1
|
Gao T, Liu Y, Li J, Zhang Y, Wu B. Function of manchette and intra-manchette transport in spermatogenesis and male fertility. Cell Commun Signal 2025; 23:250. [PMID: 40442757 PMCID: PMC12123824 DOI: 10.1186/s12964-025-02213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
The manchette is a transient skirt-like structure consisting of microtubules (MTs) and filamentous actin (F-actin) surrounding the elongating sperm head during spermiogenesis. It is pivotal in sperm head shaping controlled by the acrosome-acroplaxome-manchette complex, acrosome formation, and flagellar assembly by microtubular-based protein delivery. Defects in the manchette frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying manchette function and its role in male infertility remain poorly understood. In this review, we systematically described the assembly and disassembly of the manchette, intra-manchette transport (IMT) and its regulatory model, the function and mechanism of manchette and IMT in regulating sperm head shaping and flagellar assembly during spermatogenesis; summarized the research progress of manchette-related genes related to male infertility; and listed the manchette-related proteins in knockout mouse models and clinical cases, which provide the theoretical basis for an in-depth understanding of the molecular mechanism of manchette involved in spermatogenesis and male fertility for understanding the potentially developing treatments for infertility and reproductive disorders.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Li
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yvxia Zhang
- The First People's Hospital of Kunshan, Suzhou, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
He J, Lin X, Tan C, Li Y, Su L, Lin G, Tan YQ, Tu C. Molecular insights into sperm head shaping and its role in human male fertility. Hum Reprod Update 2025:dmaf003. [PMID: 40037590 DOI: 10.1093/humupd/dmaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Sperm head shaping, controlled by the acrosome-acroplaxome-manchette complex, represents a significant morphological change during spermiogenesis and involves numerous proteins expressed in a spatially and temporally specific manner. Defects in sperm head shaping frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying sperm head shaping, and its role in male infertility, remain poorly understood. OBJECTIVE AND RATIONALE This review aims to summarize the mechanism underlying sperm head shaping, reveal the relationship between gene defects associated with sperm head shaping and male infertility in humans and mice, and explore potential clinical improvements in ICSI treatment. SEARCH METHODS We searched the PubMed database for articles published in English using the keyword 'sperm head shaping' in combination with the following terms: 'acrosome formation', 'proacrosomal vesicles (PAVs)', 'manchette', 'perinuclear theca (PT)', 'chromatin condensation', 'linker of nucleoskeleton and cytoskeleton (LINC) complex', 'histone-to-protamine (HTP) transition', 'male infertility', 'ICSI', and 'artificial oocyte activation (AOA)'. The selected publications until 1 August 2024 were critically summarized, integrated, and thoroughly discussed, and the irrelevant literature were excluded. OUTCOMES A total of 6823 records were retrieved. After careful screening, integrating relevant literature, and excluding articles unrelated to the topic of this review, 240 articles were ultimately included in the analysis. Firstly, we reviewed the important molecular events and structures integral to sperm head shaping, including PAV formation to fusion, acrosome attachment to the nucleus, structure and function of the manchette, PT, chromatin condensation, and HTP transition. Then, we set forth human male infertility associated with sperm head shaping and identified genes related to sperm head shaping resulting in teratozoospermia concomitant with oligozoospermia and asthenozoospermia. Finally, we summarized the outcomes of ICSI in cases of male infertility resulting from mutations in the genes associated with sperm head shaping, as well as the ICSI outcomes through AOA for infertile men with impaired sperm head. WIDER IMPLICATIONS Understanding the molecular mechanisms of sperm head shaping and its relationship with human male infertility holds profound clinical implications, which may contribute to risk prediction, genetic diagnosis, and the potential treatment of human male infertility.
Collapse
Affiliation(s)
- Jiaxin He
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xinle Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Li
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lilan Su
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Xiangya Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| |
Collapse
|
3
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. Bovine Spermatogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:65-136. [PMID: 40272587 DOI: 10.1007/978-3-031-70126-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The intent of this chapter is to provide a morphological foundation in the normal cellular process of bovine gamete development so that abnormalities occurring are recognizable. The knowledge gained here is essential to begin to understand the significance of many of the common bull sperm abnormalities encountered in the clinics. Spermatogenesis is divided into three phases (i. e., Mitosis, Meiosis and Spermiogenesis) all happening in the seminiferous epithelium. The 'Cycle of the Bovine Seminiferous Epithelium' is explained in relation to these phases. Information is provided as to how to identify the stages of the bovine cycle and the steps of spermiogenesis at the histological and ultrastructural levels in preparation to recognize where and when in the cycle a spermatid abnormality arises. Spermiogenesis, the last phase of spermatogenesis, is the most revealing phase to recognize gamete abnormalities as this is where spermatid head and tail differentiation take place and spermatid compartments materialize. The formation of the nucleus, acrosome, manchette, perinuclear theca, axoneme, outer dense fibers, fibrous sheath, connecting piece and mitochondrial sheath occur during this phase and are evaluated. The origins and assembly of a number of essential proteins compartmentalizing the sperm head and tail as well as defects arising during spermiogenesis are reviewed.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
4
|
Netherton JK, Ogle RA, Robinson BR, Molloy M, Krisp C, Velkov T, Casagranda F, Dominado N, Silva Balbin Villaverde AI, Zhang XD, Hime GR, Baker MA. The role of HnrnpF/H as a driver of oligoteratozoospermia. iScience 2024; 27:110198. [PMID: 39092172 PMCID: PMC11292545 DOI: 10.1016/j.isci.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Male subfertility or infertility is a common condition often characterized by men producing a low number of sperm with poor quality. To gain insight into this condition, we performed a quantitative proteomic analysis of semen samples obtained from infertile and fertile men. At least 6 proteins showed significant differences in regulation of alternatively spliced isoforms. To investigate this link between aberrant alternative splicing and production of poor-quality spermatozoa, we overexpressed the hnrnpH/F-orthologue Glorund (Glo) in Drosophila, which was also found to be abundant in poor quality human sperm. Transgenic animals produced low numbers of morphologically defective spermatozoa and aberrant formation of the "dense body," an organelle akin to the mammalian manchette. Furthermore, fertility trials demonstrated that transgenic flies were either completely infertile or highly subfertile. These findings suggest that dysregulation of hnrnpH/F is likely to result in the production of low-quality semen, leading to subfertility or infertility in men.
Collapse
Affiliation(s)
- Jacob K. Netherton
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rachel A. Ogle
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Benjamin R. Robinson
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A. Baker
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
5
|
Kumar G, Gurao A, Vasisth R, Chitkara M, Singh R, Ranganatha Sriranga K, Shivanand Dige M, Mukesh M, Singh P, Singh Kataria R. Genome-wide 5'-C-phosphate-G-3' methylation patterns reveal the effect of heat stress on the altered semen quality in Bubalus bubalis. Gene 2024; 906:148233. [PMID: 38331117 DOI: 10.1016/j.gene.2024.148233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Semen production and quality are closely correlated with different environmental factors in bovines, particularly for the buffalo (Bubalus bubalis) bulls reared under tropical and sub-tropical conditions. Factors including DNA methylation patterns, an intricate process in sperm cells, have an impact on the production of quality semen in buffalo bulls under abiotic stress conditions. The present study was conducted to identify DNA methylome signatures for semen quality in Murrah buffalo bulls, acclaimed as a major dairy breed globally, under summer heat stress. Based on semen quality parameters that significantly varied between the two groups over the seasons, the breeding bulls were classified into seasonally affected (SA = 6) and seasonally non-affected (SNA = 6) categories. DNA was isolated from purified sperm cells and sequenced using the RRBS (Reduced Representation Bisulfite Sequencing) technique for genome-wide methylome data generation. During the hot summer months, the physiological parameters such as scrotal surface temperature, rectal temperature, and respiration rate for both the SA and SNA bulls were significantly higher in the afternoon than in the morning. Whereas, the global CpG% of SA bulls was positively correlated with the afternoon's scrotal surface and rectal temperature. The RRBS results conveyed differentially methylated cytosines in the promoter region of the genes encoding the channels responsible for Ca2+ exchange, NPTN, Ca2+ activated chloride channels, ANO1, and a few structure-related units such as septins (SEPT4 and SEPT6), SPATA, etc. Additionally, the hypermethylated set of genes in SA was significantly enriched for pathways such as the FOXO signaling pathway and oocyte meiosis. The methylation patterns suggest promoter methylation in the genes regulating the sperm structure as well as surface transporters, which could contribute to the reduced semen quality in the Murrah buffalo bulls during the season-related heat stress.
