1
|
Kagemann CH, Bubnell JE, Colocho GM, Arana DC, Aquadro CF. Wolbachia pipientis modulates germline stem cells and gene expression associated with ubiquitination and histone lysine trimethylation to rescue fertility defects in Drosophila. Genetics 2025; 229:iyae220. [PMID: 39739581 PMCID: PMC11912866 DOI: 10.1093/genetics/iyae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Wolbachia pipientis are maternally transmitted endosymbiotic bacteria commonly found in arthropods and nematodes. These bacteria manipulate reproduction of the host to increase their transmission using mechanisms, such as cytoplasmic incompatibility, that favor infected female offspring. The underlying mechanisms of reproductive manipulation by W. pipientis remain unresolved. Interestingly, W. pipientis infection partially rescues female fertility in flies containing hypomorphic mutations of bag of marbles (bam) in Drosophila melanogaster, which plays a key role in germline stem cell daughter differentiation. Using RNA-seq, we find that W. pipientis infection in bam hypomorphic females results in differential expression of many of bam's genetic and physical interactors and enrichment of ubiquitination and histone lysine methylation genes. We find that W. pipientis also rescues the fertility and germline stem cell functions of a subset of these genes when knocked down with RNAi in a wild-type bam genotype. Our results show that W. pipientis interacts with ubiquitination and histone lysine methylation genes which could be integral to the mechanism by which W. pipientis modulates germline stem cell gene function.
Collapse
Affiliation(s)
- Catherine H Kagemann
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jaclyn E Bubnell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Gabriela M Colocho
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Daniela C Arana
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Ge H, Huang Y, Zhang L, Huang S, Wang G. The Cell States of Sea Urchin During Metamorphosis Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2025; 26:1059. [PMID: 39940825 PMCID: PMC11817407 DOI: 10.3390/ijms26031059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Metamorphosis is a key process in the life history of sea urchin Heliocidaris crassispina. However, the understanding of its molecular mechanisms is still lacking, especially the basic cell biology pre-metamorphosis and post-metamorphosis. Therefore, we employed single-cell RNA sequencing to delineate the cellular states of larvae and juveniles of H. crassispina. Our investigation revealed that the cell composition in sea urchins comprises six primary populations, encompassing nerve cells, skeletogenic cells, immune cells, digestive cells, germ cells, and muscle cells. Subsequently, we identified subpopulations within these cells. Our findings indicated that the larval peripheral nerves were discarded during metamorphosis. A decrease in the number of spicules was observed during this process. Additionally, we examined the differences between larval and adult pigment cells. Meanwhile, cellulase is highlighted as an essential factor for the development of competent juveniles. In summary, this study not only serves as a valuable resource for future research on sea urchins but also deepens our understanding of the intricate metamorphosis process.
Collapse
Affiliation(s)
- Hui Ge
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China
| | - Yongyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Lili Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Shiyu Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Guodong Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (H.G.); (Y.H.); (L.Z.); (S.H.)
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| |
Collapse
|
3
|
Azlan A, Zhu L, Fukunaga R. Female-germline specific protein Sakura interacts with Otu and is crucial for germline stem cell renewal and differentiation and oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616675. [PMID: 39651236 PMCID: PMC11623502 DOI: 10.1101/2024.10.04.616675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
During oogenesis, self-renewal and differentiation of germline stem cells (GSCs) must be tightly regulated. The Drosophila female germline serves as an excellent model for studying these regulatory mechanisms. Here, we report that a previously uncharacterized gene CG14545 , which we named sakura , is essential for oogenesis and female fertility in Drosophila . Sakura is predominantly expressed in the ovaries, particularly in the germline cells, including GSCs. sakura null mutant female flies display rudimentary ovaries with germline-less and tumorous phenotypes, fail to produce eggs, and are completely sterile. The germline-specific depletion of sakura impairs Dpp/BMP signaling, leading to aberrant bag-of-marbles ( bam ) expression, resulting in faulty differentiation and loss of GSCs. Additionally, sakura is necessary for normal piwi-interacting RNAs (piRNAs) levels and for proper localization of Ool8 RNA-binding protein (Orb) in developing oocytes. We identified Ovarian Tumor (Otu) as protein binding partner of Sakura, and we found that loss of otu phenocopies loss of sakura in ovaries. Thus, we identified Sakura as a crucial factor for GSC renewal and differentiation and oogenesis, and propose that Sakura and Otu function together in these processes.
Collapse
|
4
|
Bayer LV, Milano SN, Kaur H, Bratu DP. Post-transcriptional regulation of cyclin A and cyclin B mRNAs is mediated by Bruno 1 and Cup, and further fine-tuned within P-bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618951. [PMID: 39464095 PMCID: PMC11507948 DOI: 10.1101/2024.10.17.618951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cell cycle progression is tightly controlled by the regulated synthesis and degradation of Cyclins, such as Cyclin A and Cyclin B, which activate CDK1 to trigger mitosis. Mutations affecting Cyclin regulation are often linked to tumorigenesis, making the study of cyclin mRNA regulation critical for identifying new cancer therapies. In this study, we demonstrate via super-resolution microscopy that cyclin A and cyclin B mRNAs associate with Bruno 1 and Cup in nurse cells. The depletion of either protein leads to abnormal Cyclin A and Cyclin B protein expression and a reduction in mRNA levels for both Cyclins. We further reveal that both cyclin A and cyclin B mRNAs accumulate in P-bodies marked by Me31B. Interestingly, Me31B is not involved in regulating cyclin A mRNA, as no changes in cyclin A mRNA levels or repression are observed upon Me31B depletion. However, cyclin B mRNA shows stage-specific derepression and reduced levels when Me31B is absent. Notably, the association between cyclin B and Cup is strengthened in the absence of Me31B, indicating that this interaction occurs independently of P-bodies. These results highlight the nuanced, mRNA-specific roles of P-body condensates in post-transcriptional regulation, challenging the idea of a uniform, binary mechanism of mRNA repression in P-bodies.
Collapse
Affiliation(s)
- Livia V. Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065 USA
| | - Samantha N. Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065 USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016 USA
| | - Harpreet Kaur
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065 USA
| | - Diana P. Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, 10065 USA
- Program in Molecular, Cellular, and Developmental Biology, The Graduate Center, City University of New York, New York, NY, 10016 USA
| |
Collapse
|
5
|
Wenzel M, Aquadro CF. Wolbachia infection at least partially rescues the fertility and ovary defects of several new Drosophila melanogaster bag of marbles protein-coding mutants. PLoS Genet 2023; 19:e1011009. [PMID: 37871129 PMCID: PMC10621935 DOI: 10.1371/journal.pgen.1011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/02/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
The D. melanogaster protein coding gene bag of marbles (bam) plays a key role in early male and female reproduction by forming complexes with partner proteins to promote differentiation in gametogenesis. Like another germline gene, Sex lethal, bam genetically interacts with the endosymbiont Wolbachia, as Wolbachia rescues the reduced fertility of a bam hypomorphic mutant. Here, we explored the specificity of the bam-Wolbachia interaction by generating 22 new bam mutants, with ten mutants displaying fertility defects. Nine of these mutants trend towards rescue by the wMel Wolbachia variant, with eight statistically significant at the fertility and/or cytological level. In some cases, fertility was increased a striking 20-fold. There is no specificity between the rescue and the known binding regions of bam, suggesting wMel does not interact with one singular bam partner to rescue the reproductive phenotype. We further tested if wMel interacts with bam in a non-specific way, by increasing bam transcript levels or acting upstream in germline stem cells. A fertility assessment of a bam RNAi knockdown mutant reveals that wMel rescue is specific to functionally mutant bam alleles and we find no obvious evidence of wMel interaction with germline stem cells in bam mutants.
