1
|
Matsumoto M, Yoshida M, Oya T, Tsuneyama K, Matsumoto M, Yoshida H. Role of PRC2 in the stochastic expression of Aire target genes and development of mimetic cells in the thymus. J Exp Med 2025; 222:e20240817. [PMID: 40244172 PMCID: PMC12005117 DOI: 10.1084/jem.20240817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/10/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
The transcriptional targets of Aire and the mechanisms controlling their expression in medullary thymic epithelial cells (mTECs) need to be clarified to understand Aire's tolerogenic function. By using a multi-omics single-cell approach coupled with deep scRNA-seq, we examined how Aire controls the transcription of a wide variety of genes in a small fraction of Aire-expressing cells. We found that chromatin repression by PRC2 is an important step for Aire to achieve stochastic gene expression. Aire unleashed the silenced chromatin configuration caused by PRC2, thereby increasing the expression of its functional targets. Besides this preconditioning for Aire's gene induction, we demonstrated that PRC2 also controls the composition of mTECs that mimic the developmental trait of peripheral tissues, i.e., mimetic cells. Of note, this action of PRC2 was independent of Aire and it was more apparent than Aire. Thus, our study uncovered the essential role of polycomb complex for Aire-mediated promiscuous gene expression and the development of mimetic cells.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masaki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
2
|
Hu X, Liu Y, Shen H, Zhang T, Liang T. MTF2 facilitates the advancement of osteosarcoma through mediating EZH2/SFRP1/Wnt signaling. J Orthop Surg Res 2024; 19:467. [PMID: 39118123 PMCID: PMC11312803 DOI: 10.1186/s13018-024-04965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Osteosarcoma is a soft tissue neoplasm with elevated recurrence risk and highly metastatic potential. Metal response element binding transcriptional factor 2 (MTF2) has been revealed to exert multiple activities in human tissues. The present research was conducted to explore the functions and related response mechanism of MTF2 in osteosarcoma which have not been introduced yet. METHODS Bioinformatics tools identified the differential MTF2 expression in osteosarcoma tissues. MTF2 expression in osteosarcoma cells was examined with Western blot. Cell Counting Kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, wound healing as well as transwell assays measured cell proliferation, migration and invasion, respectively. Flow cytometry assay detected the cellular apoptotic level. Western blot also measured the expressions of proteins associated with epithelial mesenchymal transition (EMT), apoptosis and enhancer of zeste homolog 2 (EZH2)/secreted frizzled-related protein 1 (SFRP1)/Wnt signaling. Co-immunoprecipitation (Co-IP) assay confirmed MTF2-EZH2 interaction. RESULTS MTF2 expression was increased in osteosarcoma tissues and cells. MTF2 interference effectively inhibited the proliferation, migration and invasion of osteosarcoma cells and promoted the cellular apoptotic rate. MTF2 directly bound to EZH2 and MTF2 silence reduced EZH2 expression, activated SFRP1 expression and blocked Wnt signaling in osteosarcoma cells. EZH2 upregulation or SFRP1 antagonist WAY-316606 partly counteracted the impacts of MTF2 down-regulation on the SFRP1/Wnt signaling and the biological phenotypes of osteosarcoma cells. CONCLUSIONS MTF2 might down-regulate SFRP1 to activate Wnt signaling and drive the progression of osteosarcoma via interaction with EZH2 protein.
Collapse
Affiliation(s)
- Xiaoming Hu
- Department of Orthopedics, Anshun City People's Hospital, No 140 Huangguoshu Street, Xixiu District, Anshun City, 561000, Guizhou Province, China
| | - Yong Liu
- Department of Orthopedics, Anshun City People's Hospital, No 140 Huangguoshu Street, Xixiu District, Anshun City, 561000, Guizhou Province, China
| | - Hongyu Shen
- Department of Orthopedics, Anshun City People's Hospital, No 140 Huangguoshu Street, Xixiu District, Anshun City, 561000, Guizhou Province, China
| | - Ting Zhang
- Department of General Practice, Anshun City People's Hospital, Anshun, 561000, Guizhou, China
| | - Tao Liang
- Department of Orthopedics, Anshun City People's Hospital, No 140 Huangguoshu Street, Xixiu District, Anshun City, 561000, Guizhou Province, China.