Collapse
Affiliation(s)
- Gautam Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Rashi Vasisth
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Meenakshi Chitkara
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Ravinder Singh
- ICAR-National Dairy Research Institute, Karnal (Haryana), India
| | | | | | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Pawan Singh
- ICAR-National Dairy Research Institute, Karnal (Haryana), India
| | | |
Collapse
|
6
|
Fu L, Wu Q, Fu J. Exploring the biological roles of DHX36, a DNA/RNA G-quadruplex helicase, highlights functions in male infertility: A comprehensive review. Int J Biol Macromol 2024; 268:131811. [PMID: 38677694 DOI: 10.1016/j.ijbiomac.2024.131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
It is estimated that 15 % of couples at reproductive age worldwide suffer from infertility, approximately 50 % of cases are caused by male factors. Significant progress has been made in the diagnosis and treatment of male infertility through assisted reproductive technology and molecular genetics methods. However, there is still inadequate research on the underlying mechanisms of gene regulation in the process of spermatogenesis. Guanine-quadruplexes (G4s) are a class of non-canonical secondary structures of nucleic acid commonly found in genomes and RNAs that play important roles in various biological processes. Interestingly, the DEAH-box helicase 36 (DHX36) displays high specificity for the G4s which can unwind both DNA G4s and RNA G4s enzymatically and is highly expressed in testis, thereby regulating multiple cellular functions including transcription, pre-mRNA splicing, translation, telomere maintenance, genomic stability, and RNA metabolism in development and male infertility. This review provides an overview of the roles of G4s and DHX36 in reproduction and development. We mainly focus on the potential role of DHX36 in male infertility. We also discuss possible future research directions regarding the mechanism of spermatogenesis mediated by DHX36 through G4s in spermatogenesis-related genes and provide new targets for gene therapy of male infertility.
Collapse
Affiliation(s)
- Li Fu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Junjiang Fu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
7
|
Shi H, Li QY, Li H, Wang HY, Fan CX, Dong QY, Pan BC, Ji ZL, Li JY. ROS-induced oxidative stress is a major contributor to sperm cryoinjury. Hum Reprod 2024; 39:310-325. [PMID: 38011909 DOI: 10.1093/humrep/dead250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
STUDY QUESTION What is the mechanism behind cryoinjury in human sperm, particularly concerning the interplay between reactive oxygen species (ROS) and autophagy, and how does it subsequently affect sperm fate? SUMMARY ANSWER The freeze-thaw operation induces oxidative stress by generating abundant ROS, which impairs sperm motility and activates autophagy, ultimately guiding the sperm toward programmed cell death such as apoptosis and necrosis, as well as triggering premature capacitation. WHAT IS KNOWN ALREADY Both ROS-induced oxidative stress and autophagy are thought to exert an influence on the quality of frozen-thawed sperm. STUDY DESIGN, SIZE, DURATION Overall, 84 semen specimens were collected from young healthy fertile males, with careful quality evaluation. The specimens were split into three groups to investigate the ROS-induced cryoinjury: normal control without any treatment, sperm treated with 0.5 mM hydrogen peroxide (H2O2) for 1 h, and sperm thawed following cryopreservation. Samples from 48 individuals underwent computer-assisted human sperm analysis (CASA) to evaluate sperm quality in response to the treatments. Semen samples from three donors were analyzed for changes in the sperm proteome after H2O2 treatment, and another set of samples from three donors were analyzed for changes following the freeze-thaw process. The other 30 samples were used for fluorescence-staining and western blotting. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm motility parameters, including progressive motility (PR %) and total motility (PR + NP %), were evaluated using the CASA system on a minimum of 200 spermatozoa. The proteomic profiles were determined with label-free mass spectrometry (MS/MS) and protein identification was performed via ion search against the NCBI human database. Subsequently, comprehensive bioinformatics was applied to detect significant proteomic changes and functional enrichment. Fluorescence-staining and western blot analyses were also conducted to confirm the proteomic changes on selected key proteins. The ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate labeling and the abundance of bioactive mitochondria was determined by evaluating the inner mitochondrial membrane potential (MMP) level. Molecular behaviors of sequestosome-1 (p62 or SQSTM1) and microtubule-associated proteins 1A/1B light chain 3 (LC3) were monitored to evaluate the state of apoptosis in human sperm. Fluorescent probes oxazole yellow (YO-PRO-1) and propidium iodide (PI) were utilized to monitor programmed cell death, namely apoptosis and necrosis. Additionally, gradient concentrations of antioxidant coenzyme Q10 (CoQ10) were introduced to suppress ROS impacts on sperm. MAIN RESULTS AND THE ROLE OF CHANCE The CASA analysis revealed a significant decrease in sperm motility for both the H2O2-treatment and freeze-thaw groups. Fluorescence staining showed that high ROS levels were produced in the treated sperm and the MMPs were largely reduced. The introduction of CoQ10 at concentrations of 20 and 30 μM resulted in a significant rescue of progressive motility (P < 0.05). The result suggested that excessive ROS could be the major cause of sperm motility impairment, likely by damaging mitochondrial energy generation. Autophagy was significantly activated in sperm when they were under oxidative stress, as evidenced by the upregulation of p62 and the increased conversion of LC3 as well as the upregulation of several autophagy-related proteins, such as charged multivesicular body protein 2a, mitochondrial import receptor subunit TOM22 homolog, and WD repeat domain phosphoinositide-interacting protein 2. Additionally, fluorescent staining indicated the occurrence of apoptosis and necrosis in both H2O2-treated sperm and post-thaw sperm. The cell death process can be suppressed when CoQ10 is introduced, which consolidates the view that ROS could be the major contributor to sperm cryoinjury. The freeze-thaw process could also initiate sperm premature capacitation, demonstrated by the prominent increase in tyrosine phosphorylated proteins, verified with anti-phosphotyrosine antibody and immunofluorescence assays. The upregulation of capacitation-related proteins, such as hyaluronidase 3 and Folate receptor alpha, supported this finding. LARGE SCALE DATA The data underlying this article are available in the article and its online supplementary material. LIMITATIONS, REASONS FOR CAUTION The semen samples were obtained exclusively from young, healthy, and fertile males with progressive motility exceeding 60%, which might overemphasize the positive effects while possibly neglecting the negative impacts of cryoinjury. Additionally, the H2O2 treatment conditions in this study may not precisely mimic the oxidative stress experienced by sperm after thawing from cryopreservation, potentially resulting in the omission of certain molecular alterations. WIDER IMPLICATIONS OF THE FINDINGS This study provides substantial proteomic data for a comprehensive and deeper understanding of the impact of cryopreservation on sperm quality. It will facilitate the design of optimal protocols for utilizing cryopreserved sperm to improve applications, such as ART, and help resolve various adverse situations caused by chemotherapy, radiotherapy, and surgery. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the Major Innovation Project of Research Institute of National Health Commission (#2022GJZD01-3) and the National Key R&D Program of China (#2018YFC1003600). All authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hui Shi
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Qian-Ying Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Li
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Hai-Yan Wang
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Chuan-Xi Fan
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Qiao-Yan Dong
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Bo-Chen Pan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jian-Yuan Li
- Institute of Science and Technology, National Health Commission, Beijing, China
| |
Collapse
|
8
|
Potgieter S, Eddy C, Badrinath A, Chukrallah L, Lo T, Mohanty G, Visconti PE, Snyder EM. ADAD1 is required for normal translation of nuclear pore and transport protein transcripts in spermatids of Mus musculus†. Biol Reprod 2023; 109:340-355. [PMID: 37399121 PMCID: PMC10502568 DOI: 10.1093/biolre/ioad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
ADAD1 is a testis-specific RNA-binding protein expressed in post-meiotic spermatids whose loss leads to defective sperm and male infertility. However, the drivers of the Adad1 phenotype remain unclear. Morphological and functional analysis of Adad1 mutant sperm showed defective DNA compaction, abnormal head shaping, and reduced motility. Mutant testes demonstrated minimal transcriptome changes; however, ribosome association of many transcripts was reduced, suggesting ADAD1 may be required for their translational activation. Further, immunofluorescence of proteins encoded by select transcripts showed delayed protein accumulation. Additional analyses demonstrated impaired subcellular localization of multiple proteins, suggesting protein transport is also abnormal in Adad1 mutants. To clarify the mechanism giving rise to this, the manchette, a protein transport microtubule network, and the LINC (linker of nucleoskeleton and cytoskeleton) complex, which connects the manchette to the nuclear lamin, were assessed across spermatid development. Proteins of both displayed delayed translation and/or localization in mutant spermatids implicating ADAD1 in their regulation, even in the absence of altered ribosome association. Finally, ADAD1's impact on the NPC (nuclear pore complex), a regulator of both the manchette and the LINC complex, was examined. Reduced ribosome association of NPC encoding transcripts and reduced NPC protein abundance along with abnormal localization in Adad1 mutants confirmed ADAD1's impact on translation is required for a NPC in post-meiotic germ cells. Together, these studies lead to a model whereby ADAD1's influence on nuclear transport leads to deregulation of the LINC complex and the manchette, ultimately generating the range of physiological defects observed in the Adad1 phenotype.