Collapse
Affiliation(s)
- Miwa Wenzel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
6
|
Wenzel M, Aquadro CF. Wolbachia infection at least partially rescues the fertility and ovary defects of several new Drosophila melanogaster bag of marbles protein-coding mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.532813. [PMID: 37645949 PMCID: PMC10461928 DOI: 10.1101/2023.03.20.532813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The D. melanogaster protein coding gene bag of marbles ( bam ) plays a key role in early male and female reproduction by forming complexes with partner proteins to promote differentiation in gametogenesis. Like another germline gene, Sex lethal , bam genetically interacts with the endosymbiont Wolbachia , as Wolbachia rescues the reduced fertility of a bam hypomorphic mutant. Here, we explored the specificity of the bam-Wolbachia interaction by generating 22 new bam mutants, with ten mutants displaying fertility defects. Nine of these mutants trend towards rescue by the w Mel Wolbachia variant, with eight statistically significant at the fertility and/or cytological level. In some cases, fertility was increased a striking 20-fold. There is no specificity between the rescue and the known binding regions of bam , suggesting w Mel does not interact with one singular bam partner to rescue the reproductive phenotype. We further tested if w Mel interacts with bam in a non-specific way, by increasing bam transcript levels or acting upstream in germline stem cells. A fertility assessment of a bam RNAi knockdown mutant reveals that w Mel rescue is specific to functionally mutant bam alleles and we find no obvious evidence of w Mel interaction with germline stem cells in bam mutants. Author Summary Reproduction in the Drosophila melanogaster fruit fly is dependent on the bag of marbles ( bam ) gene, which acts early in the process of generating eggs and sperm. Mutations to this gene negatively impact the fertility of the fly, causing it to be sterile or have fewer progeny. Interestingly, we find that the bacteria Wolbachia , which resides within reproductive cells across a wide range of insects, partially restores the fertility and ovary phenotype of several bam mutants of which the resultant Bam protein is altered from wildtype. The protein function of Bam is further suggested to be important by the lack of rescue for a fly that has a fertility defect due to low expression of a non-mutated bam gene. Previous work makes similar conclusions about Wolbachia with another reproductive gene, Sex lethal ( Sxl ), highlighting the potential for rescue of fertility mutants to occur in a similar way across different genes. An understanding of the ways in which Wolbachia can affect host reproduction provides us with context with which to frame Wolbachia 's impact on host genes, such as bam and Sxl, and consider the evolutionary implications of Wolbachia 's infection in D. melanogaster fruit flies.
Collapse
|
7
|
Beachum AN, Hinnant TD, Williams AE, Powell AM, Ables ET. β-importin Tnpo-SR promotes germline stem cell maintenance and oocyte differentiation in female Drosophila. Dev Biol 2023; 494:1-12. [PMID: 36450333 PMCID: PMC9870978 DOI: 10.1016/j.ydbio.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Germ cell development requires interplay between factors that balance cell fate and division. Early in their development, germ cells in many organisms divide mitotically with incomplete cytokinesis. Key regulatory events then lead to the specification of mature gametes, marked by the switch to a meiotic cell cycle program. Though the regulation of germ cell proliferation and meiosis are well understood, how these events are coordinated during development remains incompletely described. Originally characterized in their role as nucleo-cytoplasmic shuttling proteins, β-importins exhibit diverse functions during male and female gametogenesis. Here, we describe novel, distinct roles for the β-importin, Transportin-Serine/Arginine rich (Tnpo-SR), as a regulator of the mitosis to meiosis transition in the Drosophila ovary. We find that Tnpo-SR is necessary for germline stem cell (GSC) establishment and self-renewal, likely by controlling the response of GSCs to bone morphogenetic proteins. Depletion of Tnpo-SR results in germ cell counting defects and loss of oocyte identity. We show that in the absence of Tnpo-SR, proteins typically suppressed in germ cells when they exit mitosis fail to be down-regulated, and oocyte-specific factors fail to accumulate. Together, these findings provide new insight into the balance between germ cell division and differentiation and identify novel roles for β-importins in germ cell development.
Collapse
Affiliation(s)
- Allison N Beachum
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Anna E Williams
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Amanda M Powell
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
8
|
Gao Y, Zhu Y, Wang H, Cheng Y, Zhao D, Sun Q, Chen D. Lipid-mediated phase separation of AGO proteins on the ER controls nascent-peptide ubiquitination. Mol Cell 2022; 82:1313-1328.e8. [PMID: 35325613 DOI: 10.1016/j.molcel.2022.02.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/24/2021] [Accepted: 02/25/2022] [Indexed: 12/27/2022]
Abstract
AGO/miRNA-mediated gene silencing and ubiquitin-mediated protein quality control represent two fundamental mechanisms that control proper gene expression. Here, we unexpectedly discover that fly and human AGO proteins, which are key components in the miRNA pathway, undergo lipid-mediated phase separation and condense into RNP granules on the endoplasmic reticulum (ER) membrane to control protein production. Phase separation on the ER is mediated by electrostatic interactions between a conserved lipid-binding motif within the AGOs and the lipid PI(4,5)P2. The ER-localized AGO condensates recruit the E3 ubiquitin ligase Ltn1 to catalyze nascent-peptide ubiquitination and coordinate with the VCP-Ufd1-Npl4 complex to process unwanted protein products for proteasomal degradation. Collectively, our study provides insight into the understanding of post-transcription-translation coupling controlled by AGOs via lipid-mediated phase separation.
Collapse
Affiliation(s)
- Yajie Gao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Hailong Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Cheng
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming 650500, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
9
|
Zhang F, Chen Y, Shen J, Zhang J. The Ubiquitin Conjugating Enzyme UbcD1 is Required for Notch Signaling Activation During Drosophila Wing Development. Front Genet 2021; 12:770853. [PMID: 34712275 PMCID: PMC8546230 DOI: 10.3389/fgene.2021.770853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Notch signaling pathway plays crucial roles in animal development. Protein ubiquitination contributes to Notch signaling regulation by governing the stability and activity of major signaling components. Studies in Drosophila have identified multiple ubiquitin ligases and deubiquitinating enzymes that modify Notch ligand and receptor proteins. The fate of ubiquitinated substrates depend on topologies of the attached ubiquitin chains, which are determined by the ubiquitin conjugating enzymes (E2 enzymes). However, which E2 enzymes participate in Notch signal transduction remain elusive. Here, we report that the E2 enzyme UbcD1 is required for Notch signaling activation during Drosophila wing development. Mutations of UbcD1 lead to marginal nicks in the adult wing and reduction of Notch signaling targets expression in the wing imaginal disc. Genetic analysis reveal that UbcD1 functions in the signaling receiving cells prior to cleavage of the Notch protein. We provide further evidence suggesting that UbcD1 is likely involved in endocytic trafficking of Notch protein. Our results demonstrate that UbcD1 positively regulates Notch signaling and thus reveal a novel role of UbcD1 in development.
Collapse
Affiliation(s)
- Fengchao Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yao Chen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junzheng Zhang
- MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
11
|
Tao X, Dou Y, Huang G, Sun M, Lu S, Chen D. α-Tubulin Regulates the Fate of Germline Stem Cells in Drosophila Testis. Sci Rep 2021; 11:10644. [PMID: 34017013 PMCID: PMC8138004 DOI: 10.1038/s41598-021-90116-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
The Drosophila testis provides an exemplary model for analyzing the extrinsic and intrinsic factors that regulate the fate of stem cell in vivo. Using this model, we show that the Drosophila αTub67C gene (full name αTubulin at 67C), which encodes α4-Tubulin (a type of α-Tubulin), plays a new role in controlling the fate of male germline stem cells (GSC). In this study, we have found that Drosophila α4-Tubulin is required intrinsically and extrinsically for GSCs maintenance. Results from green fluorescent protein (GFP)-transgene reporter assays show that the gene αTub67C is not required for Dpp/Gbb signaling silencing of bam expression, suggesting that αTub67C functions downstream of or parallel to bam, and is independent of Gbb/Dpp-bam signaling pathway. Furthermore, overexpression of αTub67C fails to obviously increase the number of GSC/Gonialblast (GB). Given that the α-tubulin genes are evolutionarily conserved from yeast to human, which triggers us to study the more roles of the gene α-tubulin in other animals in the future.
