1
|
Kostopoulou N, Bellou S, Bagli E, Markou M, Kostaras E, Hyvönen M, Kalaidzidis Y, Papadopoulos A, Chalmantzi V, Kyrkou A, Panopoulou E, Fotsis T, Murphy C. Embryonic stem cells are devoid of macropinocytosis, a trafficking pathway for activin A in differentiated cells. J Cell Sci 2021; 134:jcs246892. [PMID: 34313314 DOI: 10.1242/jcs.246892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Ligand-receptor complexes formed at the plasma membrane are internalised via various endocytic pathways that influence the ultimate signalling output by regulating the selection of interaction partners by the complex along the trafficking route. We report that, in differentiated cells, activin A-receptor complexes are internalised via clathrin-mediated endocytosis (CME) and macropinocytosis (MP), whereas in human embryonic stem cells (hESCs) internalisation occurs via CME. We further show that hESCs are devoid of MP, which becomes functional upon differentiation towards endothelial cells through mesoderm mediators. Our results reveal, for the first time, that MP is an internalisation route for activin A in differentiated cells, and that MP is not active in hESCs and is induced as cells differentiate.
Collapse
Affiliation(s)
- Nikoleta Kostopoulou
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
| | - Sofia Bellou
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- Confocal Laser Scanning Microscopy Unit, Network of Research Supporting Laboratories, University of Ioannina, Ioannina, 45110, Greece
| | - Eleni Bagli
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
| | - Maria Markou
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Eleftherios Kostaras
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Yiannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Angelos Papadopoulos
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Varvara Chalmantzi
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Athena Kyrkou
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
| | - Ekaterini Panopoulou
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Theodore Fotsis
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- Laboratory of Biological Chemistry, University of Ioannina Medical School, Ioannina, 45110, Greece
| | - Carol Murphy
- Foundation for Research & Technology-Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Department of Biomedical Research, Ioannina, 45110, Greece
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham, A118 Aston Webb, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Yang E, Mundy C, Rappaport EF, Pacifici M, Billings PC. Identification and characterization of a novel heparan sulfate-binding domain in Activin A longest variants and implications for function. PLoS One 2019; 14:e0222784. [PMID: 31536599 PMCID: PMC6752817 DOI: 10.1371/journal.pone.0222784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Activins regulate numerous processes including inflammation and are synthesized as precursors consisting of a long N-terminal pro-region and a mature protein. Genomic human databases currently list three activin A (Act A) variants termed X1, X2 and X3. The X3 variant is the shortest, lacks N-terminal segments present in X1 and X2, and has been the focus of most past literature. Here, we asked whether these variants are expressed by human cells and tissues and what structural features are contained within their pro-regions. Human monocytic-like cells THP1 and U937 expressed X1 and X2 variants after exposure to phorbol ester or granulocyte-macrophage colony-stimulating factor, while X2 transcripts were present in placenta. Expression vectors encoding full length X2 or X3 variants resulted in production and secretion of biologically active Act A from cultured cells. Previous studies reported a putative HS-binding domain (HBD) in the X3 pro-region. Here, we identified a novel HBD with consensus HS-binding motifs near the N-terminal end of X1 and X2 pro-regions. Peptides encompassing this new domain interacted with substrate-bound HS with nanomolar affinity, while peptides from putative X3 HBD did not. In good agreement, full length X2 pro-region interacted with heparin-agarose, while the X3 pro-region did not. In sum, our study reveals that Act A variants are expressed by inflammatory cells and placenta and yield biological activity. The high affinity HBD in X1 and X2 pro-region and its absence in X3 could greatly influence overall Act A distribution, availability and activity in physiological and pathological circumstances.