Collapse
Affiliation(s)
- Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Christopher Eddy
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Aditi Badrinath
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Lauren Chukrallah
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Toby Lo
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gayatri Mohanty
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Elizabeth M Snyder
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
9
|
Wojtczak A. Differentiation Disorders of Chara vulgaris Spermatids following Treatment with Propyzamide. Cells 2023; 12:cells12091268. [PMID: 37174667 PMCID: PMC10177507 DOI: 10.3390/cells12091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Microtubules are cytoskeletal cell elements that also build flagella and cilia. Moreover, these structures participate in spermatogenesis and form a microtubular manchette during spermiogenesis. The present study aims to assess the influence of propyzamide, a microtubule-disrupting agent, on alga Chara vulgaris spermatids during their differentiation by means of immunofluorescent and electron microscopy methods. Propyzamide blocks the functioning of the β-tubulin microtubule subunit, which results in the creation of a distorted shape of a sperm nucleus at some stages. Present ultrastructural studies confirm these changes. In nuclei, an altered chromatin arrangement and nuclear envelope fragmentation were observed in the research as a result of incorrect nucleus-cytoplasm transport behavior that disturbed the action of proteolytic enzymes and the chromatin remodeling process. In the cytoplasm, large autolytic vacuoles and the dilated endoplasmic reticulum (ER) system, as well as mitochondria, were revealed in the studies. In some spermatids, the arrangement of microtubules present in the manchette was disturbed and the structure was also fragmented. The observations made in the research at present show that, despite some differences in the manchette between Chara and mammals, and probably also in the alga under study, microtubules participate in the intramanchette transport (IMT) process, which is essential during spermatid differentiation. In the present study, the effect of propyzamide on Chara spermiogenesis is also presented for the first time; however, the role of microtubule-associated proteins in this process still needs to be elucidated in the literature.
Collapse
Affiliation(s)
- Agnieszka Wojtczak
- Faculty of Biology and Environmental Protection, Department of Cytophysiology, University of Lodz, 141/143 Pomorska, 90-236 Lodz, Poland
| |
Collapse
|
10
|
Abstract
In recent years, the incidence of teratospermia has been increasing, and it has become a very important factor leading to male infertility. The research on the molecular mechanism of teratospermia is also progressing rapidly. This article briefly summarizes the clinical incidence of teratozoospermia, and makes a retrospective summary of related studies reported in recent years. Specifically discussing the relationship between gene status and spermatozoa, the review aims to provide the basis for the genetic diagnosis and gene therapy of teratozoospermia.
Collapse
|
11
|
Wang X, Jiang C, Dai S, Shen G, Yang Y, Shen Y. Identification of nonfunctional SPATA20 causing acephalic spermatozoa syndrome in humans. Clin Genet 2023; 103:310-319. [PMID: 36415156 DOI: 10.1111/cge.14268] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Acephalic spermatozoa syndrome (ASS) is a rare and severe type of teratozoospermia characterized by the predominance of headless spermatozoa in the ejaculate. However, knowledge about the causative genes associated with ASS in humans is limited. Loss-of-function of SPATA20 has been suggested to result in the separation of the sperm head and flagellum in mice, whereas there have been no cases reporting SPATA20 variants leading to human male infertility. In this study, a nonsense mutation in SPATA20 (c.619C > T, p.Arg207*) was first identified in an ASS patient. Moreover, this variant contributed to the degradation of SPATA20 and was associated with decreased expression of SPATA6, which plays a vital role in the assembly of the sperm head-tail conjunction in humans. In addition, the infertility caused by loss-of-function mutation of SPATA20 might not be rescued by intracytoplasmic sperm injection (ICSI). Collectively, our findings suggested that SPATA20 might be required for sperm head-tail conjunction formation in humans, the nonfunction of which may lead to male infertility related to ASS. The discovery of the loss-of-function mutation in SPATA20 enriches the gene variant spectrum of human ASS, further contributing to improved diagnosis, genetic counseling and prognosis for male infertility.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Siyu Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gan Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yihong Yang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Freischel AR, Teer JK, Luddy K, Cunningham J, Artzy-Randrup Y, Epstein T, Tsai KY, Berglund A, Cleveland JL, Gillies RJ, Brown JS, Gatenby RA. Evolutionary Analysis of TCGA Data Using Over- and Under- Mutated Genes Identify Key Molecular Pathways and Cellular Functions in Lung Cancer Subtypes. Cancers (Basel) 2022; 15:18. [PMID: 36612014 PMCID: PMC9817988 DOI: 10.3390/cancers15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
We identify critical conserved and mutated genes through a theoretical model linking a gene’s fitness contribution to its observed mutational frequency in a clinical cohort. “Passenger” gene mutations do not alter fitness and have mutational frequencies determined by gene size and the mutation rate. Driver mutations, which increase fitness (and proliferation), are observed more frequently than expected. Non-synonymous mutations in essential genes reduce fitness and are eliminated by natural selection resulting in lower prevalence than expected. We apply this “evolutionary triage” principle to TCGA data from EGFR-mutant, KRAS-mutant, and NEK (non-EGFR/KRAS) lung adenocarcinomas. We find frequent overlap of evolutionarily selected non-synonymous gene mutations among the subtypes suggesting enrichment for adaptations to common local tissue selection forces. Overlap of conserved genes in the LUAD subtypes is rare suggesting negative evolutionary selection is strongly dependent on initiating mutational events during carcinogenesis. Highly expressed genes are more likely to be conserved and significant changes in expression (>20% increased/decreased) are common in genes with evolutionarily selected mutations but not in conserved genes. EGFR-mut cancers have fewer average mutations (89) than KRAS-mut (228) and NEK (313). Subtype-specific variation in conserved and mutated genes identify critical molecular components in cell signaling, extracellular matrix remodeling, and membrane transporters. These findings demonstrate subtype-specific patterns of co-adaptations between the defining driver mutation and somatically conserved genes as well as novel insights into epigenetic versus genetic contributions to cancer evolution.
Collapse
Affiliation(s)
- Audrey R. Freischel
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jamie K. Teer
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kimberly Luddy
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jessica Cunningham
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Yael Artzy-Randrup
- Departments of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Tamir Epstein
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kenneth Y. Tsai
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Departments of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anders Berglund
- Departments of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - John L. Cleveland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Robert J. Gillies
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Departments of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Diagnostic Imaging & Interventional Radiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Joel S. Brown
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Robert A. Gatenby
- Departments of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Diagnostic Imaging & Interventional Radiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Li Z, Lin Z, Ji S, Lai KP, Wan HT, Wong CKC, Li L. Perfluorooctanesulfonic acid exposure altered hypothalamic metabolism and disturbed male fecundity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156881. [PMID: 35753445 DOI: 10.1016/j.scitotenv.2022.156881] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have examined the effects of perfluorooctanesulfonic acid (PFOS) on disruption of the blood-testis barrier and spermatogenesis. Sertoli and Leydig cells were perturbed, resulting in a decrease in testosterone levels and sperm counts. However, the effects of PFOS on male fecundity are not limited to the testes. In this study, we demonstrated that oral PFOS exposure (1 μg/g BW and 5 μg/g BW) decreased the function of the Luteinizing hormone (LH)/Luteinizing hormone receptor (LHr) and decreased epididymal sperm motility. Consistently, testicular transcriptome analysis revealed that PFOS altered the expression of a cluster of genes associated with sperm motility and steroidogenesis. In mice exposed to PFOS, c-Fos immunostaining showed activation of the lateral septal nucleus (LS), paraventricular thalamus (PVT), locus coeruleus (LC), which are known to be related to anxiety-like behaviors. Metabolomic analyses of the hypothalamus revealed that exposure to PFOS perturbed the translation of proteins, as well as the biosynthesis of neurotransmitters and neuromodulators. Altogether, the activation of brain nuclei, shift of hypothalamic metabolome, and reduction of LH/LHr circuit resulted from PFOS exposure suggested the toxicant's systematic effects on male reproduction.
Collapse
Affiliation(s)
- Zijie Li
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR 999077, China; The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Ziyi Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Shuqin Ji
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Keng-Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 530022, China
| | - Hin-Ting Wan
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR 999077, China.
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China.
| |
Collapse
|
14
|
Localization Patterns of RAB3C Are Associated with Murine and Human Sperm Formation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101408. [PMID: 36295569 PMCID: PMC9606999 DOI: 10.3390/medicina58101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2022]
Abstract
Background and Objectives: Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of the cytoskeleton. Polymerization of SEPTs contributes to several critical cellular processes such as cytokinesis, cytoskeletal remodeling, and vesicle transportation. In our previous study, we found that SEPT14 mutations resulted in teratozoospermia with >87% sperm morphological defects. SEPT14 interactors were also identified through proteomic assays, and one of the peptides was mapped to RAB3B and RAB3C. Most studies on the RAB3 family have focused on RAB3A, which regulates the exocytosis of neurotransmitters and acrosome reactions. However, the general expression and patterns of the RAB3 family members during human spermatogenesis, and the association between RAB3 and teratozoospermia owing to a SEPT14 mutation, are largely unknown. Materials and Methods: Human sperm and murine male germ cells were collected in this study and immunofluorescence analysis was applied on the collected sperm. Results: In this study, we observed that the RAB3C transcripts were more abundant than those of RAB3A, 3B, and 3D in human testicular tissues. During human spermatogenesis, the RAB3C protein is mainly enriched in elongated spermatids, and RAB3B is undetectable. In mature human spermatozoa, RAB3C is concentrated in the postacrosomal region, neck, and midpiece. The RAB3C signals were delocalized within human spermatozoa harboring the SEPT14 mutation, and the decreased signals were accompanied by a defective head and tail, compared with the healthy controls. To determine whether RAB3C is involved in the morphological formation of the head and tail of the sperm, we separated murine testicular tissue and isolated elongated spermatids for further study. We found that RAB3C is particularly expressed in the manchette structure, which assists sperm head shaping at the spermatid head, and is also localized at the sperm tail. Conclusions: Based on these results, we suggest that the localization of RAB3C proteins in murine and human sperm is associated with SEPT14 mutation-induced morphological defects in sperm.
