1
|
Kay RR, Weijer CJ. Jeffrey G. Williams (1948-2022): a pioneer molecular biologist in development. Development 2022. [DOI: 10.1242/dev.201254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Robert R. Kay
- MRC Laboratory of Molecular Biology 1 , Francis Crick Avenue, Cambridge, CB1 0QH , UK
| | - Cornelis J. Weijer
- School of Life Sciences, University of Dundee 2 , Dowstreet, Dundee, DD1 5EH , UK
| |
Collapse
|
2
|
Kin K, Chen ZH, Forbes G, Schaap P. Evolution of a novel cell type in Dictyostelia required gene duplication of a cudA-like transcription factor. Curr Biol 2022; 32:428-437.e4. [PMID: 34883046 PMCID: PMC8808424 DOI: 10.1016/j.cub.2021.11.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 10/31/2022]
Abstract
The evolution of novel cell types has been proposed to result from duplication of gene regulatory networks, but proven examples are rare. In addition to stalk cells and spores that make up the fruiting bodies of three major groups of Dictyostelia, those in group 4 additionally evolved basal disc and cup cells that respectively anchor the stalk to the substratum and the spore mass to the stalk. We noted a putative group-4-specific duplication of a cudA-like transcription factor (TF) in a comparative analysis of group-representative genomes. Using increased taxon sampling, we here confirmed that this TF, cdl1, duplicated into cdl1a and cdl1b in the common ancestor to group 4. cdl1a, but not cdl1b, showed signatures of positive selection, indicative of functional innovation. Deletion of cdl1a in Dictyostelium discoideum resulted in fruiting bodies with sagging spore heads that lacked the supporting cup cells and expression of cup-specific genes. Deletion of cdl1b resulted in thinner fruiting body stalks, while a cdl1b-cdl1a- double knockout showed more severe stalk defects, suggesting an ancestral role of cdl1 in stalk formation. This was confirmed in a closely related non-group 4 species, Polysphondylium violaceum, where cdl1 knockout caused defective stalk formation. These data indicate that the group-specific duplication of cdl1 and subsequent diversification of cdl1a played a pivotal role in the evolution of a novel somatic cell type in group 4 Dictyostelia.
Collapse
Affiliation(s)
- Koryu Kin
- University of Dundee, School of Life Sciences, Dow Street, Dundee DD1 5EH, UK; Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Zhi-Hui Chen
- University of Dundee, School of Life Sciences, Dow Street, Dundee DD1 5EH, UK
| | - Gillian Forbes
- University of Dundee, School of Life Sciences, Dow Street, Dundee DD1 5EH, UK
| | - Pauline Schaap
- University of Dundee, School of Life Sciences, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
3
|
Yamashita K, Iriki H, Kamimura Y, Muramoto T. CRISPR Toolbox for Genome Editing in Dictyostelium. Front Cell Dev Biol 2021; 9:721630. [PMID: 34485304 PMCID: PMC8416318 DOI: 10.3389/fcell.2021.721630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
The development of new techniques to create gene knockouts and knock-ins is essential for successful investigation of gene functions and elucidation of the causes of diseases and their associated fundamental cellular processes. In the biomedical model organism Dictyostelium discoideum, the methodology for gene targeting with homologous recombination to generate mutants is well-established. Recently, we have applied CRISPR/Cas9-mediated approaches in Dictyostelium, allowing the rapid generation of mutants by transiently expressing sgRNA and Cas9 using an all-in-one vector. CRISPR/Cas9 techniques not only provide an alternative to homologous recombination-based gene knockouts but also enable the creation of mutants that were technically unfeasible previously. Herein, we provide a detailed protocol for the CRISPR/Cas9-based method in Dictyostelium. We also describe new tools, including double knockouts using a single CRISPR vector, drug-inducible knockouts, and gene knockdown using CRISPR interference (CRISPRi). We demonstrate the use of these tools for some candidate genes. Our data indicate that more suitable mutants can be rapidly generated using CRISPR/Cas9-based techniques to study gene function in Dictyostelium.
