV morphogenesis. By modulating wing vein morphogenesis, we then found that PCV morphogenesis is required for BMP transport, while ectopic wing vein morphogenesis sufficiently guides a long-range BMP transport. These data suggest a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise tissue morphogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Shinya Matsuda
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jorge Blanco
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
45
|
Abstract
The Abdominal-B selector protein induces organogenesis of the posterior spiracles by coordinating an organ-specific gene network. The complexity of this network begs the questions of how it originated and what selective pressures drove its formation. Given that the network likely formed in a piecemeal fashion, with elements recruited sequentially, we studied the consequences of expressing individual effectors of this network in naive epithelial cells. We found that, with exception of the Crossveinless-c (Cv-c) Rho GTPase-activating protein, most effectors exert little morphogenetic effect by themselves. In contrast, Cv-c expression causes cell motility and down-regulates epithelial polarity and cell adhesion proteins. These effects differ in cells endogenously expressing Cv-c, which have acquired compensatory mechanisms. In spiracle cells, the down-regulation of polarity and E-cadherin expression caused by Cv-c-induced Rho1 inactivation are compensated for by the simultaneous spiracle up-regulation of guanine nucleotide exchange factor (GEF) proteins, cell polarity, and adhesion molecules. Other epithelial cells that have coopted Cv-c to their morphogenetic gene networks are also resistant to Cv-c's deleterious effects. We propose that cooption of a novel morphogenetic regulator to a selector cascade causes cellular instability, resulting in strong selective pressure that leads that same cascade to recruit molecules that compensate it. This experimental-based hypothesis proposes how the frequently observed complex organogenetic gene networks are put together.
Collapse
|
46
|
Integrin activation by P-Rex1 is required for selectin-mediated slow leukocyte rolling and intravascular crawling. Blood 2013; 121:2301-10. [PMID: 23343834 DOI: 10.1182/blood-2012-09-457085] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Integrin activation is essential for the function of leukocytes. Impaired integrin activation on leukocytes is the hallmark of the leukocyte adhesion deficiency syndrome in humans, characterized by impaired leukocyte recruitment and recurrent infections. In inflammation, leukocytes collect different signals during the contact with the microvasculature, which activate signaling pathways leading to integrin activation and leukocyte recruitment. We report the role of P-Rex1, a Rac-specific guanine nucleotide exchanging factor, in integrin activation and leukocyte recruitment. We find that P-Rex1 is required for inducing selectin-mediated lymphocyte function-associated antigen-1 (LFA-1) extension that corresponds to intermediate affinity and induces slow leukocyte rolling, whereas P-Rex1 is not involved in the induction of the high-affinity conformation of LFA-1 obligatory for leukocyte arrest. Furthermore, we demonstrate that P-Rex1 is involved in Mac-1-dependent intravascular crawling. In vivo, both LFA-1-dependent slow rolling and Mac-1-dependent crawling are defective in P-Rex1(-/-) leukocytes, whereas chemokine-induced arrest and postadhesion strengthening remain intact in P-Rex1-deficient leukocytes. Rac1 is involved in E-selectin-mediated slow rolling and crawling. In vivo, in an ischemia-reperfusion-induced model of acute kidney injury, abolished selectin-mediated integrin activation contributed to decreased neutrophil recruitment and reduced kidney damage in P-Rex1-deficient mice. We conclude that P-Rex1 serves distinct functions in LFA-1 and Mac-1 activation.