| |
Collapse
|
3
|
Ngubo M, Moradi F, Ito CY, Stanford WL. Tissue-Specific Tumour Suppressor and Oncogenic Activities of the Polycomb-like Protein MTF2. Genes (Basel) 2023; 14:1879. [PMID: 37895228 PMCID: PMC10606531 DOI: 10.3390/genes14101879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Fereshteh Moradi
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caryn Y. Ito
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Tang C, Lv Y, Ding K, Cao Y, Ma Z, Yang L, Zhang Q, Zhou H, Wang Y, Liu Z, Cao X. Comprehensive Pan-Cancer Analysis of MTF2 Effects on Human Tumors. Curr Probl Cancer 2023; 47:100957. [PMID: 37027952 DOI: 10.1016/j.currproblcancer.2023.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 04/03/2023]
Abstract
Understanding oncogenic processes and underlying mechanisms to advance research into human tumors is critical for effective treatment. Studies have shown that Metal regulatory transcription factor 2(MTF2) drives malignant progression in liver cancer and glioma. However, no systematic pan-cancer analysis of MTF2 has been performed. Here, we use University of California Santa Cruz, Cancer Genome Atlas , Genotype-Tissue Expression data, Tumor Immune Estimation Resource, and Clinical Proteomic Tumor Analysis Consortium bioinformatics tools to explore differential expression of MTF2 across different tumor types. MTF2 was found to be highly expressed in the cancer lines that were available through the respective databases included in the study, and overexpression of MTF2 may lead to a poor prognosis in tumor patients such as glioblastoma multiforme, brain lower grade glioma, KIPAN, LIHC, adrenocortical carcinoma, etc. We also validated MTF2 mutations in cancer, compared MTF2 methylation levels in normal and primary tumor tissues, analyzed the association of MTF2 with the immune microenvironment, and validated the functional role of MTF2 in glioma U87 and U251 and breast cancer MDA-MB-231 cell lines by cytometry. This also indicates that MTF2 has a promising application prospect in cancer treatment.
Collapse
|
5
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
6
|
Du W, Shi G, Shan CM, Li Z, Zhu B, Jia S, Li Q, Zhang Z. Mechanisms of chromatin-based epigenetic inheritance. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2162-2190. [PMID: 35792957 PMCID: PMC10311375 DOI: 10.1007/s11427-022-2120-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Multi-cellular organisms such as humans contain hundreds of cell types that share the same genetic information (DNA sequences), and yet have different cellular traits and functions. While how genetic information is passed through generations has been extensively characterized, it remains largely obscure how epigenetic information encoded by chromatin regulates the passage of certain traits, gene expression states and cell identity during mitotic cell divisions, and even through meiosis. In this review, we will summarize the recent advances on molecular mechanisms of epigenetic inheritance, discuss the potential impacts of epigenetic inheritance during normal development and in some disease conditions, and outline future research directions for this challenging, but exciting field.
Collapse
Affiliation(s)
- Wenlong Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guojun Shi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiming Li
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Zhiguo Zhang
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
8
|
Liu X, Liu X. PRC2, Chromatin Regulation, and Human Disease: Insights From Molecular Structure and Function. Front Oncol 2022; 12:894585. [PMID: 35800061 PMCID: PMC9255955 DOI: 10.3389/fonc.2022.894585] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a multisubunit histone-modifying enzyme complex that mediates methylation of histone H3 lysine 27 (H3K27). Trimethylated H3K27 (H3K27me3) is an epigenetic hallmark of gene silencing. PRC2 plays a crucial role in a plethora of fundamental biological processes, and PRC2 dysregulation has been repeatedly implicated in cancers and developmental disorders. Here, we review the current knowledge on mechanisms of cellular regulation of PRC2 function, particularly regarding H3K27 methylation and chromatin targeting. PRC2-related disease mechanisms are also discussed. The mode of action of PRC2 in gene regulation is summarized, which includes competition between H3K27 methylation and acetylation, crosstalk with transcription machinery, and formation of high-order chromatin structure. Recent progress in the structural biology of PRC2 is highlighted from the aspects of complex assembly, enzyme catalysis, and chromatin recruitment, which together provide valuable insights into PRC2 function in close-to-atomic detail. Future studies on the molecular function and structure of PRC2 in the context of native chromatin and in the presence of other regulators like RNAs will continue to deepen our understanding of the stability and plasticity of developmental transcriptional programs broadly impacted by PRC2.