Collapse
Affiliation(s)
- Kensuke Yamashita
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Hoshie Iriki
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| |
Collapse
|
4
|
Yamada Y, Schaap P. Cyclic AMP induction of Dictyostelium prespore gene expression requires autophagy. Dev Biol 2019; 452:114-126. [PMID: 31051160 PMCID: PMC6598861 DOI: 10.1016/j.ydbio.2019.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 12/27/2022]
Abstract
Dictyostelium discoideum amoebas display colonial multicellularity where starving amoebas aggregate to form migrating slugs and fruiting bodies consisting of spores and three supporting cell types. To resolve the cell signalling mechanism that control sporulation, we use insertional mutagenesis of amoebas transformed with fusion constructs of spore genes and red fluorescent protein. We identified the defective gene in a mutant lacking spore gene expression as the autophagy gene Atg7. Directed knock-out of atg7 and of autophagy genes like atg5 and atg9 yielded a similar phenotype, with lack of viable spores and excessive differentiation of stalk cells. The atg7-, atg5- and atg9- cells were specifically defective in cAMP induction of prespore genes, but showed enhanced cAMP stimulation of prestalk genes at the same developmental stage. The lack of prespore gene induction in the autophagy mutants was not due to deleterious effects of loss of autophagy on known components of the cAMP pathway, such as cAMP receptors and their cAMP-induced phosphorylation and internalization, PKA and the transcription factors SpaA and GbfA, or to lack of NH3 production by proteolysis, which was previously suggested to stimulate the spore pathway. Our continued mutagenesis approach is the most likely to yield the intriguing link between autophagy and prespore gene induction.
Collapse
Affiliation(s)
- Yoko Yamada
- School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, DD15EH, Dundee, UK.
| |
Collapse
|
5
|
Yamada Y, Cassidy A, Schaap P. The transcription factor Spores Absent A is a PKA dependent inducer of Dictyostelium sporulation. Sci Rep 2018; 8:6643. [PMID: 29704004 PMCID: PMC5923282 DOI: 10.1038/s41598-018-24915-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
Sporulation in Dictyostelium fruiting bodies evolved from amoebozoan encystation with both being induced by cAMP acting on PKA, but with downstream components still being unknown. Using tagged mutagenesis to find missing pathway components, we identified a sporeless mutant defective in a nuclear protein, SpaA. Expression of prespore genes was strongly reduced in spaA- cells, while expression of many spore stage genes was absent. Chromatin immunoprecipitation (ChIP) of a SpaA-YFP gene fusion showed that (pre)spore gene promoters bind directly to SpaA, identifying SpaA as a transcriptional regulator. SpaA dependent spore gene expression required PKA in vivo and was stimulated in vitro by the membrane-permeant PKA agonist 8Br-cAMP. The PKA agonist also promoted SpaA binding to (pre)spore promoters, placing SpaA downstream of PKA. Sequencing of SpaA-YFP ChIPed DNA fragments revealed that SpaA binds at least 117 (pre)spore promoters, including those of other transcription factors that activate some spore genes. These factors are not in turn required for spaA expression, identifying SpaA as the major trancriptional inducer of sporulation.
Collapse
Affiliation(s)
- Yoko Yamada
- School of Life Sciences, University of Dundee, Dundee, DD15EH, Angus, UK
| | - Andrew Cassidy
- Tayside Centre for Genomic Analysis, University of Dundee, Dundee, DD19SY, Angus, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, DD15EH, Angus, UK.
| |
Collapse
|
6
|
Saga Y, Inamura T, Shimada N, Kawata T. Regulation ofecmFgene expression and genetic hierarchy among STATa, CudA, and MybC on several prestalk A-specific gene expressions inDictyostelium. Dev Growth Differ 2016; 58:383-99. [DOI: 10.1111/dgd.12285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Yukika Saga
- Department of Biology; Faculty of Science; Toho University; Funabashi Chiba 274-8510 Japan
| | - Tomoka Inamura
- Department of Biology; Faculty of Science; Toho University; Funabashi Chiba 274-8510 Japan
| | - Nao Shimada
- Department of Biology; Faculty of Science; Toho University; Funabashi Chiba 274-8510 Japan
| | - Takefumi Kawata
- Department of Biology; Faculty of Science; Toho University; Funabashi Chiba 274-8510 Japan
| |
Collapse
|
7
|
Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martínez-Gómez P. Prunus transcription factors: breeding perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:443. [PMID: 26124770 PMCID: PMC4464204 DOI: 10.3389/fpls.2015.00443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/29/2015] [Indexed: 05/18/2023]
Abstract
Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.