Collapse
|
47
|
Khoo P, Allan K, Willoughby L, Brumby AM, Richardson HE. In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1-Rok-Myosin-II and JNK signalling. Dis Model Mech 2013; 6:661-78. [PMID: 23324326 PMCID: PMC3634650 DOI: 10.1242/dmm.010066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Ras oncogene contributes to ≈ 30% of human cancers, but alone is not sufficient for tumorigenesis. In a Drosophila screen for oncogenes that cooperate with an activated allele of Ras (Ras(ACT)) to promote tissue overgrowth and invasion, we identified the GTP exchange factor RhoGEF2, an activator of Rho-family signalling. Here, we show that RhoGEF2 also cooperates with an activated allele of a downstream effector of Ras, Raf (Raf(GOF)). We dissect the downstream pathways through which RhoGEF2 cooperates with Ras(ACT) (and Raf(GOF)), and show that RhoGEF2 requires Rho1, but not Rac, for tumorigenesis. Furthermore, of the Rho1 effectors, we show that RhoGEF2 + Ras (Raf)-mediated tumorigenesis requires the Rho kinase (Rok)-Myosin-II pathway, but not Diaphanous, Lim kinase or protein kinase N. The Rho1-Rok-Myosin-II pathway leads to the activation of Jun kinase (JNK), in cooperation with Ras(ACT). Moreover, we show that activation of Rok or Myosin II, using constitutively active transgenes, is sufficient for cooperative tumorigenesis with Ras(ACT), and together with Ras(ACT) leads to strong activation of JNK. Our results show that Rok-Myosin-II activity is necessary and sufficient for Ras-mediated tumorigenesis. Our observation that activation of Myosin II, which regulates Filamentous actin (F-actin) contractility without affecting F-actin levels, cooperates with Ras(ACT) to promote JNK activation and tumorigenesis, suggests that increased cell contractility is a key factor in tumorigenesis. Furthermore, we show that signalling via the Tumour necrosis factor (TNF; also known as Egr)-ligand-JNK pathway is most likely the predominant pathway that activates JNK upon Rok activation. Overall, our analysis highlights the need for further analysis of the Rok-Myosin-II pathway in cooperation with Ras in human cancers.
Collapse
Affiliation(s)
- Peytee Khoo
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
48
|
Denholm B. Shaping up for action: the path to physiological maturation in the renal tubules of Drosophila. Organogenesis 2013; 9:40-54. [PMID: 23445869 DOI: 10.4161/org.24107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Malpighian tubule is the main organ for excretion and osmoregulation in most insects. During a short period of embryonic development the tubules of Drosophila are shaped, undergo differentiation and become precisely positioned in the body cavity, so they become fully functional at the time of larval hatching a few hours later. In this review I explore three developmental events on the path to physiological maturation. First, I examine the molecular and cellular mechanisms that generate organ shape, focusing on the process of cell intercalation that drives tubule elongation, the roles of the cytoskeleton, the extracellular matrix and how intercalation is coordinated at the tissue level. Second, I look at the genetic networks that control the physiological differentiation of tubule cells and consider how distinctive physiological domains in the tubule are patterned. Finally, I explore how the organ is positioned within the body cavity and consider the relationship between organ position and function.
Collapse
Affiliation(s)
- Barry Denholm
- Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
49
|
Rodriguez-Mesa E, Abreu-Blanco MT, Rosales-Nieves AE, Parkhurst SM. Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins. Dev Dyn 2012; 241:608-26. [PMID: 22275148 DOI: 10.1002/dvdy.23742] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. RESULTS We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. CONCLUSIONS All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics.
Collapse
Affiliation(s)
- Evelyn Rodriguez-Mesa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
50
|
Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 2011; 22:61-81. [PMID: 22119497 DOI: 10.1016/j.tcb.2011.10.001] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/28/2011] [Accepted: 10/13/2011] [Indexed: 11/21/2022]
Abstract
Cells are active materials; they can change shape using internal energy to build contractile networks of actin filaments and myosin motors. Contractility of the actomyosin cortex is tightly regulated in space and time to orchestrate cell shape changes. Conserved biochemical pathways regulate actomyosin networks in subcellular domains which drive cell shape changes. Actomyosin networks display complex dynamics, such as flows and pulses, which participate in myosin distribution and provide a more realistic description of the spatial distribution and evolution of forces during morphogenesis. Such dynamics are influenced by the mechanical properties of actomyosin networks. Moreover, actomyosin can self-organize and respond to mechanical stimuli through multiple types of biomechanical feedback. In this review we propose a framework encapsulating spatiotemporal regulation of contractility from established pathways with the dynamics and mechanics of actomyosin networks. Through the comparison of cytokinesis, cell migration and epithelial morphogenesis, we delineate emergent properties of contractile activity, including self-organization, adaptability and robustness.
Collapse
|