Collapse
|
15
|
Umer N, Phadke S, Shakeri F, Arévalo L, Lohanadan K, Kirfel G, Sylvester M, Buness A, Schorle H. PFN4 is required for manchette development and acrosome biogenesis during mouse spermiogenesis. Development 2022; 149:276289. [PMID: 35950913 PMCID: PMC9481974 DOI: 10.1242/dev.200499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Profilin 4 (Pfn4) is expressed during spermiogenesis and localizes to the acrosome-acroplaxome-manchette complex. Here, we generated PFN4-deficient mice, with sperm displaying severe impairment in manchette formation. Interestingly, HOOK1 staining suggests that the perinuclear ring is established; however, ARL3 staining is disrupted, suggesting that lack of PFN4 does not interfere with the formation of the perinuclear ring and initial localization of HOOK1, but impedes microtubular organization of the manchette. Furthermore, amorphous head shape and flagellar defects were detected, resulting in reduced sperm motility. Disrupted cis- and trans-Golgi networks and aberrant production of proacrosomal vesicles caused impaired acrosome biogenesis. Proteomic analysis showed that the proteins ARF3, SPECC1L and FKBP1, which are involved in Golgi membrane trafficking and PI3K/AKT pathway, are more abundant in Pfn4−/− testes. Levels of PI3K, AKT and mTOR were elevated, whereas AMPK level was reduced, consistent with inhibition of autophagy. This seems to result in blockage of autophagic flux, which could explain the failure in acrosome formation. In vitro fertilization demonstrated that PFN4-deficient sperm is capable of fertilizing zona-free oocytes, suggesting a potential treatment for PFN4-related human infertility. Summary: PFN4-deficient male mice exhibit impaired acrosome formation and malformation of the manchette, leading to amorphous sperm head shape, flagellar abnormalities and sterility.
Collapse
Affiliation(s)
- Naila Umer
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Sharang Phadke
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Lena Arévalo
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn 4 , 53121 Bonn , Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
- University of Bonn 5 Core Facility Mass Spectrometry , , Medical Faculty , , 53115 Bonn , Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology 2 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 2 , Medical Faculty , , 53127 Bonn , Germany
- Institute for Genomic Statistics and Bioinformatics 3 , Medical Faculty , , 53127 Bonn , Germany
- University of Bonn 3 , Medical Faculty , , 53127 Bonn , Germany
| | - Hubert Schorle
- Institute of Pathology, University Hospital Bonn 1 Department of Developmental Pathology , , 53127 Bonn , Germany
| |
Collapse
|
16
|
Liu X, Zang C, Wu Y, Meng R, Chen Y, Jiang T, Wang C, Yang X, Guo Y, Situ C, Hu Z, Zhang J, Guo X. Homeodomain-interacting protein kinase HIPK4 regulates phosphorylation of manchette protein RIMBP3 during spermiogenesis. J Biol Chem 2022; 298:102327. [PMID: 35931115 PMCID: PMC9440445 DOI: 10.1016/j.jbc.2022.102327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Nonobstructive azoospermia (NOA) is the most serious form of spermatogenesis abnormalities in male infertility. Genetic factors are important to consider as elements leading to NOA. Although many pathogenic genes have been reported, the causative genes of NOA for many patients are still unknown. In this study, we found ten point mutations in the gene encoding homeodomain-interacting protein kinase 4 (HIPK4) in patients with NOA, and using in vitro studies, we determined a premature termination point mutation (p. Lys490∗, c.1468A>T) that can cause decreased expression of HIPK4. Our phosphoproteomic analysis of Hipk4−/− testes revealed phosphorylation of multiple proteins regulated by HIPK4 during spermiogenesis. We also confirmed that a substrate of HIPK4 with four downregulated phosphorylation sites matching the xSPx motif is the known manchette-related protein RIMS-binding protein 3, which is required for sperm head morphogenesis. Therefore, we conclude HIPK4 regulates the phosphorylation of manchette protein RIMS-binding protein 3 and plays essential roles in sperm head shaping and male fertility.
Collapse
Affiliation(s)
- Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyan Zang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ru Meng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyu Yang
- Center of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
17
|
Martinez G, Coutton C, Loeuillet C, Cazin C, Muroňová J, Boguenet M, Lambert E, Dhellemmes M, Chevalier G, Hograindleur JP, Vilpreux C, Neirijnck Y, Kherraf ZE, Escoffier J, Nef S, Ray PF, Arnoult C. Oligogenic heterozygous inheritance of sperm abnormalities in mouse. eLife 2022; 11:75373. [PMID: 35451961 PMCID: PMC9071268 DOI: 10.7554/elife.75373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects – the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes. Here, we compared fertility and sperm parameters in male mice harboring one to four heterozygous truncating mutations of genes linked to multiple morphological anomalies of the flagellum (MMAF) syndrome. Results indicated progressively deteriorating sperm morphology and motility with increasing numbers of heterozygous mutations. This first evidence of oligogenic inheritance in failed spermatogenesis strongly suggests that oligogenic heterozygosity could explain a significant proportion of asthenoteratozoospermia cases. The findings presented pave the way to further studies in mice and man.
Collapse
Affiliation(s)
| | | | - Corinne Loeuillet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Jana Muroňová
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magalie Boguenet
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Emeline Lambert
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Magali Dhellemmes
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Geneviève Chevalier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | | | - Charline Vilpreux
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical School, Genève, Switzerland
| | - Zine Eddine Kherraf
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Jessica Escoffier
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre F Ray
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences, INSERM, CNRS, University Grenoble-Alpes, Grenoble, France
| |
Collapse
|
18
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
19
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
20
|
Yogo K. Molecular basis of the morphogenesis of sperm head and tail in mice. Reprod Med Biol 2022; 21:e12466. [PMID: 35619659 PMCID: PMC9126569 DOI: 10.1002/rmb2.12466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background The spermatozoon has a complex molecular apparatus necessary for fertilization in its head and flagellum. Recently, numerous genes that are needed to construct the molecular apparatus of spermatozoa have been identified through the analysis of genetically modified mice. Methods Based on the literature information, the molecular basis of the morphogenesis of sperm heads and flagella in mice was summarized. Main findings (Results) The molecular mechanisms of vesicular trafficking and intraflagellar transport in acrosome and flagellum formation were listed. With the development of cryo‐electron tomography and mass spectrometry techniques, the details of the axonemal structure are becoming clearer. The fine structure and the proteins needed to form the central apparatus, outer and inner dynein arms, nexin‐dynein regulatory complex, and radial spokes were described. The important components of the formation of the mitochondrial sheath, fibrous sheath, outer dense fiber, and the annulus were also described. The similarities and differences between sperm flagella and Chlamydomonas flagella/somatic cell cilia were also discussed. Conclusion The molecular mechanism of formation of the sperm head and flagellum has been clarified using the mouse as a model. These studies will help to better understand the diversity of sperm morphology and the causes of male infertility.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Department of Applied Life Sciences Faculty of Agriculture Shizuoka University Shizuoka Japan
| |
Collapse
|
21
|
Ma Q, Cao C, Zhuang C, Luo X, Li X, Wan H, Ye J, Chen F, Cui L, Zhang Y, Wen Y, Yuan S, Gui Y. AXDND1, a novel testis-enriched gene, is required for spermiogenesis and male fertility. Cell Death Discov 2021; 7:348. [PMID: 34759295 PMCID: PMC8580973 DOI: 10.1038/s41420-021-00738-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 01/14/2023] Open
Abstract
Spermiogenesis is a complex process depending on the sophisticated coordination of a myriad of testis-enriched gene regulations. The regulatory pathways that coordinate this process are not well understood, and we demonstrate here that AXDND1, as a novel testis-enriched gene is essential for spermiogenesis and male fertility. AXDND1 is exclusively expressed in the round and elongating spermatids in humans and mice. We identified two potentially deleterious mutations of AXDND1 unique to non‐obstructive azoospermia (NOA) patients through selected exonic sequencing. Importantly, Axdnd1 knockout males are sterile with reduced testis size caused by increased germ cell apoptosis and sloughing, exhibiting phenotypes consistent with oligoasthenoteratozoospermia. Axdnd1 mutated late spermatids showed head deformation, outer doublet microtubules deficiency in the axoneme, and loss of corresponding accessory structures, including outer dense fiber (ODF) and mitochondria sheath. These phenotypes were probably due to the perturbed behavior of the manchette, a dynamic structure where AXDND1 was localized. Our findings establish AXDND1 as a novel testis-enrich gene essential for spermiogenesis and male fertility probably by regulating the manchette dynamics, spermatid head shaping, sperm flagellum assembly.