Collapse
Affiliation(s)
- Valmor J. Bianchi
- Department of Plant Physiology, Instituto de Biologia, Universidade Federal de PelotasPelotas-RS, Brazil
| | - Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | | | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA) - Centro di ricerca per la frutticolturaRoma, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, and Environment (DAFNAE). University of PaduaPadova, Italy
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
8
|
Glöckner G, Noegel AA. Comparative genomics in the Amoebozoa clade. Biol Rev Camb Philos Soc 2012; 88:215-25. [PMID: 23134060 DOI: 10.1111/j.1469-185x.2012.00248.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/25/2012] [Accepted: 10/05/2012] [Indexed: 11/30/2022]
Abstract
Amoeboid life forms can be found throughout the evolutionary tree. The greatest proportion of these life forms is found in the Amoebozoa clade, one of the six major eukaryote evolutionary branches. Despite its common origin this clade exhibits a wide diversity of lifestyles including free-living and parasitic species and species with multicellular and multinucleate life stages. In this group, development, cooperation, and social behaviour can be studied in addition to traits common to unicellular organisms. To date, only a few Amoebozoa genomes have been sequenced completely, however a number of expressed sequence tags (ESTs) and complete and draft genomes have become available recently for several species that represent some of the major evolutionary lineages in this clade. This resource allows us to compare and analyse the evolutionary history and fate of branch-specific genes if properly exploited. Despite the large evolutionary time scale since the emergence of the major groups the genomic organization in Amoebozoa has retained common features. The number of Amoebozoa-specific genetic inventions seems to be rather small. The emergence of subgroups is accompanied by gene and domain losses and acquisitions of bacterial gene material. The sophisticated developmental cycles of Myxogastria and Dictyosteliida likely have a common origin and are deeply rooted in amoebozoan evolution. In this review we describe initial approaches to comparative genomics in Amoebozoa, summarize recent findings, and identify goals for further studies.
Collapse
Affiliation(s)
- Gernot Glöckner
- Institute for Freshwater Ecology and Inland Fisheries, IGB, Müggelseedamm 301, Berlin, D-12587, Germany.
| | | |
Collapse
|
9
|
Transcriptional repression by a bZIP protein regulates Dictyostelium prespore differentiation. PLoS One 2012; 7:e29895. [PMID: 22253818 PMCID: PMC3253789 DOI: 10.1371/journal.pone.0029895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 12/08/2011] [Indexed: 11/29/2022] Open
Abstract
In response to the signaling polyketide DIF-1 DimB directly activates transcription of the ecmB gene in pstB cells; a subset of the prestalk cells that are the precursors of the basal disc. We show that the promoter of pspA, a prespore-specific gene, also contains a DimB binding site. Mutation of this site causes ectopic expression in the prestalk region and ChIP analysis shows that DIF-1 induces binding of DimB to the pspA promoter. DIF-1 represses pspA gene expression in a suspension cell assay but this repression is abrogated in a dimB null strain. These results suggest a coupled control mechanism, whereby the same DIF-DimB signaling pathway that directly activates ecmB gene expression directly represses pspA gene expression.
Collapse
|
10
|
Abstract
Signal transducers and activators of transcription (STAT) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. These proteins are components of JAK/STAT signal transduction pathways, which regulate immune responses, cell fate, proliferation, cell migration, and programmed cell death in multicellular organisms. The cellular slime mould, Dictyostelium discoideum, is the simplest multicellular organism using molecules homologous to STATs, Dd-STATa-d. The Dd-STATa null mutant displays delayed aggregation, no phototaxis and fails culmination. Here, the functions of Dictyostelium STATs during development and their associated signaling molecules are discussed.
