1
|
Sharp JA, Sparago E, Thomas R, Alimenti K, Wang W, Blower MD. Role of the SAF-A SAP domain in X inactivation, transcription, splicing, and cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612041. [PMID: 39314300 PMCID: PMC11419091 DOI: 10.1101/2024.09.09.612041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
SAF-A is conserved throughout vertebrates and has emerged as an important factor regulating a multitude of nuclear functions, including lncRNA localization, gene expression, and splicing. SAF-A has several functional domains, including an N-terminal SAP domain that binds directly to DNA. Phosphorylation of SAP domain serines S14 and S26 are important for SAF-A localization and function during mitosis, however whether these serines are involved in interphase functions of SAF-A is not known. In this study we tested for the role of the SAP domain, and SAP domain serines S14 and S26 in X chromosome inactivation, protein dynamics, gene expression, splicing, and cell proliferation. Here we show that the SAP domain serines S14 and S26 are required to maintain XIST RNA localization and polycomb-dependent histone modifications on the inactive X chromosome in female cells. In addition, we present evidence that an Xi localization signal resides in the SAP domain. We found that that the SAP domain is not required to maintain gene expression and plays only a minor role in mRNA splicing. In contrast, the SAF-A SAP domain, in particular serines S14 and S26, are required for normal protein dynamics, and to maintain normal cell proliferation. We propose a model whereby dynamic phosphorylation of SAF-A serines S14 and S26 mediates rapid turnover of SAF-A interactions with DNA during interphase.
Collapse
Affiliation(s)
- Judith A. Sharp
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Emily Sparago
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Rachael Thomas
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Kaitlyn Alimenti
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Wei Wang
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Michael D. Blower
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| |
Collapse
|
2
|
[Clinical significance and pathogenesis analysis of heterogeneous nuclear ribonucleoprotein U in acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:745-752. [PMID: 36709168 PMCID: PMC9613492 DOI: 10.3760/cma.j.issn.0253-2727.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: To investigate the clinical significance and pathogenesis of heterogeneous nuclear ribonucleoprotein U (hnRNP U) in acute myeloid leukemia (AML) . Methods: The expression of hnRNP U, an RNA binding protein, in patients with AML and healthy controls was compared based on the Gene Expression Profiling Interactive Analysis database and the data of the center. The Beat AML Dataset (n=158) was downloaded from the cBioPortal database. The hnRNP U expression level was divided into the high-expression group (n=89) and low-expression group (n=69) , and patients' clinical characteristics were compared. The effect of hnRNP U on the biological behavior of human AML cell lines was studied by Cell Counting Kit-8 assay to detect cell proliferation. Annexin Ⅴ-APC/7-AAD antibodies were used to detect cell apoptosis. DNA content (PI staining) was quantitatively analyzed to detect cell cycle changes, and colony formation experiments were performed to detect cell cloning formation ability after hnRNP U knockdown in Kasumi-1 and MOLM-13 cells. To study the effect of hnRNP U knockdown on the DNA damage response (DDR) pathway proteins of cleaved-PARP, immunoblot analysis using p-H2A.X was conducted. Results: ①Pan-cancer analysis showed that hnRNP U was highly expressed in patients with AML, and the expression level of hnRNP U mRNA in peripheral blood mononuclear cells was significantly higher in patients with AML than in healthy controls (0.0315±0.0042 vs 0.0195±0.0006, respectively, P<0.01) . ②The age of onset was 56 (2-87) years in the high-expression group and 65 (8-85) years in the low-expression group (t=-2.681, P=0.007) . Moreover, the high-expression group had a higher proportion of combined FLT3 mutations than the low-expression group (χ(2)=4.069, P=0.044) . ③Compared with the negative control, hnRNP U knockdown inhibited the proliferation (P<0.001 and P<0.001) , promoted the apoptosis (P<0.01 and P<0.001) , decreased the colony formation ability (P<0.001 and P<0.001) , and arrested the cell cycles in the G(2)/M phase (P<0.05 and P<0.01) of Kasumi-1 and MOLM-13 cells, respectively. ④hnRNP U knockdown could increase the protein expression of cleaved-PARP and p-H2A.X on the DDR pathway. Conclusion: hnRNP U is highly expressed in AML, and hnRNP U knockdown can inhibit the occurrence and development of AML possibly through the activation of the DDR pathway.
Collapse
|
3
|
Sapir T, Kshirsagar A, Gorelik A, Olender T, Porat Z, Scheffer IE, Goldstein DB, Devinsky O, Reiner O. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex. Nat Commun 2022; 13:4209. [PMID: 35864088 PMCID: PMC9304408 DOI: 10.1038/s41467-022-31752-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
HNRNPU encodes the heterogeneous nuclear ribonucleoprotein U, which participates in RNA splicing and chromatin organization. Microdeletions in the 1q44 locus encompassing HNRNPU and other genes and point mutations in HNRNPU cause brain disorders, including early-onset seizures and severe intellectual disability. We aimed to understand HNRNPU’s roles in the developing brain. Our work revealed that HNRNPU loss of function leads to rapid cell death of both postmitotic neurons and neural progenitors, with an apparent higher sensitivity of the latter. Further, expression and alternative splicing of multiple genes involved in cell survival, cell motility, and synapse formation are affected following Hnrnpu’s conditional truncation. Finally, we identified pharmaceutical and genetic agents that can partially reverse the loss of cortical structures in Hnrnpu mutated embryonic brains, ameliorate radial neuronal migration defects and rescue cultured neural progenitors’ cell death. HNRNPU is an RNA splicing protein associated with brain disorders such as early onset seizures. Here they show that HNRNPU functions to maintain neural progenitors and their progeny by regulating splicing of key neuronal genes.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ingrid E Scheffer
- The University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, VIC, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
5
|
Ha N, Ding N, Hong R, Liu R, Roca X, Luo Y, Duan X, Wang X, Ni P, Wu H, Zhang LF, Chen L. The lupus autoantigen La/Ssb is an Xist-binding protein involved in Xist folding and cloud formation. Nucleic Acids Res 2021; 49:11596-11613. [PMID: 34723322 PMCID: PMC8599922 DOI: 10.1093/nar/gkab1003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Using the programmable RNA-sequence binding domain of the Pumilio protein, we FLAG-tagged Xist (inactivated X chromosome specific transcript) in live mouse cells. Affinity pulldown coupled to mass spectrometry was employed to identify a list of 138 candidate Xist-binding proteins, from which, Ssb (also known as the lupus autoantigen La) was validated as a protein functionally critical for X chromosome inactivation (XCI). Extensive XCI defects were detected in Ssb knockdown cells, including chromatin compaction, death of female mouse embryonic stem cells during in vitro differentiation and chromosome-wide monoallelic gene expression pattern. Live-cell imaging of Xist RNA reveals the defining XCI defect: Xist cloud formation. Ssb is a ubiquitous and versatile RNA-binding protein with RNA chaperone and RNA helicase activities. Functional dissection of Ssb shows that the RNA chaperone domain plays critical roles in XCI. In Ssb knockdown cells, Xist transcripts are unstable and misfolded. These results show that Ssb is critically involved in XCI, possibly as a protein regulating the in-cell structure of Xist.