Collapse
|
9
|
Owen BM, Davidovich C. DNA binding by polycomb-group proteins: searching for the link to CpG islands. Nucleic Acids Res 2022; 50:4813-4839. [PMID: 35489059 PMCID: PMC9122586 DOI: 10.1093/nar/gkac290] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polycomb group proteins predominantly exist in polycomb repressive complexes (PRCs) that cooperate to maintain the repressed state of thousands of cell-type-specific genes. Targeting PRCs to the correct sites in chromatin is essential for their function. However, the mechanisms by which PRCs are recruited to their target genes in mammals are multifactorial and complex. Here we review DNA binding by polycomb group proteins. There is strong evidence that the DNA-binding subunits of PRCs and their DNA-binding activities are required for chromatin binding and CpG targeting in cells. In vitro, CpG-specific binding was observed for truncated proteins externally to the context of their PRCs. Yet, the mere DNA sequence cannot fully explain the subset of CpG islands that are targeted by PRCs in any given cell type. At this time we find very little structural and biophysical evidence to support a model where sequence-specific DNA-binding activity is required or sufficient for the targeting of CpG-dinucleotide sequences by polycomb group proteins while they are within the context of their respective PRCs, either PRC1 or PRC2. We discuss the current knowledge and open questions on how the DNA-binding activities of polycomb group proteins facilitate the targeting of PRCs to chromatin.
Collapse
Affiliation(s)
- Brady M Owen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,EMBL-Australia, Clayton, VIC, Australia
| |
Collapse
|
10
|
Godwin J, Farrona S. The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. EPIGENOMES 2022; 6:epigenomes6010008. [PMID: 35323212 PMCID: PMC8948837 DOI: 10.3390/epigenomes6010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is arguably the best-known plant complex of the Polycomb Group (PcG) pathway, formed by a group of proteins that epigenetically represses gene expression. PRC2-mediated deposition of H3K27me3 has amply been studied in Arabidopsis and, more recently, data from other plant model species has also been published, allowing for an increasing knowledge of PRC2 activities and target genes. How PRC2 molecular functions are regulated and how PRC2 is recruited to discrete chromatin regions are questions that have brought more attention in recent years. A mechanism to modulate PRC2-mediated activity is through its interaction with other protein partners or accessory proteins. Current evidence for PRC2 interactors has demonstrated the complexity of its protein network and how far we are from fully understanding the impact of these interactions on the activities of PRC2 core subunits and on the formation of new PRC2 versions. This review presents a list of PRC2 interactors, emphasizing their mechanistic action upon PRC2 functions and their effects on transcriptional regulation.