Collapse
Affiliation(s)
- Evan Yang
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Eric F. Rappaport
- Molecular Genetics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul C. Billings
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
3
|
Miller DSJ, Bloxham RD, Jiang M, Gori I, Saunders RE, Das D, Chakravarty P, Howell M, Hill CS. The Dynamics of TGF-β Signaling Are Dictated by Receptor Trafficking via the ESCRT Machinery. Cell Rep 2018; 25:1841-1855.e5. [PMID: 30428352 PMCID: PMC7615189 DOI: 10.1016/j.celrep.2018.10.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/03/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Signal transduction pathways stimulated by secreted growth factors are tightly regulated at multiple levels between the cell surface and the nucleus. The trafficking of cell surface receptors is emerging as a key step for regulating appropriate cellular responses, with perturbations in this process contributing to human diseases, including cancer. For receptors recognizing ligands of the transforming growth factor β (TGF-β) family, little is known about how trafficking is regulated or how this shapes signaling dynamics. Here, using whole genome small interfering RNA (siRNA) screens, we have identified the ESCRT (endosomal sorting complex required for transport) machinery as a crucial determinant of signal duration. Downregulation of ESCRT components increases the outputs of TGF-β signaling and sensitizes cells to low doses of ligand in their microenvironment. This sensitization drives an epithelial-to-mesenchymal transition (EMT) in response to low doses of ligand, and we demonstrate a link between downregulation of the ESCRT machinery and cancer survival.
Collapse
Affiliation(s)
- Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert D Bloxham
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ming Jiang
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca E Saunders
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Debipriya Das
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
4
|
Moosavi B, Mousavi B, Yang WC, Yang GF. Yeast-based assays for detecting protein-protein/drug interactions and their inhibitors. Eur J Cell Biol 2017. [PMID: 28645461 DOI: 10.1016/j.ejcb.2017.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Understanding cellular processes at molecular levels in health and disease requires the knowledge of protein-protein interactions (PPIs). In line with this, identification of PPIs at genome-wide scale is highly valuable to understand how different cellular pathways are interconnected, and it eventually facilitates designing effective drugs against certain PPIs. Furthermore, investigating PPIs at a small laboratory scale for deciphering certain biochemical pathways has been demanded for years. In this regard, yeast two hybrid system (Y2HS) has proven an extremely useful tool to discover novel PPIs, while Y2HS derivatives and novel yeast-based assays are contributing significantly to identification of protein-drug/inhibitor interaction at both large- and small-scale set-ups. These methods have been evolving over time to provide more accurate, reproducible and quantitative results. Here we briefly describe different yeast-based assays for identification of various protein-protein/drug/inhibitor interactions and their specific applications, advantages, shortcomings, and improvements. The broad range of yeast-based assays facilitates application of the most suitable method(s) for each specific need.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | - Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
5
|
Wang X, Fischer G, Hyvönen M. Structure and activation of pro-activin A. Nat Commun 2016; 7:12052. [PMID: 27373274 PMCID: PMC4932183 DOI: 10.1038/ncomms12052] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022] Open
Abstract
Activins are growth factors with multiple roles in the development and homeostasis. Like all TGF-β family of growth factors, activins are synthesized as large precursors from which mature dimeric growth factors are released proteolytically. Here we have studied the activation of activin A and determined crystal structures of the unprocessed precursor and of the cleaved pro-mature complex. Replacing the natural furin cleavage site with a HRV 3C protease site, we show how the protein gains its bioactivity after proteolysis and is as active as the isolated mature domain. The complex remains associated in conditions used for biochemical analysis with a dissociation constant of 5 nM, but the pro-domain can be actively displaced from the complex by follistatin. Our high-resolution structures of pro-activin A share features seen in the pro-TGF-β1 and pro-BMP-9 structures, but reveal a new oligomeric arrangement, with a domain-swapped, cross-armed conformation for the protomers in the dimeric protein. Activins are members of the TGF-β family of growth factors that are processed from precursors into the mature proteins. Here, the authors use structural biology and biochemistry to examine the protein domain organisation and gain insights into the activation of pro-activin A.
Collapse
Affiliation(s)
- Xuelu Wang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
6
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
7
|
Kenyon EJ, Campos I, Bull JC, Williams PH, Stemple DL, Clark MD. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling. Dev Biol 2014; 397:212-24. [PMID: 25478908 PMCID: PMC4294769 DOI: 10.1016/j.ydbio.2014.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/03/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023]
Abstract
The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo. We have examined the activities of each of the zebrafish Rab5 genes using morpholino knockdowns. Loss of one Rab5 isoform, Rab5ab, affects formation of the dorsal organizer. Rab5ab overexpression leads to ectopic expression of dorsal markers.