Collapse
Affiliation(s)
- Norbert Ha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Nan Ding
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ru Hong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Rubing Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yingyuan Luo
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaowei Duan
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiao Wang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peiling Ni
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haiyang Wu
- TCRCure Biological Technology Co Ltd., Guangdong, China
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- TCRCure Biological Technology Co Ltd., Guangdong, China
| | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Heskett MB, Spellman PT, Thayer MJ. Differential Allelic Expression among Long Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040066. [PMID: 34698262 PMCID: PMC8544735 DOI: 10.3390/ncrna7040066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNA) comprise a diverse group of non-protein-coding RNAs >200 bp in length that are involved in various normal cellular processes and disease states, and can affect coding gene expression through mechanisms in cis or in trans. Since the discovery of the first functional lncRNAs transcribed by RNA Polymerase II, H19 and Xist, many others have been identified and noted for their unusual transcriptional pattern, whereby expression from one chromosome homolog is strongly favored over the other, also known as mono-allelic or differential allelic expression. lncRNAs with differential allelic expression have been observed to play critical roles in developmental gene regulation, chromosome structure, and disease. Here, we will focus on known examples of differential allelic expression of lncRNAs and highlight recent research describing functional lncRNAs expressed from both imprinted and random mono-allelic expression domains.
Collapse
Affiliation(s)
- Michael B. Heskett
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Paul T. Spellman
- Department of Genetics, Oregon Health & Science University, Portland, OR 97239, USA; (M.B.H.); (P.T.S.)
| | - Mathew J. Thayer
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
7
|
trans-Acting Factors and cis Elements Involved in the Human Inactive X Chromosome Organization and Compaction. Genet Res (Camb) 2021; 2021:6683460. [PMID: 34035662 PMCID: PMC8121581 DOI: 10.1155/2021/6683460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
During X chromosome inactivation, many chromatin changes occur on the future inactive X chromosome, including acquisition of a variety of repressive covalent histone modifications, heterochromatin protein associations, and DNA methylation of promoters. Here, we summarize trans-acting factors and cis elements that have been shown to be involved in the human inactive X chromosome organization and compaction.
Collapse
|
8
|
Guo H, Xu N, Prell M, Königs H, Hermanns-Sachweh B, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS): harnessing recombinant protein toxicity for rapid and unbiased interrogation of protein function. FEBS Lett 2021; 595:1422-1437. [PMID: 33704777 DOI: 10.1002/1873-3468.14072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
In two proof-of-concept studies, we established and validated the Bacterial Growth Inhibition Screen (BGIS), which explores recombinant protein toxicity in Escherichia coli as a largely overlooked and alternative means for basic characterization of functional eukaryotic protein domains. By applying BGIS, we identified an unrecognized RNA-interacting domain in the DEK oncoprotein (this study) and successfully combined BGIS with random mutagenesis as a screening tool for loss-of-function mutants of the DNA modulating domain of DEK [1]. Collectively, our findings shed new light on the phenomenon of recombinant protein toxicity in E. coli. Given the easy and rapid implementation and wide applicability, BGIS will extend the repertoire of basic methods for the identification, analysis and unbiased manipulation of proteins.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | | | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
9
|
Sharp JA, Perea-Resa C, Wang W, Blower MD. Cell division requires RNA eviction from condensing chromosomes. J Cell Biol 2021; 219:211450. [PMID: 33053167 PMCID: PMC7549315 DOI: 10.1083/jcb.201910148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid–binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B–dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A–RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B–dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Judith A Sharp
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Wei Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Puvvula PK, Moon AM. Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Front Oncol 2021; 11:621825. [PMID: 33859938 PMCID: PMC8042391 DOI: 10.3389/fonc.2021.621825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States.,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Fang H, Bonora G, Lewandowski JP, Thakur J, Filippova GN, Henikoff S, Shendure J, Duan Z, Rinn JL, Deng X, Noble WS, Disteche CM. Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. Nat Commun 2020; 11:6053. [PMID: 33247132 PMCID: PMC7695720 DOI: 10.1038/s41467-020-19879-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Firre encodes a lncRNA involved in nuclear organization. Here, we show that Firre RNA expressed from the active X chromosome maintains histone H3K27me3 enrichment on the inactive X chromosome (Xi) in somatic cells. This trans-acting effect involves SUZ12, reflecting interactions between Firre RNA and components of the Polycomb repressive complexes. Without Firre RNA, H3K27me3 decreases on the Xi and the Xi-perinucleolar location is disrupted, possibly due to decreased CTCF binding on the Xi. We also observe widespread gene dysregulation, but not on the Xi. These effects are measurably rescued by ectopic expression of mouse or human Firre/FIRRE transgenes, supporting conserved trans-acting roles. We also find that the compact 3D structure of the Xi partly depends on the Firre locus and its RNA. In common lymphoid progenitors and T-cells Firre exerts a cis-acting effect on maintenance of H3K27me3 in a 26 Mb region around the locus, demonstrating cell type-specific trans- and cis-acting roles of this lncRNA.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | | | - Galina N Filippova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John L Rinn
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Yugami M, Okano H, Nakanishi A, Yano M. Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method. PLoS One 2020; 15:e0231450. [PMID: 32302342 PMCID: PMC7164624 DOI: 10.1371/journal.pone.0231450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
RNA-binding proteins (RBPs) control many types of post-transcriptional regulation, including mRNA splicing, mRNA stability, and translational efficiency, by directly binding to their target RNAs and their mutation and dysfunction are often associated with several human neurological diseases and tumorigenesis. Crosslinking immunoprecipitation (CLIP), coupled with high-throughput sequencing (HITS-CLIP), is a powerful technique for investigating the molecular mechanisms underlying disease pathogenesis by comprehensive identification of RBP target sequences at the transcriptome level. However, HITS-CLIP protocol is still required for some optimization due to experimental complication, low efficiency and time-consuming, whose library has to be generated from very small amounts of RNAs. Here we improved a more efficient, rapid, and reproducible CLIP method by optimizing BrdU-CLIP. Our protocol produced a 10-fold greater yield of pre-amplified CLIP library, which resulted in a low duplicate rate of CLIP-tag reads because the number of PCR cycles required for library amplification was reduced. Variance of the yields was also reduced, and the experimental period was shortened by 2 days. Using this, we validated IL-6 expression by a nuclear RBP, HNRNPU, which directly binds the 3’-UTR of IL-6 mRNA in HeLa cells. Importantly, this interaction was only observed in the cytoplasmic fraction, suggesting a role of cytoplasmic HNRNPU in mRNA stability control. This optimized method enables us to accurately identify target genes and provides a snapshot of the protein-RNA interactions of nucleocytoplasmic shuttling RBPs.