Collapse
|
11
|
Ghamlouch H, Boyle EM, Blaney P, Wang Y, Choi J, Williams L, Bauer M, Auclair D, Bruno B, Walker BA, Davies FE, Morgan GJ. Insights into high-risk multiple myeloma from an analysis of the role of PHF19 in cancer. J Exp Clin Cancer Res 2021; 40:380. [PMID: 34857028 PMCID: PMC8638425 DOI: 10.1186/s13046-021-02185-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite improvements in outcome, 15-25% of newly diagnosed multiple myeloma (MM) patients have treatment resistant high-risk (HR) disease with a poor survival. The lack of a genetic basis for HR has focused attention on the role played by epigenetic changes. Aberrant expression and somatic mutations affecting genes involved in the regulation of tri-methylation of the lysine (K) 27 on histone 3 H3 (H3K27me3) are common in cancer. H3K27me3 is catalyzed by EZH2, the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2). The deregulation of H3K27me3 has been shown to be involved in oncogenic transformation and tumor progression in a variety of hematological malignancies including MM. Recently we have shown that aberrant overexpression of the PRC2 subunit PHD Finger Protein 19 (PHF19) is the most significant overall contributor to HR status further focusing attention on the role played by epigenetic change in MM. By modulating both the PRC2/EZH2 catalytic activity and recruitment, PHF19 regulates the expression of key genes involved in cell growth and differentiation. Here we review the expression, regulation and function of PHF19 both in normal and the pathological contexts of solid cancers and MM. We present evidence that strongly implicates PHF19 in the regulation of genes important in cell cycle and the genetic stability of MM cells making it highly relevant to HR MM behavior. A detailed understanding of the normal and pathological functions of PHF19 will allow us to design therapeutic strategies able to target aggressive subsets of MM.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| | - Eileen M Boyle
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Patrick Blaney
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Yubao Wang
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Jinyoung Choi
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Louis Williams
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel Auclair
- The Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Benedetto Bruno
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Brian A Walker
- Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA
| | - Faith E Davies
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Gareth J Morgan
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| |
Collapse
|
12
|
Structural insights into the interactions of Polycomb Repressive Complex 2 with chromatin. Biochem Soc Trans 2021; 49:2639-2653. [PMID: 34747969 DOI: 10.1042/bst20210450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complexes are a family of chromatin modifier enzymes which are critical for regulating gene expression and maintaining cell-type identity. The reversible chemical modifications of histone H3 and H2A by the Polycomb proteins are central to its ability to function as a gene silencer. PRC2 is both a reader and writer of the tri-methylation of histone H3 lysine 27 (H3K27me3) which serves as a marker for transcription repression, and heterochromatin boundaries. Over the last few years, several studies have provided key insights into the mechanisms regulating the recruitment and activation of PRC2 at Polycomb target genes. In this review, we highlight the recent structural studies which have elucidated the roles played by Polycomb cofactor proteins in mediating crosstalk between histone post-translational modifications and the recruitment of PRC2 and the stimulation of PRC2 methyltransferase activity.
Collapse
|
13
|
The Role of Polycomb Group Protein BMI1 in DNA Repair and Genomic Stability. Int J Mol Sci 2021; 22:ijms22062976. [PMID: 33804165 PMCID: PMC7998361 DOI: 10.3390/ijms22062976] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
The polycomb group (PcG) proteins are a class of transcriptional repressors that mediate gene silencing through histone post-translational modifications. They are involved in the maintenance of stem cell self-renewal and proliferation, processes that are often dysregulated in cancer. Apart from their canonical functions in epigenetic gene silencing, several studies have uncovered a function for PcG proteins in DNA damage signaling and repair. In particular, members of the poly-comb group complexes (PRC) 1 and 2 have been shown to recruit to sites of DNA damage and mediate DNA double-strand break repair. Here, we review current understanding of the PRCs and their roles in cancer development. We then focus on the PRC1 member BMI1, discussing the current state of knowledge of its role in DNA repair and genome integrity, and outline how it can be targeted pharmacologically.
Collapse
|
14
|
Abstract
Polycomb Repressive Complex 2 (PRC2) is a major repressive chromatin complex formed by the Polycomb Group (PcG) proteins. PRC2 mediates trimethylation of histone H3 lysine 27 (H3K27me3), a hallmark of gene silencing. PRC2 is a key regulator of development, impacting many fundamental biological processes, like stem cell differentiation in mammals and vernalization in plants. Misregulation of PRC2 function is linked to a variety of human cancers and developmental disorders. In correlation with its diverse roles in development, PRC2 displays a high degree of compositional complexity and plasticity. Structural biology research over the past decade has shed light on the molecular mechanisms of the assembly, catalysis, allosteric activation, autoinhibition, chemical inhibition, dimerization and chromatin targeting of various developmentally regulated PRC2 complexes. In addition to these aspects, structure-function analysis is also discussed in connection with disease data in this chapter.