Collapse
Affiliation(s)
- Xiaoqian Tao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunqiao Dou
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Guangyu Huang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Mingzhong Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Dongsheng Chen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China. .,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China. .,College of Life Sciences, The Institute of Bioinformatics, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
12
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
13
|
Dorogova NV, Galimova YA, Bolobolova EU, Baricheva EM, Fedorova SA. Loss of Drosophila E3 Ubiquitin Ligase Hyd Promotes Extra Mitosis in Germline Cysts and Massive Cell Death During Oogenesis. Front Cell Dev Biol 2020; 8:600868. [PMID: 33240894 PMCID: PMC7680892 DOI: 10.3389/fcell.2020.600868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
The Drosophila hyperplastic disc (hyd) gene is the ortholog of mammalian tumor suppressor EDD, which is implicated in a wide variety of cellular processes, and its regulation is impaired in various tumors. It is a member of the highly conserved HECT family of E3 ubiquitin ligases, which directly attach ubiquitin to targeted substrates. In early works, it was shown that Drosophila Hyd may be a tumor suppressor because it is involved in the control of imaginal-disc cell proliferation and growth. In this study, we demonstrated that Hyd is also important for the regulation of female germ cell proliferation and that its depletion leads to additional germline cell mitoses. Furthermore, we revealed a previously unknown Hyd function associated with the maintenance of germ cells' viability. A reduction in hyd expression by either mutations or RNA interference resulted in large-scale germ cell death at different stages of oogenesis. Thus, the analysis of phenotypes arising from the hyd deficiency points to Hyd's role in the regulation of germline metabolic processes during oogenesis.
Collapse
Affiliation(s)
- Natalia V Dorogova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Yuliya A Galimova
- Department of the Regulation of Genetic Processes, Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Elena Us Bolobolova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Elina M Baricheva
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| | - Svetlana A Fedorova
- Department of Cell Biology, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
| |
Collapse
|
14
|
Foster S, Oulhen N, Wessel G. A single cell RNA sequencing resource for early sea urchin development. Development 2020; 147:dev.191528. [PMID: 32816969 DOI: 10.1242/dev.191528] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
Identifying cell states during development from their mRNA profiles provides insight into their gene regulatory network. Here, we leverage the sea urchin embryo for its well-established gene regulatory network to interrogate the embryo using single cell RNA sequencing. We tested eight developmental stages in Strongylocentrotus purpuratus, from the eight-cell stage to late in gastrulation. We used these datasets to parse out 22 major cell states of the embryo, focusing on key transition stages for cell type specification of each germ layer. Subclustering of these major embryonic domains revealed over 50 cell states with distinct transcript profiles. Furthermore, we identified the transcript profile of two cell states expressing germ cell factors, one we conclude represents the primordial germ cells and the other state is transiently present during gastrulation. We hypothesize that these cells of the Veg2 tier of the early embryo represent a lineage that converts to the germ line when the primordial germ cells are deleted. This broad resource will hopefully enable the community to identify other cell states and genes of interest to expose the underpinning of developmental mechanisms.
Collapse
Affiliation(s)
- Stephany Foster
- Department of Molecular and Cellular Biology, Division of BioMedicine, Brown University, Providence, RI 02912, USA
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology, Division of BioMedicine, Brown University, Providence, RI 02912, USA
| | - Gary Wessel
- Department of Molecular and Cellular Biology, Division of BioMedicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
15
|
Roman-Trufero M, Ito CM, Pedebos C, Magdalou I, Wang YF, Karimi MM, Moyon B, Webster Z, di Gregorio A, Azuara V, Khalid S, Speck C, Rodriguez T, Dillon N. Evolution of an Amniote-Specific Mechanism for Modulating Ubiquitin Signaling via Phosphoregulation of the E2 Enzyme UBE2D3. Mol Biol Evol 2020; 37:1986-2001. [PMID: 32145025 PMCID: PMC7306689 DOI: 10.1093/molbev/msaa060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic variation in the enzymes that catalyze posttranslational modification of proteins is a potentially important source of phenotypic variation during evolution. Ubiquitination is one such modification that affects turnover of virtually all of the proteins in the cell in addition to roles in signaling and epigenetic regulation. UBE2D3 is a promiscuous E2 enzyme, which acts as an ubiquitin donor for E3 ligases that catalyze ubiquitination of developmentally important proteins. We have used protein sequence comparison of UBE2D3 orthologs to identify a position in the C-terminal α-helical region of UBE2D3 that is occupied by a conserved serine in amniotes and by alanine in anamniote vertebrate and invertebrate lineages. Acquisition of the serine (S138) in the common ancestor to modern amniotes created a phosphorylation site for Aurora B. Phosphorylation of S138 disrupts the structure of UBE2D3 and reduces the level of the protein in mouse embryonic stem cells (ESCs). Substitution of S138 with the anamniote alanine (S138A) increases the level of UBE2D3 in ESCs as well as being a gain of function early embryonic lethal mutation in mice. When mutant S138A ESCs were differentiated into extraembryonic primitive endoderm, levels of the PDGFRα and FGFR1 receptor tyrosine kinases were reduced and primitive endoderm differentiation was compromised. Proximity ligation analysis showed increased interaction between UBE2D3 and the E3 ligase CBL and between CBL and the receptor tyrosine kinases. Our results identify a sequence change that altered the ubiquitination landscape at the base of the amniote lineage with potential effects on amniote biology and evolution.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Constance M Ito
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Conrado Pedebos
- Department of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Indiana Magdalou
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Yi-Fang Wang
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Mohammad M Karimi
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Benjamin Moyon
- Transgenics and ES Cell Facility, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Zoe Webster
- Transgenics and ES Cell Facility, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Aida di Gregorio
- BHF Centre for Research Excellence, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Veronique Azuara
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Syma Khalid
- Department of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Tristan Rodriguez
- BHF Centre for Research Excellence, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
16
|
Proteomic mapping of Drosophila transgenic elav.L-GAL4/+ brain as a tool to illuminate neuropathology mechanisms. Sci Rep 2020; 10:5430. [PMID: 32214222 PMCID: PMC7096425 DOI: 10.1038/s41598-020-62510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Drosophila brain has emerged as a powerful model system for the investigation of genes being related to neurological pathologies. To map the proteomic landscape of fly brain, in a high-resolution scale, we herein employed a nano liquid chromatography-tandem mass spectrometry technology, and high-content catalogues of 7,663 unique peptides and 2,335 single proteins were generated. Protein-data processing, through UniProt, DAVID, KEGG and PANTHER bioinformatics subroutines, led to fly brain-protein classification, according to sub-cellular topology, molecular function, implication in signaling and contribution to neuronal diseases. Given the importance of Ubiquitin Proteasome System (UPS) in neuropathologies and by using the almost completely reassembled UPS, we genetically targeted genes encoding components of the ubiquitination-dependent protein-degradation machinery. This analysis showed that driving RNAi toward proteasome components and regulators, using the GAL4-elav.L driver, resulted in changes to longevity and climbing-activity patterns during aging. Our proteomic map is expected to advance the existing knowledge regarding brain biology in animal species of major translational-research value and economical interest.
Collapse
|
17
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
18
|
Genetic Variation and Potential for Resistance Development to the tTA Overexpression Lethal System in Insects. G3 (BETHESDA, MD.) 2020; 10:1271-1281. [PMID: 32019873 PMCID: PMC7144068 DOI: 10.1534/g3.120.400990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Release of insect pests carrying the dominant lethal tetracycline transactivator (tTA) overexpression system has been proposed as a means for population suppression. High levels of the tTA transcription factor are thought to be toxic due to either transcriptional squelching or interference with protein ubiquitination. Here we utilized the Drosophila melanogaster Genetic Reference Panel (DGRP) to examine the influence of genetic variation on the efficacy of a female-specific tTA overexpression system. The level of female lethality between DGRP lines varied from 11 to 97% with a broad sense heritability of 0.89. A genome-wide association analysis identified 192 allelic variants associated with high or low lethality (P < 10-5), although none were significant when corrected for multiple testing. 151 of the variants fell within 108 genes that were associated with several biological processes including transcription and protein ubiquitination. In four lines with high female lethality, tTA RNA levels were similar or higher than in the parental tTA overexpression strain. In two lines with low lethality, tTA levels were about two fold lower than in the parental strain. However, in two other lines with low lethality, tTA levels were similar or approximately 30% lower. RNAseq analysis identified genes that were up or downregulated in the four low female lethal lines compared to the four high lethal lines. For example, genes associated with RNA processing and rRNA maturation were significantly upregulated in low lethal lines. Our data suggest that standing genetic variation in an insect population could provide multiple mechanisms for resistance to the tTA overexpression system.