Collapse
Affiliation(s)
- Masato Yugami
- Takeda Pharmaceutical Company, Ltd, Osaka, Japan
- * E-mail: (MYu); (MYa)
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Minato, Japan
| | | | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, Minato, Japan
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail: (MYu); (MYa)
| |
Collapse
|
13
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|
14
|
Abstract
The non-coding RNA Xist regulates the process of X chromosome inactivation, in which one of the two X chromosomes present in cells of early female mammalian embryos is selectively and coordinately shut down. Remarkably Xist RNA functions in cis, affecting only the chromosome from which it is transcribed. This feature is attributable to the unique propensity of Xist RNA to accumulate over the territory of the chromosome on which it is synthesized, contrasting with the majority of RNAs that are rapidly exported out of the cell nucleus. In this review I provide an overview of the progress that has been made towards understanding localized accumulation of Xist RNA, drawing attention to evidence that some other non-coding RNAs probably function in a highly analogous manner. I describe a simple model for localized accumulation of Xist RNA and discuss key unresolved questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
15
|
Abstract
In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.
Collapse
|
16
|
Abstract
Mammalian genomes are extensively transcribed, which produces a large number of both coding and non-coding transcripts. Various RNAs are physically associated with chromatin, through being either retained in cis at their site of transcription or recruited in trans to other genomic regions. Driven by recent technological innovations for detecting chromatin-associated RNAs, diverse roles are being revealed for these RNAs and associated RNA-binding proteins (RBPs) in gene regulation and genome function. Such functions include locus-specific roles in gene activation and silencing, as well as emerging roles in higher-order genome organization, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Monfort A, Wutz A. Progress in understanding the molecular mechanism of Xist RNA function through genetics. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0368. [PMID: 28947663 DOI: 10.1098/rstb.2016.0368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 01/06/2023] Open
Abstract
The Xist gene produces a long noncoding RNA that initiates chromosome-wide gene repression on the inactive X chromosome in female mammals. Recent progress has advanced the understanding of Xist function at the molecular level. This review provides an overview of insights from genetic approaches and puts the new data in the context of an emerging mechanistic model as well as the existing literature. Some consideration is given on how independent biochemical studies on X inactivation help to advance on the wider question of chromatin regulation in the mammalian dosage compensation system.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| |
Collapse
|
18
|
Takahashi S, Kobayashi S, Hiratani I. Epigenetic differences between naïve and primed pluripotent stem cells. Cell Mol Life Sci 2018; 75:1191-1203. [PMID: 29134247 PMCID: PMC5843680 DOI: 10.1007/s00018-017-2703-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
It has been 8 years since the concept of naïve and primed pluripotent stem cell states was first proposed. Both are states of pluripotency, but exhibit slightly different properties. The naïve state represents the cellular state of the preimplantation mouse blastocyst inner cell mass, while the primed state is representative of the post-implantation epiblast cells. These two cell types exhibit clearly distinct developmental potential, as evidenced by the fact that naïve cells are able to contribute to blastocyst chimeras, while primed cells cannot. However, the epigenetic differences that underlie the distinct developmental potential of these cell types remain unclear, which is rather surprising given the large amount of active investigation over the years. Elucidating such epigenetic differences should lead to a better understanding of the fundamental properties of these states of pluripotency and the means by which the naïve-to-primed transition occurs, which may provide insights into the essence of stem cell commitment.
Collapse
Affiliation(s)
- Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Shin Kobayashi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koutou-ku, Tokyo, 135-0064, Japan.
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
19
|
Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N, Cerase A, Castello A, Mohammed S, Moindrot B, Nesterova TB, Brockdorff N. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing. Mol Cell 2017; 68:955-969.e10. [PMID: 29220657 PMCID: PMC5735038 DOI: 10.1016/j.molcel.2017.11.013] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/15/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023]
Abstract
The Polycomb-repressive complexes PRC1 and PRC2 play a key role in chromosome silencing induced by the non-coding RNA Xist. Polycomb recruitment is initiated by the PCGF3/5-PRC1 complex, which catalyzes chromosome-wide H2A lysine 119 ubiquitylation, signaling recruitment of other PRC1 complexes, and PRC2. However, the molecular mechanism for PCGF3/5-PRC1 recruitment by Xist RNA is not understood. Here we define the Xist RNA Polycomb Interaction Domain (XR-PID), a 600 nt sequence encompassing the Xist B-repeat element. Deletion of XR-PID abolishes Xist-dependent Polycomb recruitment, in turn abrogating Xist-mediated gene silencing and reversing Xist-induced chromatin inaccessibility. We identify the RNA-binding protein hnRNPK as the principal XR-PID binding factor required to recruit PCGF3/5-PRC1. Accordingly, synthetically tethering hnRNPK to Xist RNA lacking XR-PID is sufficient for Xist-dependent Polycomb recruitment. Our findings define a key pathway for Polycomb recruitment by Xist RNA, providing important insights into mechanisms of chromatin modification by non-coding RNA. A 600 nt element in Xist RNA, XR-PID, is required for Polycomb recruitment Deletion of XR-PID abrogates Xist-mediated chromosome silencing hnRNPK binds XR-PID to recruit the Polycomb-initiating complex PCGF3/5-PRC1 Tethering hnRNPK to Xist RNA bypasses the requirement for XR-PID
Collapse
Affiliation(s)
- Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Chloë Roustan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Burcu Anil Kirmizitas
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Nicolae Solcan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrea Cerase
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Posttranscriptional Networks in Infection and Cell Cycle Progression, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Proteomics Technology Development and Application, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Benoît Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
20
|
Creamer KM, Lawrence JB. XIST RNA: a window into the broader role of RNA in nuclear chromosome architecture. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160360. [PMID: 28947659 PMCID: PMC5627162 DOI: 10.1098/rstb.2016.0360] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/31/2022] Open
Abstract