Collapse
Affiliation(s)
- Emma J Kenyon
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Isabel Campos
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Lisboa, Portugal
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom
| | - P Huw Williams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | - Matthew D Clark
- Sequencing Technology Development, The Genome Analysis Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
8
|
Hagemann AIH, Kurz J, Kauffeld S, Chen Q, Reeves PM, Weber S, Schindler S, Davidson G, Kirchhausen T, Scholpp S. In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos. J Cell Sci 2014; 127:3970-82. [PMID: 25074807 PMCID: PMC4163645 DOI: 10.1242/jcs.148767] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
After activation by Wnt/β-Catenin ligands, a multi-protein complex assembles at the clustering membrane-bound receptors and intracellular signal transducers into the so-called Lrp6-signalosome. However, the mechanism of signalosome formation and dissolution is yet not clear. Our imaging studies of live zebrafish embryos show that the signalosome is a highly dynamic structure. It is continuously assembled by Dvl2-mediated recruitment of the transducer complex to the activated receptors and partially disassembled by endocytosis. We find that, after internalization, the ligand-receptor complex and the transducer complex take separate routes. The Wnt–Fz–Lrp6 complex follows a Rab-positive endocytic path. However, when still bound to the transducer complex, Dvl2 forms intracellular aggregates. We show that this endocytic process is not only essential for ligand-receptor internalization but also for signaling. The μ2-subunit of the endocytic Clathrin adaptor Ap2 interacts with Dvl2 to maintain its stability during endocytosis. Blockage of Ap2μ2 function leads to Dvl2 degradation, inhibiton of signalosome formation at the plasma membrane and, consequently, reduction of signaling. We conclude that Ap2μ2-mediated endocytosis is important to maintain Wnt/β-catenin signaling in vertebrates.
Collapse
Affiliation(s)
- Anja I H Hagemann
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Jennifer Kurz
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Silke Kauffeld
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Qing Chen
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Patrick M Reeves
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, 02115 MA, USA
| | - Sabrina Weber
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Simone Schindler
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Gary Davidson
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Tomas Kirchhausen
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, 02115 MA, USA
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| |
Collapse
|
9
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
10
|
Callery EM, Park CY, Xu X, Zhu H, Smith JC, Thomsen GH. Eps15R is required for bone morphogenetic protein signalling and differentially compartmentalizes with Smad proteins. Open Biol 2012; 2:120060. [PMID: 22724065 PMCID: PMC3376731 DOI: 10.1098/rsob.120060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/04/2012] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor β superfamily members signal through Smad transcription factors. Bone morphogenetic proteins (BMPs) act via Smads 1, 5 and 8 and TGF-βs signal through Smads 2 and 3. The endocytic adaptor protein Eps15R, or 'epidermal growth factor (EGF) receptor pathway substrate 15-related protein' is a component of EGF signal transduction, mediating internalization of the EGF receptor. We show that it interacts with Smad proteins, is required for BMP signalling in animal caps and stimulates Smad1 transcriptional activity. This function resides in the Asp-Pro-Phe motif-enriched 'DPF domain' of Eps15R, which activates transcription and antagonizes Smad2 signalling. In living cells, Eps15R segregates into spatially distinct regions with different Smads, indicating an unrecognized level of Smad compartmentalization.
Collapse
Affiliation(s)
- Elizabeth M Callery
- Department of Medicine, University of Cambridge, PO Box 157, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Christian JL. Morphogen gradients in development: from form to function. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:3-15. [PMID: 23801664 PMCID: PMC3957335 DOI: 10.1002/wdev.2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Morphogens are substances that establish a graded distribution and elicit distinct cellular responses in a dose-dependent manner. They function to provide individual cells within a field with positional information, which is interpreted to give rise to spatial patterns. Morphogens can consist of intracellular factors that set up a concentration gradient by diffusion in the cytoplasm. More commonly, morphogens comprise secreted proteins that form an extracellular gradient across a field of cells. Experimental studies and computational analyses have provided support for a number of diverse strategies by which extracellular morphogen gradients are formed. These include free diffusion in the extracellular space, restricted diffusion aided by interactions with heparan sulfate proteoglycans, transport on lipid-containing carriers or transport aided by soluble binding partners. More specialized modes of transport have also been postulated such as transcytosis, in which repeated rounds of secretion, endocytosis, and intracellular trafficking move morphogens through cells rather than around them, or cytonemes, which consist of filopodial extensions from signal-receiving cells that are hypothesized to reach out to morphogen-sending cells. Once the gradient has formed, cells must distinguish small differences in morphogen concentration and store this information even after the gradient has dissipated. This is often achieved by translating ligand concentration into a proportional increase in numbers of activated cell surface receptors that are internalized and continue to signal from endosomal compartments. Ultimately, this leads to activation of one or a few transcription factors that transduce this information into qualitatively distinct gene responses inside the nucleus.