Collapse
|
19
|
Kahney EW, Snedeker JC, Chen X. Regulation of Drosophila germline stem cells. Curr Opin Cell Biol 2019; 60:27-35. [PMID: 31014993 DOI: 10.1016/j.ceb.2019.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
The asymmetric division of adult stem cells into one self-renewing stem cell and one differentiating cell is critical for maintaining homeostasis in many tissues. One paradigmatic model of this division is the Drosophila male and female germline stem cell, which provides two model systems not only sharing common features but also having distinct characteristics for studying asymmetric stem cell division in vivo. This asymmetric division is controlled by a combination of extrinsic signaling molecules and intrinsic factors that are either asymmetrically segregated or regulated differentially following division. In this review, we will discuss recent advances in understanding the molecular and cellular mechanisms guiding this asymmetric outcome, including extrinsic cues, intrinsic factors governing cell fate specification, and cell cycle control.
Collapse
Affiliation(s)
- Elizabeth W Kahney
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jonathan C Snedeker
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
20
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
21
|
Chen D, Wang S, Tao X, Zhou L, Wang J, Sun F, Sun M, Gao X. Hsp83 regulates the fate of germline stem cells in Drosophila ovary. J Genet Genomics 2018; 45:219-222. [PMID: 29705561 DOI: 10.1016/j.jgg.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/29/2017] [Accepted: 01/10/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Dongsheng Chen
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Shuang Wang
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xiaoqian Tao
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Zhou
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jian Wang
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Fuling Sun
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Mingzhong Sun
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xiaoli Gao
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
22
|
Chen D, Zhou L, Sun F, Sun M, Tao X. Cyclin B3 Deficiency Impairs Germline Stem Cell Maintenance and Its Overexpression Delays Cystoblast Differentiation in Drosophila Ovary. Int J Mol Sci 2018; 19:ijms19010298. [PMID: 29351213 PMCID: PMC5796243 DOI: 10.3390/ijms19010298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 11/16/2022] Open
Abstract
It is well known that cyclinB3 (cycB3) plays a key role in the control of cell cycle progression. However, whether cycB3 is involved in stem cell fate determination remains unknown. The Drosophila ovary provides an exclusive model for studying the intrinsic and extrinsic factors that modulate the fate of germline stem cells (GSCs). Here, using this model, we show that DrosophilacycB3 plays a new role in controlling the fate of germline stem cells (GSC). Results from cycB3 genetic analyses demonstrate that cycB3 is intrinsically required for GSC maintenance. Results from green fluorescent protein (GFP)-transgene reporter assays show that cycB3 is not involved in Dad-mediated regulation of Bmp signaling, or required for dpp-induced bam transcriptional silencing. Double mutants of bam and cycB3 phenocopied bam single mutants, suggesting that cycB3 functions in a bam-dependent manner in GSCs. Deficiency of cycB3 fails to cause apoptosis in GSCs or influence cystoblast (CB) differentiation into oocytes. Furthermore, overexpression of cycB3 dramatically increases the CB number in Drosophila ovaries, suggesting that an excess of cycB3 function delays CB differentiation. Given that the cycB3 gene is evolutionarily conserved, from insects to humans, cycB3 may also be involved in controlling the fate of GSCs in humans.
Collapse
Affiliation(s)
- Dongsheng Chen
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Lijuan Zhou
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Fuling Sun
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Mingzhong Sun
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Xiaoqian Tao
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
23
|
Membrane targeting of inhibitory Smads through palmitoylation controls TGF-β/BMP signaling. Proc Natl Acad Sci U S A 2017; 114:13206-13211. [PMID: 29180412 PMCID: PMC5740658 DOI: 10.1073/pnas.1710540114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
TGF-β/BMP (bone morphogenetic protein) signaling pathways play conserved roles in controlling embryonic development, tissue homeostasis, and stem cell regulation. Inhibitory Smads (I-Smads) have been shown to negatively regulate TGF-β/BMP signaling by primarily targeting the type I receptors for ubiquitination and turnover. However, little is known about how I-Smads access the membrane to execute their functions. Here we show that Dad, the Drosophila I-Smad, associates with the cellular membrane via palmitoylation, thereby targeting the BMP type I receptor for ubiquitination. By performing systematic biochemistry assays, we characterized the specific cysteine (Cys556) essential for Dad palmitoylation and membrane association. Moreover, we demonstrate that dHIP14, a Drosophila palmitoyl acyl-transferase, catalyzes Dad palmitoylation, thereby inhibiting efficient BMP signaling. Thus, our findings uncover a modification of the inhibitory Smads that controls TGF-β/BMP signaling activity.
Collapse
|
24
|
Chen D, Tao X, Zhou L, Sun F, Sun M, Fang X. Spaghetti, a homolog of human RPAP3 (RNA polymerase II-associated protein 3), determines the fate of germline stem cells in Drosophila ovary. Cell Biol Int 2017; 42:769-780. [PMID: 29110400 DOI: 10.1002/cbin.10900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/22/2017] [Indexed: 11/11/2022]
Abstract
The Drosophila ovary provides an attractive model for studying the extrinsic or intrinsic factors that regulate the fate of germline stem cells (GSCs). Using this model, we identified a new role for Drosophila spaghetti (spag), encoding a homolog of human RNA polymerase II-associated protein 3 (RPAP3), in regulating the fate of ovarian GSCs. Results from spag knockdown and genetic mosaic studies suggest that spag functions as an intrinsic factor for GSCs maintenance. Loss of Spag by, either spag RNAi or null mutation failed to trigger apoptosis in ovarian GSCs. Overexpression of spag led to negligible increases in the number of GSC/Cystoblast (CB) cells, suggesting that an excess of Spag is not sufficient to accelerate the proliferation of GSCs or delay CBs' differentiation. Our study provides evidence supporting that spag is involved in adult stem cells maintenance. In addition, the RNAi screen results showed that knockdown of Hsp90, one of known Spag interacting partners, led to loss of ovarian GSCs in Drosophila. Heterozygous mutations in hsp90 (hsp90/+) dramatically accelerated the GSC loss in spag RNAi ovaries, suggesting that the Spag-contained complex possibly plays an essential role in controlling the GSCs fate.
Collapse
Affiliation(s)
- Dongsheng Chen
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, 241000, P.R. China.,The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Xiaoqian Tao
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, 241000, P.R. China
| | - Lijuan Zhou
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, 241000, P.R. China
| | - Fuling Sun
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, 241000, P.R. China
| | - Mingzhong Sun
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, 241000, P.R. China
| | - Xin Fang
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, #1 Beijing East Road, Wuhu, Anhui, 241000, P.R. China
| |
Collapse
|
25
|
Pan C, Xiong Y, Lv X, Xia Y, Zhang S, Chen H, Fan J, Wu W, Liu F, Wu H, Zhou Z, Zhang L, Zhao Y. UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing. EMBO Rep 2017; 18:1922-1934. [PMID: 28887318 PMCID: PMC5666607 DOI: 10.15252/embr.201643289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023] Open
Abstract
The Hh pathway controls many morphogenetic processes in metazoans and plays important roles in numerous pathologies and in cancer. Hh signaling is mediated by the activity of the Gli/Ci family of transcription factors. Several studies in Drosophila have shown that ubiquitination by the ubiquitin E3 ligases Slimb and Rdx(Hib) plays a crucial role in controlling Ci stability dependent on the levels of Hh signals. If Hh levels are low, Slimb adds K11- and K48-linked poly-ubiquitin chains on Ci resulting in partial degradation. Ubiquitin E2 enzymes are pivotal in determining the topologies of ubiquitin chains. However, which E2 enzymes participate in the selective ubiquitination-degradation of Ci remains elusive. Here, we find that the E2 enzyme UbcD1 negatively regulates Hh signaling activity in Drosophila wing disks. Genetic and biochemical analyses in wing disks and in cultured cells reveal that UbcD1 directly controls Ci stability. Interestingly, UbcD1 is found to be selectively involved in Slimb-mediated Ci degradation. Finally, we show that the homologs of UbcD1 play a conserved role in modulating Hh signaling in vertebrates.