XIST RNA triggers the transformation of an active X chromosome into a condensed, inactive Barr body and therefore provides a unique window into transitions of higher-order chromosome architecture. Despite recent progress, how XIST RNA localizes and interacts with the X chromosome remains poorly understood. Genetic engineering of XIST into a trisomic autosome demonstrates remarkable capacity of XIST RNA to localize and comprehensively silence that autosome. Thus, XIST does not require X chromosome-specific sequences but operates on mechanisms available genome-wide. Prior results suggested XIST localization is controlled by attachment to the insoluble nuclear scaffold. Our recent work affirms that scaffold attachment factor A (SAF-A) is involved in anchoring XIST, but argues against the view that SAF-A provides a unimolecular bridge between RNA and the chromosome. Rather, we suggest that a complex meshwork of architectural proteins interact with XIST RNA. Parallel work studying the territory of actively transcribed chromosomes suggests that repeat-rich RNA 'coats' euchromatin and may impact chromosome architecture in a manner opposite of XIST A model is discussed whereby RNA may not just recruit histone modifications, but more directly impact higher-order chromatin condensation via interaction with architectural proteins of the nucleus.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- K M Creamer
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - J B Lawrence
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
21
|
Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc Natl Acad Sci U S A 2017; 114:10654-10659. [PMID: 28923964 DOI: 10.1073/pnas.1711206114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
X chromosome inactivation is an epigenetic dosage compensation mechanism in female mammals driven by the long noncoding RNA, Xist. Although recent genomic and proteomic approaches have provided a more global view of Xist's function, how Xist RNA localizes to the inactive X chromosome (Xi) and spreads in cis remains unclear. Here, we report that the CDKN1-interacting zinc finger protein CIZ1 is critical for localization of Xist RNA to the Xi chromosome territory. Stochastic optical reconstruction microscopy (STORM) shows a tight association of CIZ1 with Xist RNA at the single-molecule level. CIZ1 interacts with a specific region within Xist exon 7-namely, the highly repetitive Repeat E motif. Using genetic analysis, we show that loss of CIZ1 or deletion of Repeat E in female cells phenocopies one another in causing Xist RNA to delocalize from the Xi and disperse into the nucleoplasm. Interestingly, this interaction is exquisitely sensitive to CIZ1 levels, as overexpression of CIZ1 likewise results in Xist delocalization. As a consequence, this delocalization is accompanied by a decrease in H3K27me3 on the Xi. Our data reveal that CIZ1 plays a major role in ensuring stable association of Xist RNA within the Xi territory.
Collapse
|
22
|
Yue M, Ogawa A, Yamada N, Charles Richard JL, Barski A, Ogawa Y. Xist RNA repeat E is essential for ASH2L recruitment to the inactive X and regulates histone modifications and escape gene expression. PLoS Genet 2017; 13:e1006890. [PMID: 28686623 PMCID: PMC5521851 DOI: 10.1371/journal.pgen.1006890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 07/21/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNA Xist plays a crucial role in establishing and maintaining X-chromosome inactivation (XCI) which is a paradigm of long non-coding RNA-mediated gene regulation. Xist has Xist-specific repeat elements A-F which are conserved among eutherian mammals, underscoring their functional importance. Here we report that Xist RNA repeat E, a conserved Xist repeat element in the Xist exon 7, interacts with ASH2L and contributes to maintenance of escape gene expression level on the inactive X-chromosome (Xi) during XCI. The Xist repeat E-deletion mutant female ES cells show the depletion of ASH2L from the Xi upon differentiation. Furthermore, a subset of escape genes exhibits unexpectedly higher expression in the repeat E mutant cells than the cells expressing wildtype Xist during X-inactivation, whereas the silencing of X-linked non-escape genes is not affected. We discuss the implications of these results to understand the role of ASH2L and Xist repeat E for histone modifications and escape gene regulation during random X-chromosome inactivation.
Collapse
Affiliation(s)
- Minghui Yue
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akiyo Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Norishige Yamada
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - John Lalith Charles Richard
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yuya Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Sakata Y, Nagao K, Hoki Y, Sasaki H, Obuse C, Sado T. Defects in dosage compensation impact global gene regulation in the mouse trophoblast. Development 2017; 144:2784-2797. [PMID: 28684628 DOI: 10.1242/dev.149138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Xist RNA, which is responsible for X inactivation, is a key epigenetic player in the embryogenesis of female mammals. Of the several repeats conserved in Xist RNA, the A-repeat has been shown to be essential for its silencing function in differentiating embryonic stem cells. Here, we introduced a new Xist allele into mouse that produces mutated Xist RNA lacking the A-repeat (XistCAGΔ5' ). XistCAGΔ5' RNA expressed in the embryo coated the X chromosome but failed to silence it. Although imprinted X inactivation was substantially compromised upon paternal transmission, allele-specific RNA-seq in the trophoblast revealed that XistCAGΔ5' RNA still retained some silencing ability. Furthermore, the failure of imprinted X inactivation had more significant impacts than expected on genome-wide gene expression. It is likely that dosage compensation is required not only for equalizing X-linked gene expression between the sexes but also for proper global gene regulation in differentiated female somatic cells.
Collapse
Affiliation(s)
- Yuka Sakata
- Department of Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan.,Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Nagao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuko Hoki
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Sado
- Department of Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan .,Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
24
|
Postlmayr A, Wutz A. Insights into the Establishment of Chromatin States in Pluripotent Cells from Studies of X Inactivation. J Mol Biol 2017; 429:1521-1531. [PMID: 28315662 DOI: 10.1016/j.jmb.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
Animal development entails the sequential and coordinated specialization of cells. During cell differentiation, transcription factors, cell signaling pathways, and chromatin-associated protein complexes cooperate in regulating the expression of a large number of genes. Here, we review the present understanding of the establishment of chromatin states by focusing on X chromosome inactivation (XCI) as a model for facultative heterochromatin formation in female embryonic cells. The inactive X chromosome is large enough to be investigated by biochemical and microscopy techniques. In addition, the ability to compare the inactivated chromatin to the active X in male cells enables us to differentiate events specific to gene silencing during XCI from gene regulatory effects from changing pathways in the same cell. Findings in XCI are useful as blueprints for investigation of the action of epigenetic pathways in differentiation and lineage commitment. We summarize recent studies that have identified factors that are critical for chromosome-wide gene repression in XCI, and we discuss their implications for epigenetic regulation in pluripotent cells of the early embryo.