Collapse
Affiliation(s)
- Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi 274-8510, Japan.
| |
Collapse
|
11
|
Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011; 12:R20. [PMID: 21356102 PMCID: PMC3188802 DOI: 10.1186/gb-2011-12-2-r20] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/09/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022] Open
Abstract
Background The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. Results We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. Conclusions The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
Collapse
Affiliation(s)
- Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Characterization of the Dictyostelium homolog of chromatin binding protein DET1 suggests a conserved pathway regulating cell type specification and developmental plasticity. EUKARYOTIC CELL 2010; 10:352-62. [PMID: 21193547 DOI: 10.1128/ec.00196-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DET1 (De-etiolated 1) is a chromatin binding protein involved in developmental regulation in both plants and animals. DET1 is largely restricted to multicellular eukaryotes, and here we report the characterization of a DET1 homolog from the social amoeba Dictyostelium discoideum. As in other species, Dictyostelium DET1 is nuclear localized. In contrast to other species, where it is an essential protein, loss of DET1 is nonlethal in Dictyostelium, although viability is significantly reduced. The phenotype of the det1(-) mutant is highly pleiotropic and results in a large degree of heterogeneity in developmental parameters. Loss of DET1 results in delayed and abnormal development with enlarged aggregation territories. Mutant slugs displayed cell type patterning with a bias toward the prestalk pathway. A number of DET1-interacting proteins are conserved in Dictyostelium, and the apparently conserved role of DET1 in regulatory pathways involving the bZIP transcription factors DimB, c-Jun, and HY5 suggests a highly conserved mechanism regulating development in multicellular eukaryotes. While the mechanism by which DET1 functions is unclear, it appears that it has a key role in regulation of developmental plasticity and integration of information on environmental conditions into the developmental program of an organism.
Collapse
|
13
|
Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 2010; 28:1241-1254. [PMID: 21087945 DOI: 10.1093/molbev/msq309] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How animals (metazoans) originated from their single-celled ancestors remains a major question in biology. As transcriptional regulation is crucial to animal development, deciphering the early evolution of associated transcription factors (TFs) is critical to understanding metazoan origins. In this study, we uncovered the repertoire of 17 metazoan TFs in the amoeboid holozoan Capsaspora owczarzaki, a representative of a unicellular lineage that is closely related to choanoflagellates and metazoans. Phylogenetic and comparative genomic analyses with the broadest possible taxonomic sampling allowed us to formulate new hypotheses regarding the origin and evolution of developmental metazoan TFs. We show that the complexity of the TF repertoire in C. owczarzaki is strikingly high, pushing back further the origin of some TFs formerly thought to be metazoan specific, such as T-box or Runx. Nonetheless, TF families whose beginnings antedate the origin of the animal kingdom, such as homeodomain or basic helix-loop-helix, underwent significant expansion and diversification along metazoan and eumetazoan stems.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - Alex de Mendoza
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - B Franz Lang
- Department of Biochemistry, Université de Montréal, H3C 3J7 Montréal, Canada
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Iñaki Ruiz-Trillo
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain.,Institució Catalana per a la Recerca i Estudis Avançats (ICREA); Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
14
|
Pearson RJ, Singh U. Approaches to characterizing Entamoeba histolytica transcriptional regulation. Cell Microbiol 2010; 12:1681-90. [DOI: 10.1111/j.1462-5822.2010.01524.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yamada Y, Minamisawa H, Fukuzawa M, Kawata T, Oohata AA. Prespore cell inducing factor, psi factor, controls both prestalk and prespore gene expression in Dictyostelium development. Dev Growth Differ 2010; 52:377-83. [PMID: 20500764 DOI: 10.1111/j.1440-169x.2010.01177.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prespore cell-inducing (psi, psi) factor (PsiA), encoded by the psiA gene of Dictyostelium, is a secreted signal glycoprotein that induces prespore cell differentiation when added to monolayer cultures. In situ hybridization during normal development showed that the psiA gene is highly expressed in scattered cells at the mound stage and in prespore cells at the onset of culmination. The conventional prespore-cell marker genes, cotC and pspA, were expressed normally in psiA(-) and psiA overexpressing strains. Expressions of rnrB and cudA are repressed in the prestalk cells of a wild type slug to render prespore specific pattern. However, a promoter-reporter fusion gene, rnrB:lacZ, showed an ectopic expression in the prestalk cells of the psiA(-) strain while cudA(psp):lacZ did so in those of the psiA overexpressing strain. Overexpression of psiA delayed expression of the prestalk specific gene, ecmB, during development, while knocking out psiA promoted its expression. In addition, overexpression inhibited DIF-1-induced stalk formation in monolayer cultures. Together with the known prespore inducing activity, the results indicate that PsiA regulates both prespore and prestalk/stalk cell differentiation. These results indicate that PsiA is also involved in prestalk cell differentiation.