Collapse
Affiliation(s)
- Qian Ma
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Congcong Cao
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Changshui Zhuang
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaomin Luo
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiaofeng Li
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Huijuan Wan
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Jing Ye
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Fangfang Chen
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Lina Cui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China
| | - Yan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, 518057, China. .,Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yaoting Gui
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
22
|
Tapia Contreras C, Hoyer-Fender S. The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility. Cells 2021; 10:2266. [PMID: 34571916 PMCID: PMC8471410 DOI: 10.3390/cells10092266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An articular structure is formed around the centriole pair known as the connecting piece, situated in the neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, in short, HTCA. Finally, the sperm tail grows out from the distal centriole that is now transformed into the basal body of the flagellum. However, a centriole pair is found in nearly all cells of the body. In somatic cells, it accumulates a large mass of proteins, the pericentriolar material (PCM), that together constitute the centrosome, which is the main microtubule-organizing center of the cell, essential not only for the structuring of the cytoskeleton and the overall cellular organization but also for mitotic spindle formation and chromosome segregation. However, in post-mitotic (G1 or G0) cells, the centrosome is transformed into the basal body. In this case, one of the centrioles, which is always the oldest or mother centriole, grows the axoneme of a cilium. Most cells of the body carry a single cilium known as the primary cilium that serves as an antenna sensing the cell's environment. Besides, specialized cells develop multiple motile cilia differing in substructure from the immotile primary cilia that are essential in moving fluids or cargos over the cellular surface. Impairment of cilia formation causes numerous severe syndromes that are collectively subsumed as ciliopathies. This comparative overview serves to illustrate the molecular mechanisms of basal body formation, their similarities, and dissimilarities, in somatic versus male germ cells, by discussing the involved proteins/genes and their expression, localization, and function. The review, thus, aimed to provide a deeper knowledge of the molecular players that is essential for the expansion of clinical diagnostics and treatment of male fertility disorders.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
23
|
Azhar M, Altaf S, Uddin I, Cheng J, Wu L, Tong X, Qin W, Bao J. Towards Post-Meiotic Sperm Production: Genetic Insight into Human Infertility from Mouse Models. Int J Biol Sci 2021; 17:2487-2503. [PMID: 34326689 PMCID: PMC8315030 DOI: 10.7150/ijbs.60384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Declined quality and quantity of sperm is currently the major cause of patients suffering from infertility. Male germ cell development is spatiotemporally regulated throughout the whole developmental process. While it has been known that exogenous factors, such as environmental exposure, diet and lifestyle, et al, play causative roles in male infertility, recent progress has revealed abundant genetic mutations tightly associated with defective male germline development. In mammals, male germ cells undergo dramatic morphological change (i.e., nuclear condensation) and chromatin remodeling during post-meiotic haploid germline development, a process termed spermiogenesis; However, the molecular machinery players and functional mechanisms have yet to be identified. To date, accumulated evidence suggests that disruption in any step of haploid germline development is likely manifested as fertility issues with low sperm count, poor sperm motility, aberrant sperm morphology or combined. With the continually declined cost of next-generation sequencing and recent progress of CRISPR/Cas9 technology, growing studies have revealed a vast number of disease-causing genetic variants associated with spermiogenic defects in both mice and humans, along with mechanistic insights partially attained and validated through genetically engineered mouse models (GEMMs). In this review, we mainly summarize genes that are functional at post-meiotic stage. Identification and characterization of deleterious genetic variants should aid in our understanding of germline development, and thereby further improve the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Muhammad Azhar
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Saba Altaf
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Islam Uddin
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Jinbao Cheng
- The 901th hospital of Joint logistics support Force of PLA, Anhui, China
| | - Limin Wu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Xianhong Tong
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, China
| | - Jianqiang Bao
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Anhui, China
| |
Collapse
|
24
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Verma P, Parte P. Revisiting the Characteristics of Testicular Germ Cell Lines GC-1(spg) and GC-2(spd)ts. Mol Biotechnol 2021; 63:941-952. [PMID: 34125394 DOI: 10.1007/s12033-021-00352-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/04/2021] [Indexed: 01/22/2023]
Abstract
Spermatogenesis is a multifaceted and meticulously orchestrated process involving meiosis, chromatin build up, transcriptional and translational hushing, and spermiogenesis. Male germ cell lines GC-1spg (GC-1) and GC-2(spd)ts (GC-2) provide a useful resource to comprehend the molecular events occurring during such a tightly regulated process. Using cDNA microarray, expression profiling of GC-1 and GC-2 cell lines was done to precisely understand their characteristics and uniqueness. Our observations indicate that whilst both the cell lines are indeed of testicular origin, GC-2 is not haploid as was originally thought. Data analysis of the 23,351 transcripts detected in GC-1 and 20,992 in GC-2 cell lines demonstrates an 80% transcript overlap between GC-1 and GC-2 cells and ~ 40% similarity of both with the primary spermatocyte transcriptome. 3152 and 793 transcripts exclusive to GC-1 and GC-2, respectively, were identified. The presence of transcripts for 36 genes was validated in these cell lines including those showing testis-specific expression, as well as genes not reported previously. Overall, this study provides the transcriptome database of GC-1 and GC-2 cells. Analysis of the data demonstrates the transcriptomic transitions between GC-1 and GC-2 thus providing a glimpse to the process of germ cell differentiation from type B spermatogonium into preleptotene spermatocyte.
Collapse
Affiliation(s)
- Pratibha Verma
- Department of Gamete Immunobiology, ICMR - National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, ICMR - National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
26
|
Central Apparatus, the Molecular Kickstarter of Ciliary and Flagellar Nanomachines. Int J Mol Sci 2021; 22:ijms22063013. [PMID: 33809498 PMCID: PMC7999657 DOI: 10.3390/ijms22063013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Motile cilia and homologous organelles, the flagella, are an early evolutionarily invention, enabling primitive eukaryotic cells to survive and reproduce. In animals, cilia have undergone functional and structural speciation giving raise to typical motile cilia, motile nodal cilia, and sensory immotile cilia. In contrast to other cilia types, typical motile cilia are able to beat in complex, two-phase movements. Moreover, they contain many additional structures, including central apparatus, composed of two single microtubules connected by a bridge-like structure and assembling numerous complexes called projections. A growing body of evidence supports the important role of the central apparatus in the generation and regulation of the motile cilia movement. Here we review data concerning the central apparatus structure, protein composition, and the significance of its components in ciliary beating regulation.
Collapse
|
27
|
Gao T, Zhang Z, Yang Y, Zhang H, Li N, Liu B. Impact of RIM-BPs in neuronal vesicles release. Brain Res Bull 2021; 170:129-136. [PMID: 33581313 DOI: 10.1016/j.brainresbull.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Accurate signal transmission between neurons is accomplished by vesicle release with high spatiotemporal resolution in the central nervous system. The vesicle release occurs mainly in the active zone (AZ), a unique area on the presynaptic membrane. Many structural proteins expressed in the AZ connect with other proteins nearby. They can also regulate the precise release of vesicles through protein-protein interactions. RIM-binding proteins (RIM-BPs) are one of the essential proteins in the AZ. This review summarizes the structures and functions of three subtypes of RIM-BPs, including the interaction between RIM-BPs and other proteins such as Bassoon and voltage-gated calcium channel, their significance in stabilizing the AZ structure in the presynaptic region and collecting ion channels, and ultimately regulating the fusion and release of neuronal vesicles.
Collapse
Affiliation(s)
- Tianyu Gao
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Panjin Campus of Dalian University of Technology, Panjin, 124221, China
| | - Yunong Yang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Na Li
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
28
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
29
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
30
|
Abstract
Mutation in CFAP43 leads to severe asthenozoospermia and multiple morphological abnormalities of the sperm flagellum (MMAF) in both human and mouse. Previous studies have shown that disruption of intra-manchette transport (IMT) caused failure of flagellum assembly and sperm head shaping. In a previous study, therefore, we postulated that disruption of IMT may contribute to the failure of sperm flagellum formation and result in MMAF, however the mechanisms underlying these defects are still poorly understood. Cfap43-deficient mice were studied here to reveal the cellular mechanisms of abnormal sperm head morphology and MMAF. Depletion of Cfap43 led to abnormal spermiogenesis and caused MMAF, sperm head abnormality and oligozoospermia. Furthermore, both abnormal manchette and disorganized ectoplasmic specialization (ES) could be observed at the elongated spermatids in Cfap43-deficient mice. Therefore, our findings demonstrated that, in mice, CFAP43-mediated IMT is essential for sperm head shaping and sperm flagellum formation.
Collapse
|
31
|
Coppola U, Olivo P, D’Aniello E, Johnson CJ, Stolfi A, Ristoratore F. Rimbp, a New Marker for the Nervous System of the Tunicate Ciona robusta. Genes (Basel) 2020; 11:genes11091006. [PMID: 32867148 PMCID: PMC7565545 DOI: 10.3390/genes11091006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Establishment of presynaptic mechanisms by proteins that regulate neurotransmitter release in the presynaptic active zone is considered a fundamental step in animal evolution. Rab3 interacting molecule-binding proteins (Rimbps) are crucial components of the presynaptic active zone and key players in calcium homeostasis. Although Rimbp involvement in these dynamics has been described in distantly related models such as fly and human, the role of this family in most invertebrates remains obscure. To fill this gap, we defined the evolutionary history of Rimbp family in animals, from sponges to mammals. We report, for the first time, the expression of the two isoforms of the unique Rimbp family member in Ciona robusta in distinct domains of the larval nervous system. We identify intronic enhancers that are able to drive expression in different nervous system territories partially corresponding to Rimbp endogenous expression. The analysis of gene expression patterns and the identification of regulatory elements of Rimbp will positively impact our understanding of this family of genes in the context of Ciona embryogenesis.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Paola Olivo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
| | - Enrico D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Correspondence: (A.S.); (F.R.)