Collapse
Affiliation(s)
- Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
25
|
Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat Struct Mol Biol 2017; 24:197-204. [DOI: 10.1038/nsmb.3370] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
26
|
Yang T, Yildirim E. Epigenetic and LncRNA-Mediated Regulation of X Chromosome Inactivation and Its Impact on Pathogenesis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Furlan G, Rougeulle C. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:702-22. [PMID: 27173581 DOI: 10.1002/wrna.1359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
X-chromosome inactivation (XCI) is a chromosome-wide regulatory process that ensures dosage compensation for X-linked genes in Theria. XCI is established during early embryogenesis and is developmentally regulated. Different XCI strategies exist in mammalian infraclasses and the regulation of this process varies also among closely related species. In Eutheria, initiation of XCI is orchestrated by a cis-acting locus, the X-inactivation center (Xic), which is particularly enriched in genes producing long noncoding RNAs (lncRNAs). Among these, Xist generates a master transcript that coats and propagates along the future inactive X-chromosome in cis, establishing X-chromosome wide transcriptional repression through interaction with several protein partners. Other lncRNAs also participate to the regulation of X-inactivation but the extent to which their function has been maintained in evolution is still poorly understood. In Metatheria, Xist is not conserved, but another, evolutionary independent lncRNA with similar properties, Rsx, has been identified, suggesting that lncRNA-mediated XCI represents an evolutionary advantage. Here, we review current knowledge on the interplay of X chromosome-encoded lncRNAs in ensuring proper establishment and maintenance of chromosome-wide silencing, and discuss the evolutionary implications of the emergence of species-specific lncRNAs in the control of XCI within Theria. WIREs RNA 2016, 7:702-722. doi: 10.1002/wrna.1359 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Giulia Furlan
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216 CNRS, Université Paris Diderot, Paris, France
| | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216 CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
28
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
29
|
Pandya-Jones A, Plath K. The "lnc" between 3D chromatin structure and X chromosome inactivation. Semin Cell Dev Biol 2016; 56:35-47. [PMID: 27062886 DOI: 10.1016/j.semcdb.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/01/2022]
Abstract
The long non-coding RNA Xist directs a remarkable instance of developmentally regulated, epigenetic change known as X Chromosome Inactivation (XCI). By spreading in cis across the X chromosome from which it is expressed, Xist RNA facilitates the creation of a heritably silent, heterochromatic nuclear territory that displays a three-dimensional structure distinct from that of the active X chromosome. How Xist RNA attaches to and propagates across a chromosome and its influence over the three-dimensional (3D) structure of the inactive X are aspects of XCI that have remained largely unclear. Here, we discuss studies that have made significant contributions towards answering these open questions.
Collapse
Affiliation(s)
- Amy Pandya-Jones
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Mira-Bontenbal H, Gribnau J. New Xist -Interacting Proteins in X-Chromosome Inactivation. Curr Biol 2016; 26:R338-42. [DOI: 10.1016/j.cub.2016.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Maduro C, de Hoon B, Gribnau J. Fitting the Puzzle Pieces: the Bigger Picture of XCI. Trends Biochem Sci 2016; 41:138-147. [DOI: 10.1016/j.tibs.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
|
32
|
RNA binding proteins implicated in Xist-mediated chromosome silencing. Semin Cell Dev Biol 2016; 56:58-70. [PMID: 26816113 DOI: 10.1016/j.semcdb.2016.01.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/20/2022]
Abstract
Chromosome silencing by Xist RNA occurs in two steps; localisation in cis within the nuclear matrix to form a domain that corresponds to the territory of the inactive X chromosome elect, and transduction of silencing signals from Xist RNA to the underlying chromatin. Key factors that mediate these processes have been identified in a series of recent studies that harnessed comprehensive proteomic or genetic screening strategies. In this review we discuss these findings in light of prior knowledge both of Xist-mediated silencing and known functions/properties of the novel factors.
Collapse
|
33
|
How Many Non-coding RNAs Does It Take to Compensate Male/Female Genetic Imbalance? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:33-49. [PMID: 26659486 DOI: 10.1007/978-94-017-7417-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic sex determination in mammals relies on dimorphic sex chromosomes that confer phenotypic/physiologic differences between males and females. In this heterogametic system, X and Y chromosomes diverged from an ancestral pair of autosomes, creating a genetic disequilibrium between XX females and XY males. Dosage compensation mechanisms alleviate intrinsic gene dosage imbalance, leading to equal expression levels of most X-linked genes in the two sexes. In therian mammals, this is achieved through inactivation of one of the two X chromosomes in females. Failure to undergo X-chromosome inactivation (XCI) results in developmental arrest and death. Although fundamental for survival, a surprising loose conservation in the mechanisms to achieve XCI during development in therian lineage has been, and continues, to be uncovered. XCI involves the concerted action of non-coding RNAs (ncRNAs), including the well-known Xist RNA, and has thus become a classical paradigm to study the mode of action of this particular class of transcripts. In this chapter, we will describe the processes coping with sex chromosome genetic imbalance and how ncRNAs underlie dosage compensation mechanisms and influence male-female differences in mammals. Moreover, we will discuss how ncRNAs have been tinkered with during therian evolution to adapt XCI mechanistic to species-specific constraints.
Collapse
|
34
|
Affiliation(s)
- Victoria H. Meller
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| | - Sonal S. Joshi
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| | - Nikita Deshpande
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202; , ,
| |
Collapse
|
35
|
Kelsey AD, Yang C, Leung D, Minks J, Dixon-McDougall T, Baldry SEL, Bogutz AB, Lefebvre L, Brown CJ. Impact of flanking chromosomal sequences on localization and silencing by the human non-coding RNA XIST. Genome Biol 2015; 16:208. [PMID: 26429547 PMCID: PMC4591629 DOI: 10.1186/s13059-015-0774-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023] Open
Abstract
Background X-chromosome inactivation is a striking example of epigenetic silencing in which expression of the long non-coding RNA XIST initiates the heterochromatinization and silencing of one of the pair of X chromosomes in mammalian females. To understand how the RNA can establish silencing across millions of basepairs of DNA we have modelled the process by inducing expression of XIST from nine different locations in human HT1080 cells. Results Localization of XIST, depletion of Cot-1 RNA, perinuclear localization, and ubiquitination of H2A occurs at all sites examined, while recruitment of H3K9me3 was not observed. Recruitment of the heterochromatic features SMCHD1, macroH2A, H3K27me3, and H4K20me1 occurs independently of each other in an integration site-dependent manner. Silencing of flanking reporter genes occurs at all sites, but the spread of silencing to flanking endogenous human genes is variable in extent of silencing as well as extent of spread, with silencing able to skip regions. The spread of H3K27me3 and loss of H3K27ac correlates with the pre-existing levels of the modifications, and overall the extent of silencing correlates with the ability to recruit additional heterochromatic features. Conclusions The non-coding RNA XIST functions as a cis-acting silencer when expressed from nine different locations throughout the genome. A hierarchy among the features of heterochromatin reveals the importance of interaction with the local chromatin neighborhood for optimal spread of silencing, as well as the independent yet cooperative nature of the establishment of heterochromatin by the non-coding XIST RNA. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0774-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela D Kelsey
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Christine Yang
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Danny Leung
- Ludwig Institute for Cancer Research, University of California at San Diego School of Medicine, La Jolla, CA, USA. .,Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Jakub Minks
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Thomas Dixon-McDougall
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Sarah E L Baldry
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Aaron B Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
36
|
Abstract
X chromosome inactivation (XCI) is the dosage compensation mechanism that evolved in female mammals to correct the genetic imbalance of X-linked genes between sexes. X chromosome inactivation occurs in early development when one of the two X chromosomes of females is nearly-completely silenced. Differentiating Embryonic Stem cells (ESC) are regarded as a useful tool to study XCI, since they recapitulate many events occurring during early development. In this review we aim to summarise the advances in the field and to discuss the close connection between cell differentiation and X chromosome inactivation, with a particular focus on mouse ESCs.