Collapse
Affiliation(s)
- Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
15
|
Al-Raawi D, Kanhere A. Autoregulation of JARID2 through PRC2 interaction with its antisense ncRNA. BMC Res Notes 2020; 13:501. [PMID: 33126912 PMCID: PMC7602346 DOI: 10.1186/s13104-020-05348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Objective JARID2 is a member of chromatin-modifying Polycomb Repressive Complex-2 or PRC2. It plays a role in recruiting PRC2 to developmental genes and regulating its activity. JARID2 along with PRC2 is indispensable for normal development. However, it remains unclear how JARID2 expression itself is regulated. Recently a number of non-protein-coding RNAs or ncRNAs are shown to regulate transcription. An antisense ncRNA, JARID2-AS1, is expressed from the first intron of JARID2 isoform-1 but its role in regulation of JARID2 expression has not been investigated. The objective of this study was to explore the role of JARID2-AS1 in regulating JARID2 and consequently PRC2. Results We found that JARID2-AS1 is localised in the nucleus and shows anti-correlated expression pattern to that of JARID2 isoform-1 mRNA. More interestingly, data mining approach strongly indicates that JARID2-AS1 binds to PRC2. These are important observations that provide insights into transcriptional regulation of JARID2, especially because they indicate that JARID2-AS1 by interacting and probably recruiting PRC2 participates in an auto-regulatory loop that controls levels of JARID2. This holds importance in regulation of developmental and differentiation processes. However, to support this hypothesis, further in-depth studies are needed which can verify JARID2-AS1-PRC2 interactions.
Collapse
Affiliation(s)
- Diaa Al-Raawi
- Tumour Biology Research Program, 57357 Children's Cancer Hospital, Cairo, Egypt.,School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom. .,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, United Kingdom.
| |
Collapse
|
16
|
Aljazi MB, Gao Y, Wu Y, Mias GI, He J. Cell Signaling Coordinates Global PRC2 Recruitment and Developmental Gene Expression in Murine Embryonic Stem Cells. iScience 2020; 23:101646. [PMID: 33103084 PMCID: PMC7578752 DOI: 10.1016/j.isci.2020.101646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/16/2020] [Accepted: 10/01/2020] [Indexed: 01/12/2023] Open
Abstract
The recruitment of Polycomb repressive complex 2 (PRC2) to gene promoters is critical for its function in repressing gene expression in murine embryonic stem cells (mESCs). However, previous studies have demonstrated that although the expression of early lineage-specific genes is largely repressed, the genome-wide PRC2 occupancy is unexpectedly reduced in naive mESCs. In this study, we provide evidence that fibroblast growth factor/extracellular signal-regulated kinase signaling determines the global PRC2 occupancy through regulating the expression of PRC2-recruiting factor JARID2 in naive mESCs. At the transcriptional level, the de-repression of bivalent genes is predominantly determined by the presence of cell signaling-associated transcription factors but not the status of PRC2 occupancy at gene promoters. Hence, this study not only reveals a key molecular mechanism by which cell signaling regulates the PRC2 occupancy in mESCs but also elucidates the functional roles of transcription factors and Polycomb-mediated epigenetic mechanisms in transcriptional regulation. FGF/ERK signaling positively regulates Jarid2 expression in mESCs Reduced JARID2 causes global reduction of PRC2 occupancy in naive mESCs Reduced PRC2 occupancy alone is insufficient to induce transcriptional activation Cell signaling-associated transcription factors drive bivalent gene expression
Collapse
Affiliation(s)
- Mohammad B Aljazi
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Yuen Gao
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Yan Wu
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - George I Mias
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Perino M, van Mierlo G, Loh C, Wardle SMT, Zijlmans DW, Marks H, Veenstra GJC. Two Functional Axes of Feedback-Enforced PRC2 Recruitment in Mouse Embryonic Stem Cells. Stem Cell Reports 2020; 15:1287-1300. [PMID: 32763159 PMCID: PMC7724473 DOI: 10.1016/j.stemcr.2020.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) plays an essential role in gene repression during development, catalyzing H3 lysine 27 trimethylation (H3K27me3). MTF2 in the PRC2.1 sub-complex, and JARID2 in PRC2.2, are central in core PRC2 recruitment to target genes in mouse embryonic stem cells (mESCs). To investigate how PRC2.1 and PRC2.2 cooperate, we combined Polycomb mutant mESCs with chemical inhibition of binding to H3K27me3. We find that PRC2.1 and PRC2.2 mediate two distinct paths for recruitment, which are mutually reinforced. Whereas PRC2.1 recruitment is mediated by MTF2 binding to DNA, JARID2-containing PRC2.2 recruitment is more dependent on PRC1. Both recruitment axes are supported by core subunit EED binding to H3K27me3, but EED inhibition exhibits a more pronounced effect in Jarid2 null cells. Finally, we show that PRC1 and PRC2 enhance reciprocal binding. Together, these data disentangle the interdependent interactions that are important for PRC2 recruitment.