Collapse
Affiliation(s)
- Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematological Malignancies, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
12
|
Abstract
Extracellular signaling molecules have crucial roles in development and homeostasis, and their incorrect deployment can lead to developmental defects and disease states. Signaling molecules are released from sending cells, travel to target cells, and act over length scales of several orders of magnitude, from morphogen-mediated patterning of small developmental fields to hormonal signaling throughout the organism. We discuss how signals are modified and assembled for transport, which routes they take to reach their targets, and how their range is affected by mobility and stability.
Collapse
Affiliation(s)
- Patrick Müller
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Broad Institute, Center for Brain Science, FAS Center for Systems Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
13
|
Abstract
Some aspects of pattern formation in developing embryos can be described by nonlinear reaction-diffusion equations. An important class of these models accounts for diffusion and degradation of a locally produced single chemical species. At long times, solutions of such models approach a steady state in which the concentration decays with distance from the source of production. We present analytical results that characterize the dynamics of this process and are in quantitative agreement with numerical solutions of the underlying nonlinear equations. The derived results provide an explicit connection between the parameters of the problem and the time needed to reach a steady state value at a given position. Our approach can be used for the quantitative analysis of tissue patterning by morphogen gradients, a subject of active research in biophysics and developmental biology.
Collapse
|
14
|
Damm EW, Winklbauer R. PDGF-A controls mesoderm cell orientation and radial intercalation during Xenopus gastrulation. Development 2011; 138:565-75. [PMID: 21205800 DOI: 10.1242/dev.056903] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radial intercalation is a common, yet poorly understood, morphogenetic process in the developing embryo. By analyzing cell rearrangement in the prechordal mesoderm during Xenopus gastrulation, we have identified a mechanism for radial intercalation. It involves cell orientation in response to a long-range signal mediated by platelet-derived growth factor (PDGF-A) and directional intercellular migration. When PDGF-A signaling is inhibited, prechordal mesoderm cells fail to orient towards the ectoderm, the endogenous source of PDGF-A, and no longer migrate towards it. Consequently, the prechordal mesoderm fails to spread during gastrulation. Orientation and directional migration can be rescued specifically by the expression of a short splicing isoform of PDGF-A, but not by a long matrix-binding isoform, consistent with a requirement for long-range signaling.
Collapse
Affiliation(s)
- Erich W Damm
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Hudry B, Viala S, Graba Y, Merabet S. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biol 2011; 9:5. [PMID: 21276241 PMCID: PMC3041725 DOI: 10.1186/1741-7007-9-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/28/2011] [Indexed: 01/06/2023] Open
Abstract
Background Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Results Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Conclusion Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development.
Collapse
Affiliation(s)
- Bruno Hudry
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR 6216, CNRS, Université de la méditerranée, Parc Scientifique de Luminy, Case 907, 13288, Marseille Cedex 09, France
| | | | | | | |
Collapse
|
16
|
Endocytosis is required for efficient apical constriction during Xenopus gastrulation. Curr Biol 2010; 20:253-8. [PMID: 20096583 DOI: 10.1016/j.cub.2009.12.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 10/19/2022]
Abstract
Coordinated apical constriction (AC) in epithelial sheets drives tissue invagination [1, 2] and is required for diverse morphogenetic movements such as gastrulation [3], neurulation [4, 5], and organogenesis [6]. We showed previously that actomyosin contractility drives AC in Xenopus laevis bottle cells [7]; however, it remained unclear whether it does so in concert with other processes. Here we report that endocytosis-driven membrane remodeling is required for efficient AC. We found endosomes exclusively in bottle cells in the early gastrula. Disrupting endocytosis with dominant-negative dynamin or rab5 perturbed AC, with a significant decrease in constriction rate late in the process, suggesting that endocytosis operates downstream of actomyosin contractility to remove excess membrane. Additionally, disrupting endocytosis during neurulation inhibits AC in hingepoint cells, resulting in neural tube closure defects. Thus, membrane remodeling during AC could be a general mechanism to achieve efficient invagination in embryos.
Collapse
|