Collapse
Affiliation(s)
- Greta Pintacuda
- />Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Andrea Cerase
- />EMBL Mouse Biology Unit, Monterotondo, 00015 RM Italy
| |
Collapse
|
37
|
Simon MD. Insight into lncRNA biology using hybridization capture analyses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:121-7. [PMID: 26381323 DOI: 10.1016/j.bbagrm.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
Despite mounting evidence of the importance of large non-coding RNAs (lncRNAs) in biological regulation, we still know little about how these lncRNAs function. One approach to understand the function of lncRNAs is to biochemically purify endogenous lncRNAs from fixed cells using complementary oligonucleotides. These hybridization capture approaches can reveal the genomic localization of lncRNAs, as well as the proteins and RNAs with which they interact. To help researchers understand how these tools can uncover lncRNA function, this review discusses the considerations and influences of different parameters, (e.g., crosslinking reagents, oligonucleotide chemistry and hybridization conditions) and controls to avoid artifacts. By examining the application of these tools, this review will highlight the progress and pitfalls of studying lncRNAs using hybridization capture approaches.This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Matthew D Simon
- Dept. of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06516, USA; Chemical Biology Institute, Yale West Campus, West Haven, CT, 06511, USA.
| |
Collapse
|
38
|
Xist Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome. PLoS Genet 2015; 11:e1005430. [PMID: 26244333 PMCID: PMC4526699 DOI: 10.1371/journal.pgen.1005430] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
To equalize X-linked gene dosage between the sexes in mammalian females, Xist RNA inactivates one of the two X-chromosomes. Here, we report the crucial function of Xist exon 7 in X-inactivation. Xist exon 7 is the second-largest exon with a well-conserved repeat E in eutherian mammals, but its role is often overlooked in X-inactivation. Although female ES cells with a targeted truncation of the Xist exon 7 showed no significant differences in their Xist expression levels and RNA stability from control cells expressing wild-type Xist, compromised localization of Xist RNA and incomplete silencing of X-linked genes on the inactive X-chromosome (Xi) were observed in the exon 7-truncated mutant cells. Furthermore, the interaction between the mutant Xist RNA and hnRNP U required for localization of Xist RNA to the Xi was impaired in the Xist exon 7 truncation mutant cells. Our results suggest that exon 7 of Xist RNA plays an important role for stable Xist RNA localization and silencing of the X-linked genes on the Xi, possibly acting through an interaction with hnRNP U. To balance gene expression from X-chromosomes between males and females, one of the two X-chromosomes is inactivated in female mammals. X-chromosome inactivation is a chromosome-wide epigenetic gene silencing mechanism regulated by long non-coding Xist RNA. Mouse Xist RNA is commonly organized into 7 exons, with the extensively studied and known important domains of Xist residing within exon 1. However, the function of exon 7 of Xist RNA, which is the second longest exon, remains poorly understood. Our objective was to clarify the role of this exon in X-inactivation through the use of Xist truncation mutant female ES cells. Here, we provide evidence that Xist exon 7 is required for the stable localization of Xist RNA and X-linked gene silencing on the inactive X-chromosome.
Collapse
|
39
|
Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F, Thore S, Wutz A. Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells. Cell Rep 2015; 12:554-61. [PMID: 26190100 PMCID: PMC4530576 DOI: 10.1016/j.celrep.2015.06.067] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
Abstract
In mammals, the noncoding Xist RNA triggers transcriptional silencing of one of the two X chromosomes in female cells. Here, we report a genetic screen for silencing factors in X chromosome inactivation using haploid mouse embryonic stem cells (ESCs) that carry an engineered selectable reporter system. This system was able to identify several candidate factors that are genetically required for chromosomal repression by Xist. Among the list of candidates, we identify the RNA-binding protein Spen, the homolog of split ends. Independent validation through gene deletion in ESCs confirms that Spen is required for gene repression by Xist. However, Spen is not required for Xist RNA localization and the recruitment of chromatin modifications, including Polycomb protein Ezh2. The identification of Spen opens avenues for further investigation into the gene-silencing pathway of Xist and shows the usefulness of haploid ESCs for genetic screening of epigenetic pathways.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Remo Freimann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Fabiana Arieti
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 62500, Czech Republic
| | - Stéphane Thore
- University of Bordeaux, European Institute for Chemistry and Biology (IECB), ARNA Laboratory, Bordeaux 33000, France; Institut National de la Sante et de la Recherche Medicale, INSERM, U869, ARNA Laboratory, Bordeaux 33000, France
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
40
|
Massah S, Beischlag TV, Prefontaine GG. Epigenetic events regulating monoallelic gene expression. Crit Rev Biochem Mol Biol 2015; 50:337-58. [PMID: 26155735 DOI: 10.3109/10409238.2015.1064350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammals, generally it is assumed that the genes inherited from each parent are expressed to similar levels. However, it is now apparent that in non-sex chromosomes, 6-10% of genes are selected for monoallelic expression. Monoallelic expression or allelic exclusion is established either in an imprinted (parent-of-origin) or a stochastic manner. The stochastic model explains random selection while the imprinted model describes parent-of-origin specific selection of alleles for expression. Allelic exclusion occurs during X chromosome inactivation, parent-of-origin expression of imprinted genes and stochastic monoallelic expression of cell surface molecules, clustered protocadherin (PCDH) genes. Mis-regulation or loss of allelic exclusion contributes to developmental diseases. Epigenetic mechanisms are fundamental players that determine this type of expression despite a homogenous genetic background. DNA methylation and histone modifications are two mediators of the epigenetic phenomena. The majority of DNA methylation is found on cytosines of the CpG dinucleotide in mammals. Several covalent modifications of histones change the electrostatic forces between DNA and histones modifying gene expression. Long-range chromatin interactions organize chromatin into transcriptionally permissive and prohibitive regions leading to simultaneous regulation of gene expression and repression. Non-coding RNAs (ncRNAs) are also players in regulating gene expression. Together, these epigenetic mechanisms fine-tune gene expression levels essential for normal development and survival. In this review, first we discuss what is known about monoallelic gene expression. Then, we focus on the molecular mechanisms that regulate expression of three monoallelically expressed gene classes: the X-linked genes, selected imprinted genes and PCDH genes.