Collapse
Affiliation(s)
- Matteo Perino
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Guido van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Chet Loh
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Sandra M T Wardle
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Dick W Zijlmans
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
18
|
Wang F, Gao Y, Lv Y, Wu Y, Guo Y, Du F, Wang S, Yu J, Cao X, Li PA. Polycomb-like 2 regulates PRC2 components to affect proliferation in glioma cells. J Neurooncol 2020; 148:259-271. [PMID: 32436117 PMCID: PMC7316845 DOI: 10.1007/s11060-020-03538-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Introduction The Polycomb group (PcG) is an important family of transcriptional regulators that controls growth and tumorigenesis. The PcG mainly consists of two complexes, PRC1 and Polycomb Repressive Complex 2 (PRC2). Polycomb-like 2 (PCL2) is known to interact with the PRC2 protein. The role of PCL2 in the development and progression of glioma is unclear. Methods We use The Cancer Genome Atlas (TCGA) database to detect the expression of PCL2 in various tumors. 117 cases of clinical glioma (WHOI–IV) were collected, and PCL2 expression and localization were detected by immunohistochemical staining. Glioma cells U87/U251 were infected with overexpressed and interfered PCL2. CCK8 assay, colony formation assay, EdU method, cell cycle and apoptosis were used to detect cell proliferation and apoptosis. Western blot was used to detect the expression of PRC2-related core proteins. After DZNeP intervention, PRC2 protein expression was again measured to discuss the mechanism of PCL2 action. Results TCGA database results and immunohistochemical staining results suggest that PCL2 is highly expressed in gliomas. We found that the PCL2 gene promoted tumor cell proliferation, enhanced the colony formation ability, and increased S phase in the cell cycle. The overexpression of PCL2 upregulated the expression levels of EZH2 and EED (two core members of PRC2), decreased the expression of SUZ12, increased the level of H3K27 trimethylation (H3K27me3), H3K4 dimethylation (H3K4me2), and decreased H3K9 dimethylation (H3K9me2). The result after interfering with PCL2 was the opposite. Conclusions As an important accessory protein of PRC2, PCL2 can not only change the expression of PRC2 components, but also affect the expression level of Histone methylation. Therefore, PCL2 may be an important hub for regulating the synergy among PRC2 members. This study revealed PCL2 as a new target for tumor research and open up a new avenue for future research in glioma. Electronic supplementary material The online version of this article (10.1007/s11060-020-03538-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Yongying Gao
- Department of Neurology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia, 750000, China
| | - Ye Lv
- Department of Oncology, General Hospital of Ningxia Medical University, Ningxia, 750004, China
| | - Yanwei Wu
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Yongzhen Guo
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Fang Du
- School of Information Engineering, Ningxia University, Ningxia, 750021, China
| | - Shixiong Wang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Jiaxiang Yu
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Ningxia, 750004, China.