Collapse
Affiliation(s)
- Chenyu Pan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yue Xiong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangdong Lv
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanxin Xia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuo Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jialin Fan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hailong Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
26
|
Chen D, Zhu X, Zhou L, Wang J, Tao X, Wang S, Sun F, Kan X, Han Z, Gu Y. Gilgamesh is required for the maintenance of germline stem cells in Drosophila testis. Sci Rep 2017; 7:5737. [PMID: 28720768 PMCID: PMC5515886 DOI: 10.1038/s41598-017-05975-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/06/2017] [Indexed: 11/15/2022] Open
Abstract
Emerging evidence supports that stem cells are regulated by both intrinsic and extrinsic mechanisms. However, factors that determine the fate of stem cells remain incompletely understood. The Drosophila testis provides an exclusive powerful model in searching for potential important regulatory factors and their underlying mechanisms for controlling the fate of germline stem cells (GSCs). In this study, we have found that Drosophila gilgamesh (gish), which encodes a homologue of human CK1-γ (casein kinase 1-gamma), is required intrinsically for GSC maintenance. Our genetic analyses indicate gish is not required for Dpp/Gbb signaling silencing of bam and is dispensable for Dpp/Gbb signaling-dependent Dad expression. Finally, we show that overexpression of gish fail to dramatically increase the number of GSCs. These findings demonstrate that gish controls the fate of GSCs in Drosophila testis by a novel Dpp/Gbb signaling-independent pathway.
Collapse
Affiliation(s)
- Dongsheng Chen
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China. .,The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Xiangxiang Zhu
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Lijuan Zhou
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Jian Wang
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Xiaoqian Tao
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shuang Wang
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Fuling Sun
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Xianzhao Kan
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.,The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Zhengqi Han
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yuelin Gu
- Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
27
|
Hinnant TD, Alvarez AA, Ables ET. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline. Dev Biol 2017; 429:118-131. [PMID: 28711427 DOI: 10.1016/j.ydbio.2017.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Arturo A Alvarez
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
28
|
Bam and Otu can regulate stem cell fate by stabilizing cyclin A. Proc Natl Acad Sci U S A 2017; 114:6154-6156. [PMID: 28584130 DOI: 10.1073/pnas.1706840114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Berdan EL, Finck J, Johnston PR, Waurick I, Mazzoni CJ, Mayer F. Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus. PLoS One 2017; 12:e0177367. [PMID: 28520760 PMCID: PMC5435247 DOI: 10.1371/journal.pone.0177367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/19/2017] [Indexed: 12/03/2022] Open
Abstract
Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development.
Collapse
Affiliation(s)
- Emma L. Berdan
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Jonas Finck
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Isabelle Waurick
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Camila J. Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
30
|
Bam-dependent deubiquitinase complex can disrupt germ-line stem cell maintenance by targeting cyclin A. Proc Natl Acad Sci U S A 2017; 114:6316-6321. [PMID: 28484036 DOI: 10.1073/pnas.1619188114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drosophila germ-line stem cells (GSCs) provide an excellent model to study the regulatory mechanisms of stem cells in vivo. Bag of marbles (bam) has been demonstrated to be necessary and sufficient to promote GSC and cystoblast differentiation. Despite extensive investigation of its regulation and genetic functions, the biochemical nature of the Bam protein has been unknown. Here, we report that Bam is an ubiquitin-associated protein and controls the turnover of cyclin A (CycA). Mechanistically, we found that Bam associated with Otu to form a deubiquitinase complex that stabilized CycA by deubiquitination, thus providing a mechanism to explain how ectopic expression of Bam in GSCs promotes differentiation. Collectively, our findings not only identify a biochemical function of Bam, which contributes to GSC fate determination, but also emphasizes the critical role of proper expression of cyclin proteins mediated by both ubiquitination and deubiquitination pathways in balancing stem cell self-renewal and differentiation.
Collapse
|
31
|
Liu T, Wang Q, Li W, Mao F, Yue S, Liu S, Liu X, Xiao S, Xia L. Gcn5 determines the fate of
Drosophila
germline stem cells through degradation of Cyclin A. FASEB J 2017; 31:2185-2194. [DOI: 10.1096/fj.201601217r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Tianqi Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Department of Developmental BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qi Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Wenqing Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Feiyu Mao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Shanshan Yue
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Sun Liu
- Department of Developmental BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Xiaona Liu
- Department of Developmental BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shan Xiao
- Department of Developmental BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Laixin Xia
- Department of Developmental BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
32
|
Berdan EL, Blankers T, Waurick I, Mazzoni CJ, Mayer F. A genes eye view of ontogeny: de novo assembly and profiling of the Gryllus rubens transcriptome. Mol Ecol Resour 2016; 16:1478-1490. [PMID: 27037604 DOI: 10.1111/1755-0998.12530] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 12/01/2022]
Abstract
Crickets (Orthoptera:Gryllidae) are widely used model organisms for developmental, evolutionary, neurobiological and behavioural research. Here, we developed a de novo transcriptome from pooled RNA-seq Illumina data spanning seven stages in the life cycle of Gryllus rubens. Approximately 705 Mbp of data was assembled and filtered to form 27 312 transcripts. We were able to annotate 52% of our transcripts using BLAST and assign at least one gene ontology term to 41%. Pooled samples from three different ontogenetic stages were used for transcriptomic profiling revealing patterns of differential gene expression that highlight processes in the different life stages. Embryonic and early instar development was enriched for ecdysteroid metabolism, cytochrome P450s and glutathione production. Late instar development was enriched for regulation of gene expression and many of the genes highly expressed during this stage were involved in conserved developmental signalling pathways suggesting that these developmental pathways are active beyond embryonic development. Adults were enriched for fat transport (mostly relating to egg production) and production of octopamine, an important neurohormone. We also identified genes involved in conserved developmental pathways (Hedgehog, Hippo, Wnt, JAK/STAT, TGF-beta, Notch, and MEK/ERK). This is the first transcriptome spanning ontogeny in Gryllus rubens and a valuable resource for future work on development and evolution in Orthoptera.
Collapse
Affiliation(s)
- Emma L Berdan
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany.
| | - Thomas Blankers
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany.,Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, D-10115, Berlin, Germany
| | - Isabelle Waurick
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Koenigin-Luise-Str 6-8, 14195, Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstraße 6, 14195, Berlin, Germany
| |
Collapse
|
33
|
Kotov AA, Olenkina OM, Kibanov MV, Olenina LV. RNA helicase Belle (DDX3) is essential for male germline stem cell maintenance and division in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1093-105. [PMID: 26876306 DOI: 10.1016/j.bbamcr.2016.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 01/08/2023]
Abstract
The present study showed that RNA helicase Belle (DDX3) was required intrinsically for mitotic progression and survival of germline stem cells (GSCs) and spermatogonial cells in the Drosophila melanogaster testes. We found that deficiency of Belle in the male germline resulted in a strong germ cell loss phenotype. Early germ cells are lost through cell death, whereas somatic hub and cyst cell populations are maintained. The observed phenotype is related to that of the human Sertoli Cell-Only Syndrome caused by the loss of DBY (DDX3) expression in the human testes and results in a complete lack of germ cells with preservation of somatic Sertoli cells. We found the hallmarks of mitotic G2 delay in early germ cells of the larval testes of bel mutants. Both mitotic cyclins, A and B, are markedly reduced in the gonads of bel mutants. Transcription levels of cycB and cycA decrease significantly in the testes of hypomorph bel mutants. Overexpression of Cyclin B in the germline partially rescues germ cell survival, mitotic progression and fertility in the bel-RNAi knockdown testes. Taken together, these results suggest that a role of Belle in GSC maintenance and regulation of early germ cell divisions is associated with the expression control of mitotic cyclins.