Collapse
Affiliation(s)
- Yoko Yamada
- Biological Laboratory, Kansai Medical University, Hirakata, Osaka, Japan
| | | | | | | | | |
Collapse
|
16
|
Lang D, Weiche B, Timmerhaus G, Richardt S, Riaño-Pachón DM, Corrêa LGG, Reski R, Mueller-Roeber B, Rensing SA. Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biol Evol 2010; 2:488-503. [PMID: 20644220 PMCID: PMC2997552 DOI: 10.1093/gbe/evq032] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phylogenetic comparative (PC) analyses, we define the timeline of TAP loss, gain, and expansion among Viridiplantae and find that two major bursts of gain/expansion occurred, coinciding with the water-to-land transition and the radiation of flowering plants. For the first time, we provide PC proof for the long-standing hypothesis that TAPs are major driving forces behind the evolution of morphological complexity, the latter in Plantae being shaped significantly by polyploidization and subsequent biased paleolog retention. Principal component analysis incorporating the number of TAPs per genome provides an alternate and significant proxy for complexity, ideally suited for PC genomics. Our work lays the ground for further interrogation of the shaping of gene regulatory networks underlying the evolution of organism complexity.
Collapse
Affiliation(s)
- Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- These authors contributed equally to this work
| | - Benjamin Weiche
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Present address: Life & Medical Sciences Institute, Laboratory of Chemical Biology, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
- These authors contributed equally to this work
| | - Gerrit Timmerhaus
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Present address: Nofima Marin, Postboks 5010, 1432 Ås, Norway
| | - Sandra Richardt
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Present address: QIAGEN, Qiagen Strasse 1, 40724 Hilden, Germany
| | - Diego M. Riaño-Pachón
- GabiPD team, Bioinformatics Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Luiz G. G. Corrêa
- Department of Molecular Biology, Institute of Biochemistry and Biology, GoFORSYS, University of Potsdam, Potsdam-Golm, Germany
- Present address: Fermentas, Opelstraße 9, 68789 St. Leon-Rot, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Freiburg Initiative for Systems Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, GoFORSYS, University of Potsdam, Potsdam-Golm, Germany
- Cooperative Research Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan A. Rensing
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Freiburg Initiative for Systems Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Corresponding author: E-mail:
| |
Collapse
|
17
|
Barrantes I, Glockner G, Meyer S, Marwan W. Transcriptomic changes arising during light-induced sporulation in Physarum polycephalum. BMC Genomics 2010; 11:115. [PMID: 20163733 PMCID: PMC2837032 DOI: 10.1186/1471-2164-11-115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/17/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Physarum polycephalum is a free-living amoebozoan protist displaying a complex life cycle, including alternation between single- and multinucleate stages through sporulation, a simple form of cell differentiation. Sporulation in Physarum can be experimentally induced by several external factors, and Physarum displays many biochemical features typical for metazoan cells, including metazoan-type signaling pathways, which makes this organism a model to study cell cycle, cell differentiation and cellular reprogramming. RESULTS In order to identify the genes associated to the light-induced sporulation in Physarum, especially those related to signal transduction, we isolated RNA before and after photoinduction from sporulation- competent cells, and used these RNAs to synthesize cDNAs, which were then analyzed using the 454 sequencing technology. We obtained 16,669 cDNAs that were annotated at every computational level. 13,169 transcripts included hit count data, from which 2,772 displayed significant differential expression (upregulated: 1,623; downregulated: 1,149). Transcripts with valid annotations and significant differential expression were later integrated into putative networks using interaction information from orthologs. CONCLUSIONS Gene ontology analysis suggested that most significantly downregulated genes are linked to DNA repair, cell division, inhibition of cell migration, and calcium release, while highly upregulated genes were involved in cell death, cell polarization, maintenance of integrity, and differentiation. In addition, cell death- associated transcripts were overrepresented between the upregulated transcripts. These changes are associated to a network of actin-binding proteins encoded by genes that are differentially regulated before and after light induction.