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
- Correspondence: (A.S.); (F.R.)
| |
Collapse
|
32
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
33
|
Crapster JA, Rack PG, Hellmann ZJ, Le AD, Adams CM, Leib RD, Elias JE, Perrino J, Behr B, Li Y, Lin J, Zeng H, Chen JK. HIPK4 is essential for murine spermiogenesis. eLife 2020; 9:e50209. [PMID: 32163033 PMCID: PMC7067585 DOI: 10.7554/elife.50209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/23/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian spermiogenesis is a remarkable cellular transformation, during which round spermatids elongate into chromatin-condensed spermatozoa. The signaling pathways that coordinate this process are not well understood, and we demonstrate here that homeodomain-interacting protein kinase 4 (HIPK4) is essential for spermiogenesis and male fertility in mice. HIPK4 is predominantly expressed in round and early elongating spermatids, and Hipk4 knockout males are sterile, exhibiting phenotypes consistent with oligoasthenoteratozoospermia. Hipk4 mutant sperm have reduced oocyte binding and are incompetent for in vitro fertilization, but they can still produce viable offspring via intracytoplasmic sperm injection. Optical and electron microscopy of HIPK4-null male germ cells reveals defects in the filamentous actin (F-actin)-scaffolded acroplaxome during spermatid elongation and abnormal head morphologies in mature spermatozoa. We further observe that HIPK4 overexpression induces branched F-actin structures in cultured fibroblasts and that HIPK4 deficiency alters the subcellular distribution of an F-actin capping protein in the testis, supporting a role for this kinase in cytoskeleton remodeling. Our findings establish HIPK4 as an essential regulator of sperm head shaping and potential target for male contraception.
Collapse
Affiliation(s)
- J Aaron Crapster
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Paul G Rack
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Zane J Hellmann
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Austen D Le
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford UniversityStanfordUnited States
| | - Joshua E Elias
- Chan Zuckerberg Biohub, Stanford UniversityStanfordUnited States
| | - John Perrino
- Cell Science Imaging Facility, Stanford University School of MedicineStanfordUnited States
| | - Barry Behr
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Stanford University School of MedicineStanfordUnited States
| | - Yanfeng Li
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Jennifer Lin
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - Hong Zeng
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Department of Chemistry, Stanford UniversityStanfordUnited States
| |
Collapse
|
34
|
Gao Q, Khan R, Yu C, Alsheimer M, Jiang X, Ma H, Shi Q. The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis. J Biol Chem 2020; 295:6289-6298. [PMID: 32156700 DOI: 10.1074/jbc.ra119.012375] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Indexed: 01/16/2023] Open
Abstract
Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome-manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain-containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.
Collapse
Affiliation(s)
- Qian Gao
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Changping Yu
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Xiaohua Jiang
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Hui Ma
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- First Affiliated Hospital of the University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
35
|
Netherton J, Ogle RA, Hetherington L, Silva Balbin Villaverde AI, Hondermarck H, Baker MA. Proteomic Analysis Reveals that Topoisomerase 2A is Associated with Defective Sperm Head Morphology. Mol Cell Proteomics 2020; 19:444-455. [PMID: 31848259 PMCID: PMC7050105 DOI: 10.1074/mcp.ra119.001626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Male infertility is widespread and estimated to affect 1 in 20 men. Although in some cases the etiology of the condition is well understood, for at least 50% of men, the underlying cause is yet to be classified. Male infertility, or subfertility, is often diagnosed by looking at total sperm produced, motility of the cells and overall morphology. Although counting spermatozoa and their associated motility is routine, morphology assessment is highly subjective, mainly because of the procedure being based on microscopic examination. A failure to diagnose male-infertility or sub-fertility has led to a situation where assisted conception is often used unnecessarily. As such, biomarkers of male infertility are needed to help establish a more consistent diagnosis. In the present study, we compared nuclear extracts from both high- and low-quality spermatozoa by LC-MS/MS based proteomic analysis. Our data shows that nuclear retention of specific proteins is a common facet among low-quality sperm cells. We demonstrate that the presence of Topoisomerase 2A in the sperm head is highly correlated to poor head morphology. Topoisomerase 2A is therefore a potential new biomarker for confirming male infertility in clinical practice.
Collapse
Affiliation(s)
- Jacob Netherton
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Rachel A Ogle
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Louise Hetherington
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, New Lambton, New South Wales, Australia, Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
36
|
Kent K, Johnston M, Strump N, Garcia TX. Toward Development of the Male Pill: A Decade of Potential Non-hormonal Contraceptive Targets. Front Cell Dev Biol 2020; 8:61. [PMID: 32161754 PMCID: PMC7054227 DOI: 10.3389/fcell.2020.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
With the continued steep rise of the global human population, and the paucity of safe and practical contraceptive options available to men, the need for development of effective and reversible non-hormonal methods of male fertility control is widely recognized. Currently there are several contraceptive options available to men, however, none of the non-hormonal alternatives have been clinically approved. To advance progress in the development of a safe and reversible contraceptive for men, further identification of novel reproductive tract-specific druggable protein targets is required. Here we provide an overview of genes/proteins identified in the last decade as specific or highly expressed in the male reproductive tract, with deletion phenotypes leading to complete male infertility in mice. These phenotypes include arrest of spermatogenesis and/or spermiogenesis, abnormal spermiation, abnormal spermatid morphology, abnormal sperm motility, azoospermia, globozoospermia, asthenozoospermia, and/or teratozoospermia, which are all desirable outcomes for a novel male contraceptive. We also consider other associated deletion phenotypes that could impact the desirability of a potential contraceptive. We further discuss novel contraceptive targets underscoring promising leads with the objective of presenting data for potential druggability and whether collateral effects may exist from paralogs with close sequence similarity.
Collapse
Affiliation(s)
- Katarzyna Kent
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Madelaine Johnston
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Natasha Strump
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| | - Thomas X Garcia
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, United States.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
37
|
Nie H, Tang Y, Qin W. Beyond Acephalic Spermatozoa: The Complexity of Intracytoplasmic Sperm Injection Outcomes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6279795. [PMID: 32104701 PMCID: PMC7035536 DOI: 10.1155/2020/6279795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
This review analyses the genetic mechanisms of acephalic spermatozoa (AS) defects, which are associated with primary infertility in men. Several target genes of headless sperms have been identified but intracytoplasmic sperm injection (ICSI) outcomes are complex. Based on electron microscopic observations, broken points of the sperm neck are AS defects that are based on various genes that can be classified into three subtypes: HOOK1, SUN5, and PMFBP1 genes of subtype II; TSGA10 and BRDT genes of subgroup III, while the genetic mechanism(s) and aetiology of AS defects of subtype I have not been described and remain to be explored. Interestingly, all AS sperm of subtype II achieved better ICSI outcomes than other subtypes, resulting in clinical pregnancies and live births. For subtype III, the failure of clinical pregnancy can be explained by the defects of paternal centrioles that arrest embryonic development; for subtype I, this was due to a lack of a distal centriole. Consequently, the embryo quality and potential ICSI results of AS defects can be predicted by the subtypes of AS defects. However, this conclusion with regard to ICSI outcomes based on subtypes still needs further research, while the existence of quality of oocyte and implantation failure in women cannot be ignored.