Collapse
Affiliation(s)
- Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Oxana M Olenkina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Mikhail V Kibanov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia.
| |
Collapse
|
34
|
Li C, Kan L, Chen Y, Zheng X, Li W, Zhang W, Cao L, Lin X, Ji S, Huang S, Zhang G, Liu X, Tao Y, Wu S, Chen D. Ci antagonizes Hippo signaling in the somatic cells of the ovary to drive germline stem cell differentiation. Cell Res 2015; 25:1152-70. [PMID: 26403189 DOI: 10.1038/cr.2015.114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/02/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022] Open
Abstract
Many stem cell populations are tightly regulated by their local microenvironment (niche), which comprises distinct types of stromal cells. However, little is known about mechanisms by which niche subgroups coordinately determine the stem cell fate. Here we identify that Yki, the key Hippo pathway component, is essential for escort cell (EC) function in promoting germline differentiation in Drosophila ovary. We found that Hedgehog (Hh) signals emanating primarily from cap cells support the function of ECs, where Cubitus interruptus (Ci), the Hh signaling effector, acts to inhibit Hippo kinase cascade activity. Mechanistically, we found that Ci competitively interacts with Hpo and impairs the Hpo-Wts signaling complex formation, thereby promoting Yki nuclear localization. The actions of Ci ensure effective Yki signaling to antagonize Sd/Tgi/Vg-mediated default repression in ECs. This study uncovers a mechanism explaining how subgroups of niche cells coordinate to determine the stem cell fate via Hh-Hippo signaling crosstalk, and enhances our understanding of mechanistic regulations of the oncogenic Yki/YAP signaling.
Collapse
Affiliation(s)
- Chaoyi Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Lijuan Kan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Yan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiudeng Zheng
- Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weini Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Wenxin Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Lei Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaohui Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shanming Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Shoujun Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Guoqiang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| | - Xiaohui Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yi Tao
- Centre for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang, Beijing 100101, China
| |
Collapse
|
35
|
Flores HA, Bubnell JE, Aquadro CF, Barbash DA. The Drosophila bag of marbles Gene Interacts Genetically with Wolbachia and Shows Female-Specific Effects of Divergence. PLoS Genet 2015; 11:e1005453. [PMID: 26291077 PMCID: PMC4546362 DOI: 10.1371/journal.pgen.1005453] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/20/2015] [Indexed: 01/09/2023] Open
Abstract
Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes.
Collapse
Affiliation(s)
- Heather A. Flores
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jaclyn E. Bubnell
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Daniel A. Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Stem cells give rise to tissues and organs during development and maintain their integrity during adulthood. They have the potential to self-renew or differentiate at each division. To ensure proper organ growth and homeostasis, self-renewal versus differentiation decisions need to be tightly controlled. Systematic genetic studies in Drosophila melanogaster are revealing extensive regulatory networks that control the switch between stem cell self-renewal and differentiation in the germline. These networks, which are based primarily on mutual translational repression, act via interlocked feedback loops to provide robustness to this important fate decision.
Collapse
Affiliation(s)
- Maija Slaidina
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016 Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Ruth Lehmann
- Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016 Howard Hughes Medical Institute and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
37
|
Matias NR, Mathieu J, Huynh JR. Abscission is regulated by the ESCRT-III protein shrub in Drosophila germline stem cells. PLoS Genet 2015; 11:e1004653. [PMID: 25647097 PMCID: PMC4372032 DOI: 10.1371/journal.pgen.1004653] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/31/2014] [Indexed: 11/18/2022] Open
Abstract
Abscission is the final event of cytokinesis that leads to the physical separation of the two daughter cells. Recent technical advances have allowed a better understanding of the cellular and molecular events leading to abscission in isolated yeast or mammalian cells. However, how abscission is regulated in different cell types or in a developing organism remains poorly understood. Here, we characterized the function of the ESCRT-III protein Shrub during cytokinesis in germ cells undergoing a series of complete and incomplete divisions. We found that Shrub is required for complete abscission, and that levels of Shrub are critical for proper timing of abscission. Loss or gain of Shrub delays abscission in germline stem cells (GSCs), and leads to the formation of stem-cysts, where daughter cells share the same cytoplasm as the mother stem cell and cannot differentiate. In addition, our results indicate a negative regulation of Shrub by the Aurora B kinase during GSC abscission. Finally, we found that Lethal giant discs (lgd), known to be required for Shrub function in the endosomal pathway, also regulates the duration of abscission in GSCs. Abscission is the final step of cytokinesis which allows the physical separation of sister cells through the scission of a thin cytoplasmic bridge that links them at the end of mitosis. The duration of abscission varies depending on cell types, indicating that the event is developmentally regulated. Recently, we have identified two kinases, Aurora B and CycB/Cdk-1, which regulate the timing of abscission in germ cells and in mammalian cells. However, these kinases are upstream regulators and do not perform abscission per se. Here, we show that Shrub, a potential target of Aurora B and one of the most downstream effectors of abscission, is required for complete abscission in germline stem cells. In the absence of Shrub, the mother stem cell remains linked to its daughter cells, which then share the same cytoplasm and cannot differentiate. Loss of Shrub and Aurora B have opposite effects on abscission duration suggesting that Aurora B regulates negatively Shrub. We further show that Shrub acts together with its interactor Lethal giant disc to ensure proper abscission timing.
Collapse
Affiliation(s)
- Neuza Reis Matias
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
- CNRS UMR3215, Inserm U934, Paris, France
| | - Juliette Mathieu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
- CNRS UMR3215, Inserm U934, Paris, France
- * E-mail: (JM); (JRH)
| | - Jean-René Huynh
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
- CNRS UMR3215, Inserm U934, Paris, France
- * E-mail: (JM); (JRH)
| |
Collapse
|
38
|
Kao S, Tseng C, Wan C, Su Y, Hsieh C, Pi H, Hsu H. Aging and insulin signaling differentially control normal and tumorous germline stem cells. Aging Cell 2015; 14:25-34. [PMID: 25470527 PMCID: PMC4326914 DOI: 10.1111/acel.12288] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2014] [Indexed: 01/01/2023] Open
Abstract
Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC–male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging.