Collapse
Affiliation(s)
- Israel Barrantes
- Max Planck Institute for Dynamics of Complex Technical Systems and Magdeburg Centre for Systems Biology (MaCS), Otto von Guericke University, Magdeburg, Germany
| | | | | | | |
Collapse
|
18
|
WANG HONGYU, WILLIAMS JEFFREYG. Identification of a target for CudA, the transcription factor which directs formation of the Dictyostelium tip organiser. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:161-5. [PMID: 19757394 PMCID: PMC3672975 DOI: 10.1387/ijdb.082723hw] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The tip of the Dictyostelium slug functions much like an embryonic organiser; when grafted onto the flank of a recipient slug, it recruits a mass of prespore cells and leads them away as part of a secondary slug. CudA is a nuclear protein which is expressed in prespore cells where it acts as a specific transcription factor. CudA is also expressed in an anteriorly located group of cells, the tip-organiser, that is believed to constitute the functional tip. We identify an expansin-like gene, expl7, that is expressed within the tip-organiser region and which is not expressed in a cudA null strain. The expl7 promoter contains a region that binds to CudA in vitro and this region is necessary for expression in the tip-organiser. These results provide an end-point for a previously defined signal transduction pathway in which regionalized expression of the ACA adenylyl cyclase within the tip-organiser leads to localised cAMP-induced activation of STATa and consequent binding of STATa to the cudA promoter. STATa then induces expression of cudA and cudA directs the transcription of target genes such as expl7.
Collapse
Affiliation(s)
- HONG-YU WANG
- College of Life Sciences, University of Dundee, Dundee, U.K
| | | |
Collapse
|
19
|
WANG HONGYU, WILLIAMS JEFFREYG. Synergy between two transcription factors directs gene expression in Dictyostelium tip-organiser cells. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:1301-7. [PMID: 20711998 PMCID: PMC3042209 DOI: 10.1387/ijdb.103141hw] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
cotC requires the transcription factor CudA for its expression in the posterior, prespore cells of the slug, while the expL7 gene requires CudA for its expression in the anterior, tip-organiser region. In order to identify additional transcription factors that might mediate tip-organiser specific expression, we performed affinity chromatography on slug nuclear extracts. The affinity matrix bore cap-site distal sequences from region A of the expL7 promoter; an essential region located upstream of the CudA binding domain. One of the proteins purified was G-box binding factor (GBF), a zinc finger transcription factor which binds to G-rich elements, known as G boxes, that are present in the promoters of many developmental genes, including cotC. Previous work identified an essential sequence motif within region A and we show that this element is a G box, that binds recombinant GBF. Moreover, a G box from within the cotC promoter can substitute for region A of expL7 in directing tip-organiser specific expression of expL7. Thus the same two transcription factors, CudA and GBF, seem to co-operate to direct both tip-organiser and prespore gene expression. How then is specificity achieved? Replacing a CudA binding region in the cotC promoter with the CudA binding domain from expL7 strongly represses cotC promoter activity. Hence we suggest that differences in the topology of the multiple CudA half- sites contained within the two different CudA binding regions, coupled with differences in the signalling environment between tip-organiser cells and prespore cells, ensure correct expL7 expression.
Collapse
Affiliation(s)
- HONG YU WANG
- College of Life Sciences, University of Dundee, U.K
| | | |
Collapse
|