Collapse
Affiliation(s)
- Shabnam Massah
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | - Timothy V Beischlag
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | | |
Collapse
|
41
|
Dixon-McDougall T, Brown C. The making of a Barr body: the mosaic of factors that eXIST on the mammalian inactive X chromosome. Biochem Cell Biol 2015; 94:56-70. [PMID: 26283003 DOI: 10.1139/bcb-2015-0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During X-chromosome inactivation (XCI), nearly an entire X chromosome is permanently silenced and converted into a Barr body, providing dosage compensation for eutherians between the sexes. XCI is facilitated by the upregulation of the long non-coding RNA gene, XIST, which coats its chromosome of origin, recruits heterochromatin factors, and silences gene expression. During XCI, at least two distinct types of heterochromatin are established, and in this review we discuss the enrichment of facultative heterochromatin marks such as H3K27me3, H2AK119ub, and macroH2A as well as pericentric heterochromatin marks such as HP1, H3K9me3, and H4K20me3. The extremely stable maintenance of silencing is a product of reinforcing interactions within and between these domains. This paper "Xplores" the current knowledge of the pathways involved in XCI, how the pathways interact, and the gaps in our understanding that need to be filled.
Collapse
Affiliation(s)
- Thomas Dixon-McDougall
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
42
|
MacDonald WA, Sachani SS, White CR, Mann MRW. A role for chromatin topology in imprinted domain regulation. Biochem Cell Biol 2015. [PMID: 26222733 DOI: 10.1139/bcb-2015-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.
Collapse
Affiliation(s)
- William A MacDonald
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Saqib S Sachani
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Carlee R White
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Mellissa R W Mann
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| |
Collapse
|
43
|
Chen Q, Gao S, He W, Kou X, Zhao Y, Wang H, Gao S. Xist repression shows time-dependent effects on the reprogramming of female somatic cells to induced pluripotent stem cells. Stem Cells 2015; 32:2642-56. [PMID: 24965076 DOI: 10.1002/stem.1775] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/17/2014] [Accepted: 05/23/2014] [Indexed: 11/10/2022]
Abstract
Although the reactivation of silenced X chromosomes has been observed as part of the process of reprogramming female somatic cells into induced pluripotent stem cells (iPSCs), it remains unknown whether repression of the X-inactive specific transcript (Xist) can greatly enhance female iPSC induction similar to that observed in somatic cell nuclear transfer studies. In this study, we discovered that the repression of Xist plays opposite roles in the early and late phases of female iPSCs induction. Our results demonstrate that the downregulation of Xist by an isopropyl β-d-1-thiogalactopyranoside (IPTG)-inducible short hairpin RNA (shRNA) system can greatly impair the mesenchymal-to-epithelial transition (MET) in the early phase of iPSC induction but can significantly promote the transition of pre-iPSCs to iPSCs in the late phase. Furthermore, we demonstrate that although the knockdown of Xist did not affect the H3K27me3 modification on the X chromosome, macroH2A was released from the inactivated X chromosome (Xi). This enables the X chromosome silencing to be a reversible event. Moreover, we demonstrate that the supplementation of vitamin C (Vc) can augment and stabilize the reversible X chromosome by preventing the relocalization of macroH2A to the Xi. Therefore, our study reveals an opposite role of Xist repression in the early and late stages of reprogramming female somatic cells to pluripotency and demonstrates that the release of macroH2A by Xist repression enables the transition from pre-iPSCs to iPSCs.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Many organisms show major chromosomal differences between sexes. In mammals, females have two copies of a large, gene-rich chromosome, the X, whereas males have one X and a small, gene-poor Y. The imbalance in expression of several hundred genes is lethal if not dealt with by dosage compensation. The male-female difference is addressed by silencing of genes on one female X early in development. However, both males and females now have only one active X chromosome. This is compensated by twofold up-regulation of genes on the active X. This complex system continues to provide important insights into mechanisms of epigenetic regulation.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford Oxford OX1 3QU, United Kingdom
| | - Bryan M Turner
- School of Cancer Sciences, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
45
|
Pasque V, Tchieu J, Karnik R, Uyeda M, Sadhu Dimashkie A, Case D, Papp B, Bonora G, Patel S, Ho R, Schmidt R, McKee R, Sado T, Tada T, Meissner A, Plath K. X chromosome reactivation dynamics reveal stages of reprogramming to pluripotency. Cell 2015; 159:1681-97. [PMID: 25525883 DOI: 10.1016/j.cell.2014.11.040] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/30/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022]
Abstract
Reprogramming to iPSCs resets the epigenome of somatic cells, including the reversal of X chromosome inactivation. We sought to gain insight into the steps underlying the reprogramming process by examining the means by which reprogramming leads to X chromosome reactivation (XCR). Analyzing single cells in situ, we found that hallmarks of the inactive X (Xi) change sequentially, providing a direct readout of reprogramming progression. Several epigenetic changes on the Xi occur in the inverse order of developmental X inactivation, whereas others are uncoupled from this sequence. Among the latter, DNA methylation has an extraordinary long persistence on the Xi during reprogramming, and, like Xist expression, is erased only after pluripotency genes are activated. Mechanistically, XCR requires both DNA demethylation and Xist silencing, ensuring that only cells undergoing faithful reprogramming initiate XCR. Our study defines the epigenetic state of multiple sequential reprogramming intermediates and establishes a paradigm for studying cell fate transitions during reprogramming.