Collapse
Affiliation(s)
- Shih‐Han Kao
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
| | - Chen‐Yuan Tseng
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
- Graduate Institute of Life Sciences National Defense Medical Center Taipei 11490 Taiwan
| | - Chih‐Ling Wan
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
| | - Yu‐Han Su
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
| | - Chang‐Che Hsieh
- Department of Biomedical Science College of Medicine Chang Gung University Tao‐Yuan 333 Taiwan
| | - Haiwei Pi
- Department of Biomedical Science College of Medicine Chang Gung University Tao‐Yuan 333 Taiwan
| | - Hwei‐Jan Hsu
- Institute of Cellular and Organismic Biology Academia Sinica Taipei 11529 Taiwan
- Graduate Institute of Life Sciences National Defense Medical Center Taipei 11490 Taiwan
| |
Collapse
|
39
|
Chen D, Wu C, Zhao S, Geng Q, Gao Y, Li X, Zhang Y, Wang Z. Three RNA binding proteins form a complex to promote differentiation of germline stem cell lineage in Drosophila. PLoS Genet 2014; 10:e1004797. [PMID: 25412508 PMCID: PMC4238977 DOI: 10.1371/journal.pgen.1004797] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 10/02/2014] [Indexed: 12/25/2022] Open
Abstract
In regenerative tissues, one of the strategies to protect stem cells from genetic aberrations, potentially caused by frequent cell division, is to transiently expand the stem cell daughters before further differentiation. However, failure to exit the transit amplification may lead to overgrowth, and the molecular mechanism governing this regulation remains vague. In a Drosophila mutagenesis screen for factors involved in the regulation of germline stem cell (GSC) lineage, we isolated a mutation in the gene CG32364, which encodes a putative RNA-binding protein (RBP) and is designated as tumorous testis (tut). In tut mutant, spermatogonia fail to differentiate and over-amplify, a phenotype similar to that in mei-P26 mutant. Mei-P26 is a TRIM-NHL tumor suppressor homolog required for the differentiation of GSC lineage. We found that Tut binds preferentially a long isoform of mei-P26 3′UTR, and is essential for the translational repression of mei-P26 reporter. Bam and Bgcn are both RBPs that have also been shown to repress mei-P26 expression. Our genetic analyses indicate that tut, bam, or bgcn is required to repress mei-P26 and to promote the differentiation of GSCs. Biochemically, we demonstrate that Tut, Bam, and Bgcn can form a physical complex in which Bam holds Tut on its N-terminus and Bgcn on its C-terminus. Our in vivo and in vitro evidence illustrate that Tut acts with Bam, Bgcn to accurately coordinate proliferation and differentiation in Drosophila germline stem cell lineage. In regenerative tissues, the successive differentiation of stem cell lineage is well controlled and coordinated with proper cell proliferation at each differentiation stage. Disruption of the control mechanism can lead to tumor growth or tissue degeneration. The germline stem cell lineage of Drosophila spermatogenesis provides an ideal research model to unravel the genetic network coordinating proliferation and differentiation. In a genetic screen, we identified a male-sterile mutant whose germ cells are under-differentiated and overproliferating. The responsible gene encodes an RNA-binding protein whose target belongs to a tumor suppressor family. We demonstrate that this and two other RNA-binding proteins form a physical and functional unit to ensure the proper differentiation and accurate proliferation of germline stem cell lineage.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China,
- The University of Chinese Academy of Sciences, Beijing, P.R. China,
| | - Chan Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China,
- The University of Chinese Academy of Sciences, Beijing, P.R. China,
| | - Shaowei Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China,
- The University of Chinese Academy of Sciences, Beijing, P.R. China,
| | - Qing Geng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China,
- The University of Chinese Academy of Sciences, Beijing, P.R. China,
| | - Yu Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China,
- The University of Chinese Academy of Sciences, Beijing, P.R. China,
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China,
| | - Yang Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China,
- The University of Chinese Academy of Sciences, Beijing, P.R. China,
| | - Zhaohui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China,
- * E-mail:
| |
Collapse
|
40
|
Huang H, Li Y, Szulwach KE, Zhang G, Jin P, Chen D. AGO3 Slicer activity regulates mitochondria-nuage localization of Armitage and piRNA amplification. ACTA ACUST UNITED AC 2014; 206:217-30. [PMID: 25049272 PMCID: PMC4107788 DOI: 10.1083/jcb.201401002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endonuclease AGO3 and mitochondria-associated protein Zucchini together control the dynamic subcellular localization of Armitage between mitochondria and germline granules to regulate secondary piRNA amplification. In Drosophila melanogaster the reciprocal “Ping-Pong” cycle of PIWI-interacting RNA (piRNA)–directed RNA cleavage catalyzed by the endonuclease (or “Slicer”) activities of the PIWI proteins Aubergine (Aub) and Argonaute3 (AGO3) has been proposed to expand the secondary piRNA population. However, the role of AGO3/Aub Slicer activity in piRNA amplification remains to be explored. We show that AGO3 Slicer activity is essential for piRNA amplification and that AGO3 inhibits the homotypic Aub:Aub Ping-Pong process in a Slicer-independent manner. We also find that expression of an AGO3 Slicer mutant causes ectopic accumulation of Armitage, a key component in the primary piRNA pathway, in the Drosophila melanogaster germline granules known as nuage. AGO3 also coexists and interacts with Armitage in the mitochondrial fraction. Furthermore, AGO3 acts in conjunction with the mitochondria-associated protein Zucchini to control the dynamic subcellular localization of Armitage between mitochondria and nuage in a Slicer-dependent fashion. Collectively, our findings uncover a new mechanism that couples mitochondria with nuage to regulate secondary piRNA amplification.
Collapse
Affiliation(s)
- Haidong Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Keith E Szulwach
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Guoqiang Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
41
|
Huang S, Zhang Z, Zhang C, Lv X, Zheng X, Chen Z, Sun L, Wang H, Zhu Y, Zhang J, Yang S, Lu Y, Sun Q, Tao Y, Liu F, Zhao Y, Chen D. Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover. PLoS Biol 2013; 11:e1001721. [PMID: 24302888 PMCID: PMC3841102 DOI: 10.1371/journal.pbio.1001721] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/18/2013] [Indexed: 12/26/2022] Open
Abstract
Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development.
Collapse
Affiliation(s)
- Shoujun Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunxia Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Lv
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiudeng Zheng
- Centre for Computational and Evolutionary Biology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Animal Ecology, Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenping Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liwei Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanxiang Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Shuyan Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qinmiao Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Yi Tao
- Key Laboratory of Animal Ecology, Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Cipressa F, Cenci G. Effete, an E2 ubiquitin-conjugating enzyme with multiple roles in Drosophila development and chromatin organization. Fly (Austin) 2013; 7:256-62. [PMID: 24088712 DOI: 10.4161/fly.26567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Drosophila effete gene encodes an extremely conserved class I E2 ubiquitin-conjugating enzyme. Growing evidence indicates that Eff is involved in many cellular processes including eye development, maintenance of female germline stem cells, and regulation of apoptosis. Eff is also a major component of Drosophila chromatin and it is particularly enriched in chromatin with repressive properties. In addition, Eff is required for telomere protection and to prevent telomere fusion. Consistent with its multiple roles in chromatin maintenance, Eff is also one of the rare factors that modulate both telomere-induced and heterochromatin-induced position effect variegation.
Collapse
Affiliation(s)
- Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| |
Collapse
|
43
|
Effete, a Drosophila chromatin-associated ubiquitin-conjugating enzyme that affects telomeric and heterochromatic position effect variegation. Genetics 2013; 195:147-58. [PMID: 23821599 DOI: 10.1534/genetics.113.153320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drosophila telomeres are elongated by the transposition of telomere-specific retrotransposons rather than telomerase activity. Proximal to the terminal transposon array, Drosophila chromosomes contain several kilobases of a complex satellite DNA termed telomere-associated sequences (TASs). Reporter genes inserted into or next to the TAS are silenced through a mechanism called telomere position effect (TPE). TPE is reminiscent of the position effect variegation (PEV) induced by Drosophila constitutive heterochromatin. However, most genes that modulate PEV have no effect on TPE, and systematic searches for TPE modifiers have so far identified only a few dominant suppressors. Surprisingly, only a few of the genes required to prevent telomere fusion have been tested for their effect on TPE. Here, we show that with the exception of the effete (eff; also called UbcD1) mutant alleles, none of the tested mutations at the other telomere fusion genes affects TPE. We also found that mutations in eff, which encodes a class I ubiquitin-conjugating enzyme, act as suppressors of PEV. Thus, eff is one of the rare genes that can modulate both TPE and PEV. Immunolocalization experiments showed that Eff is a major constituent of polytene chromosomes. Eff is enriched at several euchromatic bands and interbands, the TAS regions, and the chromocenter. Our results suggest that Eff associates with different types of chromatin affecting their abilities to regulate gene expression.