Collapse
Affiliation(s)
- Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| |
Collapse
|
38
|
Ortner NJ, Pinggera A, Hofer NT, Siller A, Brandt N, Raffeiner A, Vilusic K, Lang I, Blum K, Obermair GJ, Stefan E, Engel J, Striessnig J. RBP2 stabilizes slow Cav1.3 Ca 2+ channel inactivation properties of cochlear inner hair cells. Pflugers Arch 2019; 472:3-25. [PMID: 31848688 PMCID: PMC6960213 DOI: 10.1007/s00424-019-02338-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/18/2019] [Accepted: 12/04/2019] [Indexed: 01/31/2023]
Abstract
Cav1.3 L-type Ca2+ channels (LTCCs) in cochlear inner hair cells (IHCs) are essential for hearing as they convert sound-induced graded receptor potentials into tonic postsynaptic glutamate release. To enable fast and indefatigable presynaptic Ca2+ signaling, IHC Cav1.3 channels exhibit a negative activation voltage range and uniquely slow inactivation kinetics. Interaction with CaM-like Ca2+-binding proteins inhibits Ca2+-dependent inactivation, while the mechanisms underlying slow voltage-dependent inactivation (VDI) are not completely understood. Here we studied if the complex formation of Cav1.3 LTCCs with the presynaptic active zone proteins RIM2α and RIM-binding protein 2 (RBP2) can stabilize slow VDI. We detected both RIM2α and RBP isoforms in adult mouse IHCs, where they co-localized with Cav1.3 and synaptic ribbons. Using whole-cell patch-clamp recordings (tsA-201 cells), we assessed their effect on the VDI of the C-terminal full-length Cav1.3 (Cav1.3L) and a short splice variant (Cav1.342A) that lacks the C-terminal RBP2 interaction site. When co-expressed with the auxiliary β3 subunit, RIM2α alone (Cav1.342A) or RIM2α/RBP2 (Cav1.3L) reduced Cav1.3 VDI to a similar extent as observed in IHCs. Membrane-anchored β2 variants (β2a, β2e) that inhibit inactivation on their own allowed no further modulation of inactivation kinetics by RIM2α/RBP2. Moreover, association with RIM2α and/or RBP2 consolidated the negative Cav1.3 voltage operating range by shifting the channel's activation threshold toward more hyperpolarized potentials. Taken together, the association with "slow" β subunits (β2a, β2e) or presynaptic scaffolding proteins such as RIM2α and RBP2 stabilizes physiological gating properties of IHC Cav1.3 LTCCs in a splice variant-dependent manner ensuring proper IHC function.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Anita Siller
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Niels Brandt
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Andrea Raffeiner
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kristina Vilusic
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Isabelle Lang
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Gerald J Obermair
- Division of Physiology, Medical University Innsbruck, Innsbruck, Austria.,Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Eduard Stefan
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jutta Engel
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
39
|
Shahrokhi SZ, Salehi P, Alyasin A, Taghiyar S, Deemeh MR. Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia 2019; 52:e13463. [DOI: 10.1111/and.13463] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Peyman Salehi
- Infertility Center Shahid Beheshti Hospital Isfahan Iran
| | | | | | - Mohammad Reza Deemeh
- Andrology Department Nobel Laboratory Isfahan Iran
- Department of Clinical Biochemistry Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
40
|
Tanase-Nakao K, Mizuno K, Hayashi Y, Kojima Y, Hara M, Matsumoto K, Matsubara Y, Igarashi M, Miyado M, Fukami M. Dihydrotestosterone induces minor transcriptional alterations in genital skin fibroblasts of children with and without androgen insensitivity. Endocr J 2019; 66:387-393. [PMID: 30787207 DOI: 10.1507/endocrj.ej18-0494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Endogenous and exogenous androgens induce masculinization of external genitalia through binding to the androgen receptor (AR). The target genes of androgens in external genitalia remain to be determined, although previous studies have shown that the apolipoprotein D gene (APOD) was significantly upregulated by dihydrotestosterone (DHT), the most potent androgen in humans. In the present study, we performed microarray analysis for genital skin fibroblasts obtained from four boys with buried penis (the control individuals) and a patient with partial androgen insensitivity syndrome (PAIS) due to a hypomorphic mutation in AR (the PAIS patient). We identified 24 transcripts that were upregulated or downregulated by DHT in all samples of control individuals and, to a lesser extent, in the sample of the PAIS patient. Differences between DHT-treated and -untreated samples were small; the results of 24 transcripts did not reach statistical significance. The 24 transcripts included CYP1B1, a gene possibly involved in the development of genital tubercle in mice, and APOD, as well as several genes that have been reported as androgen targets in prostate or other tissues. The results of this study indicate that androgen-mediated masculinization of external genitalia is unlikely to depend on massive transcriptional changes in specific AR target genes. Rather, minor transcriptional changes of several genes, and/or a complex molecular network may play a major role in penile development. Importantly, our data suggest the possible involvement of CYP1B1 in human genital development and confirm the clinical importance of APOD as a biomarker for AR function.
Collapse
Affiliation(s)
- Kanako Tanase-Nakao
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo 157-8535, Japan
| | - Kentaro Mizuno
- Department of Pediatric Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yutaro Hayashi
- Department of Pediatric Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Mariko Hara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yoichi Matsubara
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo 157-8535, Japan
- Institute director, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Maki Igarashi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
41
|
Kaneko T, Minohara T, Shima S, Yoshida K, Fukuda A, Iwamori N, Inai T, Iida H. A membrane protein, TMCO5A, has a close relationship with manchette microtubules in rat spermatids during spermiogenesis. Mol Reprod Dev 2019; 86:330-341. [DOI: 10.1002/mrd.23108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Takane Kaneko
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Taisuke Minohara
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Sakurako Shima
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Kaori Yoshida
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Atsuko Fukuda
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Naoki Iwamori
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology; Fukuoka Dental College; Fukuoka Japan
| | - Hiroshi Iida
- Laboratory of Zoology; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| |
Collapse
|
42
|
Giordano T, Gadadhar S, Bodakuntla S, Straub J, Leboucher S, Martinez G, Chemlali W, Bosc C, Andrieux A, Bieche I, Arnoult C, Geimer S, Janke C. Loss of the deglutamylase CCP5 perturbs multiple steps of spermatogenesis and leads to male infertility. J Cell Sci 2019; 132:jcs.226951. [DOI: 10.1242/jcs.226951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Sperm cells are highly specialized mammalian cells, and their biogenesis requires unique intracellular structures. Perturbations of spermatogenesis often lead to male infertility. Here we assess the role of a posttranslational modification of tubulin, glutamylation, in spermatogenesis. We show that mice lacking the tubulin deglutamylase CCP5 do not form functional sperm. Spermatids accumulate polyglutamylated tubulin, accompanied by the occurrence of disorganized microtubule arrays, in particular the sperm manchette, fail to re-arrange their intracellular space and accumulate organelles and cytosol, while nuclei condense normally. Strikingly, spermatids lacking CCP5 show supernumerary centrioles, suggesting that glutamylation could control centriole duplication. We show that most of these observed defects are also present in mice in which CCP5 is deleted only in the male germ line, strongly suggesting that they are germ-cell-autonomous. Our findings reveal that polyglutamylation is, beyond its known importance for sperm flagella, and essential regulator of several microtubule-based functions during spermatogenesis. This makes enzymes involved in glutamylation prime candidates for genes involved in male sterility.
Collapse
Affiliation(s)
- Tiziana Giordano
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Satish Bodakuntla
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Jonas Straub
- Cell Biology and Electron Microscopy, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sophie Leboucher
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Walid Chemlali
- Institut Curie, PSL Research University, Department of Genetics, F-75005, Paris, France
| | - Christophe Bosc
- Université Grenoble Alpes, Grenoble, F-38000, France
- Inserm U1216, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Annie Andrieux
- Université Grenoble Alpes, Grenoble, F-38000, France
- Inserm U1216, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Ivan Bieche
- Institut Curie, PSL Research University, Department of Genetics, F-75005, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75005, Paris, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of Bayreuth, 95440 Bayreuth, Germany
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, F-91405 Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| |
Collapse
|
43
|
Saucedo L, Rumpel R, Sobarzo C, Schreiner D, Brandes G, Lustig L, Vazquez-Levin MH, Grothe C, Marín-Briggiler C. Deficiency of fibroblast growth factor 2 (FGF-2) leads to abnormal spermatogenesis and altered sperm physiology. J Cell Physiol 2018; 233:9640-9651. [PMID: 30054911 DOI: 10.1002/jcp.26876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023]
Abstract
In previous studies, we described the presence of fibroblast growth factor 2 (FGF-2) and its receptors (FGFRs) in human testis and sperm, which are involved in spermatogenesis and in motility regulation. The aim of the present study was to analyze the role of FGF-2 in the maintenance of sperm physiology using FGF-2 knockout (KO) mice. Our results showed that in wild-type (WT) animals, FGF-2 is expressed in germ cells of the seminiferous epithelium, in epithelial cells of the epididymis, and in the flagellum and acrosomal region of epididymal sperm. In the FGF-2 KO mice, we found alterations in spermatogenesis kinetics, higher numbers of spermatids per testis, and enhanced daily sperm production compared with the WT males. No difference in the percentage of sperm motility was detected, but a significant increase in sperm concentration and in sperm head abnormalities was observed in FGF-2 KO animals. Sperm from KO mice depicted reduced phosphorylation on tyrosine residues (a phenomenon that was associated with sperm capacitation) and increased acrosomal loss after incubation under capacitating conditions. However, the FGF-2 KO males displayed no apparent fertility defects, since their mating with WT females showed no differences in the time to delivery, litter size, and pup weight in comparison with WT males. Overall, our findings suggest that FGF-2 exerts a role in mammalian spermatogenesis and that the lack of FGF-2 leads to dysregulated sperm production and altered sperm morphology and function. FGF-2-deficient mice constitute a model for the study of the complex mechanisms underlying mammalian spermatogenesis.