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
19
|
Chen S, Jiao L, Liu X, Yang X, Liu X. A Dimeric Structural Scaffold for PRC2-PCL Targeting to CpG Island Chromatin. Mol Cell 2020; 77:1265-1278.e7. [PMID: 31959557 PMCID: PMC7571800 DOI: 10.1016/j.molcel.2019.12.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
Diverse accessory subunits are involved in the recruitment of polycomb repressive complex 2 (PRC2) to CpG island (CGI) chromatin. Here we report the crystal structure of a SUZ12-RBBP4 complex bound to fragments of the accessory subunits PHF19 and JARID2. Unexpectedly, this complex adopts a dimeric structural architecture, accounting for PRC2 self-association that has long been implicated. The intrinsic PRC2 dimer is formed via domain swapping involving RBBP4 and the unique C2 domain of SUZ12. MTF2 and PHF19 associate with PRC2 at around the dimer interface and stabilize the dimer. Conversely, AEBP2 binding results in a drastic movement of the C2 domain, disrupting the intrinsic PRC2 dimer. PRC2 dimerization enhances CGI DNA binding by PCLs in pairs in vitro, reminiscent of the widespread phenomenon of transcription factor dimerization in active transcription. Loss of PRC2 dimerization impairs histone H3K27 trimethylation (H3K27me3) on chromatin at developmental gene loci in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Siming Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianying Jiao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiuli Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Jain P, Ballare C, Blanco E, Vizan P, Di Croce L. PHF19 mediated regulation of proliferation and invasiveness in prostate cancer cells. eLife 2020; 9:51373. [PMID: 32155117 PMCID: PMC7064337 DOI: 10.7554/elife.51373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
The Polycomb-like protein PHF19/PCL3 associates with PRC2 and mediates its recruitment to chromatin in embryonic stem cells. PHF19 is also overexpressed in many cancers. However, neither PHF19 targets nor misregulated pathways involving PHF19 are known. Here, we investigate the role of PHF19 in prostate cancer cells. We find that PHF19 interacts with PRC2 and binds to PRC2 targets on chromatin. PHF19 target genes are involved in proliferation, differentiation, angiogenesis, and extracellular matrix organization. Depletion of PHF19 triggers an increase in MTF2/PCL2 chromatin recruitment, with a genome-wide gain in PRC2 occupancy and H3K27me3 deposition. Transcriptome analysis shows that PHF19 loss promotes deregulation of key genes involved in growth, metastasis, invasion, and of factors that stimulate blood vessels formation. Consistent with this, PHF19 silencing reduces cell proliferation, while promotes invasive growth and angiogenesis. Our findings reveal a role for PHF19 in controlling the balance between cell proliferation and invasiveness in prostate cancer.
Collapse
Affiliation(s)
- Payal Jain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cecilia Ballare
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Vizan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
21
|
Wu TT, Cai J, Tian YH, Chen JF, Cheng ZL, Pu CS, Shi WZ, Suo XP, Wu XJ, Dou XW, Zhang KM. MTF2 Induces Epithelial-Mesenchymal Transition and Progression of Hepatocellular Carcinoma by Transcriptionally Activating Snail. Onco Targets Ther 2019; 12:11207-11220. [PMID: 31908487 PMCID: PMC6927270 DOI: 10.2147/ott.s226119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background Metal regulatory transcription factor 2 (MTF2) has been previously reported as a protein binding to the metal response element of the mouse metallothionein promoter, which is involved in chromosome inactivation and pluripotency. However, the function of MTF2 in tumor formation and progression has not yet been completely elucidated. Methods The expression of MTF2 and clinicopathological characteristics were evaluated by hepatocellular carcinoma (HCC) tissue microarray of 240 specimens. The role of MTF2 on HCC progression was determined using MTT, crystal violet, and transwell assays. Tumor growth was monitored in a xenograft model, and intrahepatic metastasis models were established. Results The expression of MTF2 was increased in HCC and strongly associated with the clinical characteristics and prognosis. Forced expression of MTF2 in HCC cells significantly promoted cell growth, migration, and invasion in vitro. In contrast, downregulation of MTF2 inhibited cell growth, migration, and invasion in vitro. Moreover, knock down of MTF2 suppressed tumorigenesis and intrahepatic metastasis of HCC cells in vivo. Mechanistically, MTF2 overexpression may promote growth and epithelial-mesenchymal transition processes of HCC cells by facilitating Snail transcription. Conclusion MTF2 promotes the proliferation, migration, and invasion of HCC cells by regulating Snail transcription, providing a potential therapeutic candidate for patients with HCC.