Collapse
Affiliation(s)
- Vincent Pasque
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Tchieu
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Molly Uyeda
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anupama Sadhu Dimashkie
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dana Case
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernadett Papp
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Giancarlo Bonora
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanjeet Patel
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ritchie Ho
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan Schmidt
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robin McKee
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Takashi Sado
- Department of Advanced Bioscience, Graduate School of Agriculture, Kinki University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Takashi Tada
- Department of Stem Cell Engineering, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Richard JLC, Ogawa Y. Understanding the Complex Circuitry of lncRNAs at the X-inactivation Center and Its Implications in Disease Conditions. Curr Top Microbiol Immunol 2015; 394:1-27. [PMID: 25982976 DOI: 10.1007/82_2015_443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Balanced gene expression is a high priority in order to maintain optimal functioning since alterations and variations could result in acute consequences. X chromosome inactivation (X-inactivation) is one such strategy utilized by mammalian species to silence the extra X chromosome in females to uphold a similar level of expression between the two sexes. A functionally versatile class of molecules called long noncoding RNA (lncRNA) has emerged as key regulators of gene expression and plays important roles during development. An lncRNA that is indispensable for X-inactivation is X-inactive specific transcript (Xist), which induces a repressive epigenetic landscape and creates the inactive X chromosome (Xi). With recent advents in the field of X-inactivation, novel positive and negative lncRNA regulators of Xist such as Jpx and Tsix, respectively, have broadened the regulatory network of X-inactivation. Xist expression failure or dysregulation has been implicated in producing developmental anomalies and disease states. Subsequently, reactivation of the Xi at a later stage of development has also been associated with certain tumors. With the recent influx of information about lncRNA biology and advancements in methods to probe lncRNA, we can now attempt to understand this complex network of Xist regulation in development and disease. It has become clear that the presence of an extra set of genes could be fatal for the organism. Only by understanding the precise ways in which lncRNAs function can treatments be developed to bring aberrations under control. This chapter summarizes our current understanding and knowledge with regard to how lncRNAs are orchestrated at the X-inactivation center (Xic), with a special focus on how genetic diseases come about as a consequence of lncRNA dysregulation.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yuya Ogawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
47
|
Puvvula PK, Desetty RD, Pineau P, Marchio A, Moon A, Dejean A, Bischof O. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat Commun 2014; 5:5323. [PMID: 25406515 PMCID: PMC4263151 DOI: 10.1038/ncomms6323] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that limits the proliferation of pre-cancerous cells. Here we demonstrate that scaffold-attachment-factor A (SAFA) and the long noncoding RNA PANDA differentially interact with polycomb repressive complexes (PRC1 and PRC2) and the transcription factor NF-YA to either promote or suppress senescence. In proliferating cells, SAFA and PANDA recruit PRC complexes to repress the transcription of senescence-promoting genes. Conversely, the loss of SAFA–PANDA–PRC interactions allows expression of the senescence programme. Accordingly, we find that depleting either SAFA or PANDA in proliferating cells induces senescence. However, in senescent cells where PANDA sequesters transcription factor NF-YA and limits the expression of NF-YA-E2F-coregulated proliferation-promoting genes, PANDA depletion leads to an exit from senescence. Together, our results demonstrate that PANDA confines cells to their existing proliferative state and that modulating its level of expression can cause entry or exit from senescence. The gene-regulatory circuits that establish and maintain senescence remain incompletely understood. Here, the authors show that the long noncoding RNA PANDA and scaffold-attachment-factor A (SAFA) regulate entry and exit from senescence through context-specific interactions with PRC 1/2 and the transcription factor NF-YA.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- 1] Department of Pediatrics, University of Utah, Salt Lake City, Utah 84102, USA [2] Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | - Rohini Devi Desetty
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | - Pascal Pineau
- 1] Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, F-75015 Paris, France [2] INSERM, U993, F-75015 Paris, France [3] Equipe Labellisée Ligue Nationale Contre le Cancer, F-75015 Paris, France
| | - Agnés Marchio
- 1] Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, F-75015 Paris, France [2] INSERM, U993, F-75015 Paris, France [3] Equipe Labellisée Ligue Nationale Contre le Cancer, F-75015 Paris, France
| | - Anne Moon
- 1] Department of Pediatrics, University of Utah, Salt Lake City, Utah 84102, USA [2] Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | - Anne Dejean
- 1] Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, F-75015 Paris, France [2] INSERM, U993, F-75015 Paris, France [3] Equipe Labellisée Ligue Nationale Contre le Cancer, F-75015 Paris, France
| | - Oliver Bischof
- 1] Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, F-75015 Paris, France [2] INSERM, U993, F-75015 Paris, France
| |
Collapse
|
48
|
Maclary E, Hinten M, Harris C, Kalantry S. Long nonoding RNAs in the X-inactivation center. Chromosome Res 2014; 21:601-614. [PMID: 24297756 DOI: 10.1007/s10577-013-9396-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The X-inactivation center is a hotbed of functional long noncoding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two X-chromosomes is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable and divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation. In the last 25 years, the discovery and functional characterization has firmly established X-linked long noncoding RNAs as key players in choreographing X-chromosome inactivation.
Collapse
Affiliation(s)
- Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
49
|
Abstract
In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in cis by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of Xist expression, the propagation of the Xist RNA along the chromosome, and the cis-elements and trans-acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.
Collapse
Affiliation(s)
- Anne-Valerie Gendrel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, 75248 Paris, France;
| | | |
Collapse
|
50
|
Minkovsky A, Sahakyan A, Rankin-Gee E, Bonora G, Patel S, Plath K. The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation. Epigenetics Chromatin 2014; 7:12. [PMID: 25028596 PMCID: PMC4099106 DOI: 10.1186/1756-8935-7-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023] Open
Abstract
Background X chromosome inactivation (XCI) is a developmental program of heterochromatin formation that initiates during early female mammalian embryonic development and is maintained through a lifetime of cell divisions in somatic cells. Despite identification of the crucial long non-coding RNA Xist and involvement of specific chromatin modifiers in the establishment and maintenance of the heterochromatin of the inactive X chromosome (Xi), interference with known pathways only partially reactivates the Xi once silencing has been established. Here, we studied ATF7IP (MCAF1), a protein previously characterized to coordinate DNA methylation and histone H3K9 methylation through interactions with the methyl-DNA binding protein MBD1 and the histone H3K9 methyltransferase SETDB1, as a candidate maintenance factor of the Xi. Results We found that siRNA-mediated knockdown of Atf7ip in mouse embryonic fibroblasts (MEFs) induces the activation of silenced reporter genes on the Xi in a low number of cells. Additional inhibition of two pathways known to contribute to Xi maintenance, DNA methylation and Xist RNA coating of the X chromosome, strongly increased the number of cells expressing Xi-linked genes upon Atf7ip knockdown. Despite its functional importance in Xi maintenance, ATF7IP does not accumulate on the Xi in MEFs or differentiating mouse embryonic stem cells. However, we found that depletion of two known repressive biochemical interactors of ATF7IP, MBD1 and SETDB1, but not of other unrelated H3K9 methyltransferases, also induces the activation of an Xi-linked reporter in MEFs. Conclusions Together, these data indicate that Atf7ip acts in a synergistic fashion with DNA methylation and Xist RNA to maintain the silent state of the Xi in somatic cells, and that Mbd1 and Setdb1, similar to Atf7ip, play a functional role in Xi silencing. We therefore propose that ATF7IP links DNA methylation on the Xi to SETDB1-mediated H3K9 trimethylation via its interaction with MBD1, and that this function is a crucial feature of the stable silencing of the Xi in female mammalian cells.
Collapse
Affiliation(s)
- Alissa Minkovsky
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Anna Sahakyan
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Elyse Rankin-Gee
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Giancarlo Bonora
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Sanjeet Patel
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|