Collapse
Affiliation(s)
- Lucía Saucedo
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Regina Rumpel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Cristian Sobarzo
- Instituto de Investigaciones Biomédicas, National Research Council of Argentina (CONICET), University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Dietmar Schreiner
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas, National Research Council of Argentina (CONICET), University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Clara Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Wei YL, Yang WX. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility. Gene 2018; 660:28-40. [DOI: 10.1016/j.gene.2018.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
|
45
|
Chen H, Zhu Y, Zhu Z, Zhi E, Lu K, Wang X, Liu F, Li Z, Xia W. Detection of heterozygous mutation in hook microtubule-tethering protein 1 in three patients with decapitated and decaudated spermatozoa syndrome. J Med Genet 2018; 55:150-157. [PMID: 29330334 DOI: 10.1136/jmedgenet-2016-104404] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND The mechanism of intramanchette transport is crucial to the transformation of sperm tail and the nuclear condensation during spermiogenesis. Although few dysfunctional proteins could result in abnormal junction between the head and tail of spermatozoon, little is known about the genetic cues in this process. OBJECTIVE Based on patients with severe decapitated and decaudated spermatozoa (DDS) syndrome, the study aimed to validate whether new mutation exists on their Hook microtubule-tethering protein 1 (HOOK1) genes and follow their results of assisted reproduction treatment (ART). METHODS 7 severe teratozoospermia patients with DDS (proportion >95%) and three relative members in one pedigree were collected to sequence the whole genomic DNA. The fertilisation rates (FRs) of these patients were followed. Morphological observation and interspecies intracytoplasmic sperm injection (ICSI) assays were applied. RESULTS A novel missense mutation of A to G (p.Q286R) in patients with DDS (n=3/7) was found in the HOOK1 gene, which was inherited from the mother in one patient. This variant was absent in 160 fertile population-matched control individuals. Morphological observation showed that almost all the DDS broke into decaudated heads and headless tails at the implantation fossa or the basal plate. The clinical studies indicated that the mutation might cause reduced FRs on both ART (FR=18.07%) and interspecies ICSI (FR=16.98%). CONCLUSIONS An unreported mutation in HOOK1 gene was identified, which might be responsible to some patients with DDS. Further studies need to uncover the molecular mechanism of spermiogenesis for genomic therapy.
Collapse
Affiliation(s)
- Huixing Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Med-X Research Institute, Shanghai, China.,Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhu
- Shanghai Human Sperm Bank, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zijue Zhu
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erlei Zhi
- Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keming Lu
- Shanghai Human Sperm Bank, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaobo Wang
- Shanghai Human Sperm Bank, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Med-X Research Institute, Shanghai, China.,Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Human Sperm Bank, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Med-X Research Institute, Shanghai, China.,Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Human Sperm Bank, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Med-X Research Institute, Shanghai, China
| |
Collapse
|
46
|
Liu M, Ru Y, Gu Y, Tang J, Zhang T, Wu J, Yu F, Yuan Y, Xu C, Wang J, Shi H. Disruption of Ssp411 causes impaired sperm head formation and male sterility in mice. Biochim Biophys Acta Gen Subj 2017; 1862:660-668. [PMID: 29247744 DOI: 10.1016/j.bbagen.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously cloned the Ssp411 gene. We found that the Ssp411 protein is predominantly expressed in elongated spermatids in the rat testis in a stage-dependent manner. Although our findings strongly suggested that Ssp411 might play an important role in mammalian spermatogenesis, this hypothesis has not been studied. METHODS We first used real-time PCR, Western blotting and immunohistochemistry to confirm that the expression pattern of Ssp411 in several murine tissues is similar to its expression pattern in corresponding rat tissues. To better understand the roles of Ssp411 in male reproduction in vivo, we identified and characterized an Ssp411 expression-disrupted murine strain (Ssp411PB/PB) that was generated by piggyBac (PB) transposon insertion. We studied Ssp411-interacting proteins using proteome microarray, co-IP and GST pull-down assay. RESULTS Both Ssp411 mRNA and protein were detected exclusively in spermatids after step 9 during spermiogenesis in testis. Phenotypic analysis suggested that only Ssp411PB/PB males are sterile. These males have smaller testes, reduced sperm counts, decreased sperm motility and deformed spermatozoa. Microscopy analysis indicated that the manchette, a structurally reshaped sperm head, is aberrant in Ssp411PB/PB spermatids. The results of proteome microarray analysis and GST pull-down assays suggested that Ssp411 participates the ubiquitin-proteasome system by interacting with PSMC3. This has been reported to be manchette-associated and important for the head shaping of spermatids. CONCLUSIONS Our study suggested that Ssp411 is required for spermiogenesis. It seems to play a role in sperm head shaping. The lack of Ssp411 causes sperm deformation and results in male infertility. GENERAL SIGNIFICANCE Ssp411PB/PB mouse strain is an animal model of idiopathic oligoasthenoteratozoospermia (iOAT), and the gene may represent a therapeutic target for iOAT patients.
Collapse
Affiliation(s)
- Miao Liu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yanfei Ru
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yihua Gu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Jianan Tang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Tiancheng Zhang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Jun Wu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Fudong Yu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yao Yuan
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Chen Xu
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jian Wang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China.
| | - Huijuan Shi
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China.
| |
Collapse
|
47
|
Redwine WB, DeSantis ME, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL. The human cytoplasmic dynein interactome reveals novel activators of motility. eLife 2017; 6. [PMID: 28718761 PMCID: PMC5533585 DOI: 10.7554/elife.28257] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 12/25/2022] Open
Abstract
In human cells, cytoplasmic dynein-1 is essential for long-distance transport of many cargos, including organelles, RNAs, proteins, and viruses, towards microtubule minus ends. To understand how a single motor achieves cargo specificity, we identified the human dynein interactome by attaching a promiscuous biotin ligase (‘BioID’) to seven components of the dynein machinery, including a subunit of the essential cofactor dynactin. This method reported spatial information about the large cytosolic dynein/dynactin complex in living cells. To achieve maximal motile activity and to bind its cargos, human dynein/dynactin requires ‘activators’, of which only five have been described. We developed methods to identify new activators in our BioID data, and discovered that ninein and ninein-like are a new family of dynein activators. Analysis of the protein interactomes for six activators, including ninein and ninein-like, suggests that each dynein activator has multiple cargos. DOI:http://dx.doi.org/10.7554/eLife.28257.001
Collapse
Affiliation(s)
- William B Redwine
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Ian Hollyer
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Biophysics Graduate Program, Harvard Medical School, Boston, United States
| | - Phuoc Tien Tran
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | | | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas, United States.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas, United States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, United States
| |
Collapse
|
48
|
Okuda H, DeBoer K, O'Connor AE, Merriner DJ, Jamsai D, O'Bryan MK. LRGUK1 is part of a multiprotein complex required for manchette function and male fertility. FASEB J 2016; 31:1141-1152. [PMID: 28003339 DOI: 10.1096/fj.201600909r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/28/2016] [Indexed: 11/11/2022]
Abstract
Infertility occurs in 1 in 20 young men and is idiopathic in origin in most. We have reported that the leucine-rich repeat (LRR) and guanylate kinase-like domain containing, isoform (LRGUK)-1 is essential for sperm head shaping, via the manchette, and the initiation of sperm tail growth from the centriole/basal body, and thus, male fertility. Within this study we have used a yeast 2-hybrid screen of an adult testis library to identify LRGUK1-binding partners, which were then validated with a range of techniques. The data indicate that LRGUK1 likely achieves its function in partnership with members of the HOOK family of proteins (HOOK-1-3), Rab3-interacting molecule binding protein (RIMBP)-3 and kinesin light chain (KLC)-3, all of which are associated with intracellular protein transport as cargo adaptor proteins and are localized to the manchette. LRGUK1 consists of 3 domains; an LRR, a guanylate kinase (GUK)-like and an unnamed domain. In the present study, we showed that the GUK-like domain is essential for binding to HOOK2 and RIMBP3, and the LRR domain is essential for binding to KLC3. These findings establish LRGUK1 as a key component of a multiprotein complex with an essential role in microtubule dynamics within haploid male germ cells.-Okuda, H., DeBoer, K., O'Connor, A. E., Merriner, D. J., Jamsai, D., O'Bryan, M. K. LRGUK1 is part of a multiprotein complex required for manchette function and male fertility.
Collapse
Affiliation(s)
- Hidenobu Okuda
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; and.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kathleen DeBoer
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; and.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Anne E O'Connor
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; and.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - D Jo Merriner
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; and.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Duangporn Jamsai
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; and.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Moira K O'Bryan
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; and .,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
49
|
The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail. Cell Death Dis 2016; 7:e2472. [PMID: 27831554 PMCID: PMC5260884 DOI: 10.1038/cddis.2016.344] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms 'spermiogenesis failure', 'globozoospermia', 'spermatid-specific', 'acrosome', 'infertile', 'manchette', 'sperm connecting piece', 'sperm annulus', 'sperm ADAMs', 'flagellar abnormalities', 'sperm motility loss', 'sperm ion exchanger' and 'contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling fertility. Although a male contraceptive 'pill' is still many years away, research into the production of new small-molecule contraceptives targeting spermatid-specific proteins is the right avenue.
Collapse
|
50
|
Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 2016; 151:R43-54. [DOI: 10.1530/rep-15-0310] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022]
Abstract
The last phase of spermatogenesis involves spermatid elongation (spermiogenesis), where the nucleus is remodeled by chromatin condensation, the excess cytoplasm is removed and the acrosome and sperm tail are formed. Protein transport during spermatid elongation is required for correct formation of the sperm tail and acrosome and shaping of the head. Two microtubular-based protein delivery platforms transport proteins to the developing head and tail: the manchette and the sperm tail axoneme. The manchette is a transient skirt-like structure surrounding the elongating spermatid head and is only present during spermatid elongation. In this review, we consider current understanding of the assembly, disassembly and function of the manchette and the roles of these processes in spermatid head shaping and sperm tail formation. Recent studies have shown that at least some of the structural proteins of the sperm tail are transported through the intra-manchette transport to the basal body at the base of the developing sperm tail and through the intra-flagellar transport to the construction site in the flagellum. This review focuses on the microtubule-based mechanisms involved and the consequences of their disruption in spermatid elongation.
Collapse
|