Collapse
|
44
|
Xuan T, Xin T, He J, Tan J, Gao Y, Feng S, He L, Zhao G, Li M. dBre1/dSet1-dependent pathway for histone H3K4 trimethylation has essential roles in controlling germline stem cell maintenance and germ cell differentiation in the Drosophila ovary. Dev Biol 2013; 379:167-81. [PMID: 23624310 DOI: 10.1016/j.ydbio.2013.04.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/27/2013] [Accepted: 04/13/2013] [Indexed: 11/28/2022]
Abstract
The Drosophila ovarian germline stem cells (GSCs) constantly experience self-renewal and differentiation, ensuring the female fertility throughout life. The balance between GSC self-renewal and differentiation is exquisitely regulated by the stem cell niche, the stem cells themselves and systemic factors. Increasing evidence has shown that the GSC regulation also involves epigenetic mechanisms including chromatin remodeling and histone modification. Here, we find that dBre1, an E3 ubiquitin ligase, functions in controlling GSC self-renewal and germ cell differentiation via distinct mechanisms. Removal or knock down of dBre1 function in the germline or somatic niche cell lineage leads to a gradual GSC loss and disruption of H3K4 trimethylation in the Drosophila ovary. Further studies suggest that the defective GSC maintenance is attributable to compromised BMP signaling emitted from the stem cell niche and impaired adhesion of GSCs to their niche. On the other hand, dBre1-RNAi expression in escort cells causes a loss of H3K4 trimethylation and accumulation of spectrosome-containing single germ cells in the germarium. Reducing dpp or dally levels suppresses the germ cell differentiation defects, indicating that dBre1 limits BMP signaling activities for the differentiation control. Strikingly, all phenotypes observed in dBre1 mutant ovaries can be mimicked by RNAi-based reduced expression of dSet1, a Drosophila H3K4 trimethylase. Moreover, genetic studies favor that dBre1 interacts with dSet1 in controlling GSC maintenance and germ cell differentiation. Taken together, we identify a dBre1/dSet1-dependent pathway for the H3K4 methylation involved in the cell fate regulation in the Drosophila ovary.
Collapse
Affiliation(s)
- Tao Xuan
- MoE Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases, Bio-X Institutes, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ables ET, Drummond-Barbosa D. Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. Development 2013; 140:530-40. [PMID: 23293285 DOI: 10.1242/dev.088583] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stem cells must proliferate while maintaining 'stemness'; however, much remains to be learned about how factors that control the division of stem cells influence their identity. Multiple stem cell types display cell cycles with short G1 phases, thought to minimize susceptibility to differentiation factors. Drosophila female germline stem cells (GSCs) have short G1 and long G2 phases, and diet-dependent systemic factors often modulate G2. We previously observed that Cyclin E (CycE), a known G1/S regulator, is atypically expressed in GSCs during G2/M; however, it remained unclear whether CycE has cell cycle-independent roles in GSCs or whether it acts exclusively by modulating the cell cycle. In this study, we detected CycE activity during G2/M, reflecting its altered expression pattern, and showed that CycE and its canonical partner, Cyclin-dependent kinase 2 (Cdk2), are required not only for GSC proliferation, but also for GSC maintenance. In genetic mosaics, CycE- and Cdk2-deficient GSCs are rapidly lost from the niche, remain arrested in a G1-like state, and undergo excessive growth and incomplete differentiation. However, we found that CycE controls GSC maintenance independently of its role in the cell cycle; GSCs harboring specific hypomorphic CycE mutations are not efficiently maintained despite normal proliferation rates. Finally, CycE-deficient GSCs have an impaired response to niche bone morphogenetic protein signals that are required for GSC self-renewal, suggesting that CycE modulates niche-GSC communication. Taken together, these results show unequivocally that the roles of CycE/Cdk2 in GSC division cycle regulation and GSC maintenance are separable, and thus potentially involve distinct sets of phosphorylation targets.
Collapse
Affiliation(s)
- Elizabeth T Ables
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
46
|
Dual roles of Hh signaling in the regulation of somatic stem cell self-renewal and germline stem cell maintenance in Drosophila testis. Cell Res 2013; 23:573-6. [PMID: 23419515 DOI: 10.1038/cr.2013.29] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
47
|
Wolgemuth DJ, Manterola M, Vasileva A. Role of cyclins in controlling progression of mammalian spermatogenesis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2013; 57:159-68. [PMID: 23784826 PMCID: PMC3982229 DOI: 10.1387/ijdb.130047av] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyclins are key regulators of the mammalian cell cycle, functioning primarily in concert with their catalytic partners, the cyclin-dependent kinases (Cdks). While their function during mitosis in somatic cells has been extensively documented, their function during both mitosis and meiosis in the germ line is poorly understood. From the perspective of cell cycle regulation there are several aspects of mammalian spermatogenesis that suggest unique modes of regulation and hence, possible unique functions for the cyclins. This review will summarize our current understanding of cyclin expression and function in the male germ line, with particular focus on the A and E type cyclins in the mouse model. While the focus is on mammalian spermatogenesis, we note contrasts with similar functions in the female germ line when relevant and also draw upon observations in other model systems to provide further insight.
Collapse
Affiliation(s)
- Debra J Wolgemuth
- Departments of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
48
|
Xie T. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:261-73. [PMID: 24009036 DOI: 10.1002/wdev.60] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the Drosophila ovary, germline stem cells (GSCs) physically interact with their niche composed of terminal filament cells, cap cells, and possibly GSC-contacting escort cells (ECs). A GSC divides to generate a self-renewing stem cell that remains in the niche and a differentiating daughter that moves away from the niche. The GSC niche provides a bone morphogenetic protein (BMP) signal that maintains GSC self-renewal by preventing stem cell differentiation via repression of the differentiation-promoting gene bag of marbles (bam). In addition, it expresses E-cadherin, which mediates cell adhesion for anchoring GSCs in the niche, enabling continuous self-renewal. GSCs themselves also express different classes of intrinsic factors, including signal transducers, transcription factors, chromatin remodeling factors, translation regulators, and miRNAs, which control self-renewal by strengthening interactions with the niche and repressing various differentiation pathways. Differentiated GSC daughters, known as cystoblasts (CBs), also express distinct classes of intrinsic factors to inhibit self-renewal and promote germ cell differentiation. Surprisingly, GSC progeny are also dependent on their surrounding ECs for proper differentiation at least partly by preventing BMP from diffusing to the differentiated germ cell zone and by repressing ectopic BMP expression. Therefore, both GSC self-renewal and CB differentiation are controlled by collaborative actions of extrinsic signals and intrinsic factors.
Collapse
Affiliation(s)
- Ting Xie
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA.
| |
Collapse
|
49
|
Loss-of-Function Screen Reveals Novel Regulators Required for Drosophila Germline Stem Cell Self-Renewal. G3-GENES GENOMES GENETICS 2012; 2:343-51. [PMID: 22413088 PMCID: PMC3291504 DOI: 10.1534/g3.111.001651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/09/2012] [Indexed: 01/30/2023]
Abstract
The germline stem cells (GSCs) of Drosophila melanogaster ovary provide an excellent model system to study the molecular mechanisms of stem cell self-renewal. To reveal novel factors required for Drosophila female GSC maintenance and/or division, we performed a loss-of-function screen in GSCs by using a collection of P-element–induced alleles of essential genes. Mutations in genes of various functional groups were identified to cause defects in GSC self-renewal. Here we report that a group of mutations affecting various ubiquitin-conjugating enzymes cause significant GSCs loss, including Plenty of SH3s (POSH), Ubiquitin-conjugating enzyme 10 (UbcD10), and pineapple eye (pie). Ubiquitin-mediated protein degradation plays a variety of roles in the regulation of many developmental processes, including mediating stem cell division through degradation of cell cycle regulators. We demonstrated that pie, sharing highly conserved RING domains with human E3 ubiquitin ligase G2E3 that are critical for early embryonic development, is specifically required for GSC maintenance, possibly through regulation of bone morphogenetic protein signaling pathway. Despite the previously reported role in imaginal disc cell survival, pie loss-of-function induced GSC loss is not to the result of caspase-involved cell death. Further efforts are needed to elucidate the functions of ubiquitin ligases in GSC maintenance, which will ultimately contribute to a better understanding of how the ubiquitin-conjugating enzymes regulate stem cell biology in mammalian systems.
Collapse
|
50
|
Ying M, Huang X, Zhao H, Wu Y, Wan F, Huang C, Jie K. Comprehensively surveying structure and function of RING domains from Drosophila melanogaster. PLoS One 2011; 6:e23863. [PMID: 21912646 PMCID: PMC3166285 DOI: 10.1371/journal.pone.0023863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/26/2011] [Indexed: 12/22/2022] Open
Abstract
Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold and formation of catalytic core in which related residues and regions exhibit preferential evolutionary conservation.
Collapse
Affiliation(s)
- Muying Ying
- Department of Molecular Biology and Biochemistry, Basic Medical College of Nanchang University, Nanchang, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|