Collapse
Affiliation(s)
- Tian-Tian Wu
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Jun Cai
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Yuan-Hu Tian
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Jian-Fei Chen
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Zhi-Lei Cheng
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Chang-Sheng Pu
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Wen-Zai Shi
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Xiao-Peng Suo
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Xian-Jia Wu
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Xiao-Wei Dou
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| | - Ke-Ming Zhang
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, People's Republic of China
| |
Collapse
|
22
|
Wu S, Luo C, Li F, Hameed NUF, Jin Q, Zhang J. Silencing expression of PHF14 in glioblastoma promotes apoptosis, mitigates proliferation and invasiveness via Wnt signal pathway. Cancer Cell Int 2019; 19:314. [PMID: 31798343 PMCID: PMC6882144 DOI: 10.1186/s12935-019-1040-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background The plant homeodomain (PHD) finger protein 14 (PHF14) is a vital member of PHD finger protein families. Abnormal expression of PHF14 has been identified in various cancers and is known to be implicated in the pathogenesis of tumors. This study investigates the role and the underlying mechanisms of PHF14 in GBM (glioblastoma multiforme). Methods Tissue microarrays and public databases interrogation were used to explore the relationship between the expression of PHF14 and GBM. Three stable PHF14-silenced cell lines (U251, U87MG and A172) were constructed to assess the biological functions changes of GBM cells in vitro. In addition, tumorigenicity in vivo was also performed using U87MG cell line. To understand the mechanism of action of PHF14, RNA-Seq, qRT-PCR, Western blot, IC50 assay and subsequent pathway analysis were performed. Results Our results showed that the expression of PHF14 was upregulated in glioma, especially in GBM. Overexpression of PHF14 translated to poor prognosis in glioma patients. In vitro assays revealed that silencing expression of PHF14 in glioma cells inhibited migration, invasiveness and proliferation and promoted cell apoptosis. Animal assay further confirmed that over-expression of PHF14 was a dismal prognostic factor. Analysis based on RNA-Seq suggested a PHF14-dependent regulation of Wnt signaling networks, which was further validated by qRT-PCR, Western blot and IC50 analysis. In addition, the mRNA expression of several key markers of EMT (epithelial–mesenchymal transition) and angiogenesis was found to change upon PHF14 silencing. Conclusions Our data provide a new insight into the biological significance of PHF14 in glioma and its potential application in therapy and diagnosis.
Collapse
Affiliation(s)
- Shuai Wu
- 1Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Chen Luo
- 1Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, 200040 China.,2Department of Human Anatomy and Histoembryology, Fudan University, Shanghai, 200433 China
| | - Fengjiao Li
- 2Department of Human Anatomy and Histoembryology, Fudan University, Shanghai, 200433 China
| | - N U Farrukh Hameed
- 1Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Qiuyan Jin
- 2Department of Human Anatomy and Histoembryology, Fudan University, Shanghai, 200433 China
| | - Jie Zhang
- 1Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai, 200040 China
| |
Collapse
|
23
|
Ye F, Huang J, Wang H, Luo C, Zhao K. Targeting epigenetic machinery: Emerging novel allosteric inhibitors. Pharmacol Ther 2019; 204:107406. [PMID: 31521697 DOI: 10.1016/j.pharmthera.2019.107406] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Epigenetics has emerged as an extremely exciting fast-growing area of biomedical research in post genome era. Epigenetic dysfunction is tightly related with various diseases such as cancer and aging related degeneration, potentiating epigenetics modulators as important therapeutics targets. Indeed, inhibitors of histone deacetylase and DNA methyltransferase have been approved for treating blood tumor malignancies, whereas inhibitors of histone methyltransferase and histone acetyl-lysine recognizer bromodomain are in clinical stage. However, it remains a great challenge to discover potent and selective inhibitors by targeting catalytic site, as the same subfamily of epigenetic enzymes often share high sequence identity and very conserved catalytic core pocket. It is well known that epigenetic modifications are usually carried out by multi-protein complexes, and activation of catalytic subunit is often tightly regulated by other interactive protein component, especially in disease conditions. Therefore, it is not unusual that epigenetic complex machinery may exhibit allosteric regulation site induced by protein-protein interactions. Targeting allosteric site emerges as a compelling alternative strategy to develop epigenetic drugs with enhanced druggability and pharmacological profiles. In this review, we highlight recent progress in the development of allosteric inhibitors for epigenetic complexes through targeting protein-protein interactions. We also summarized the status of clinical applications of those inhibitors. Finally, we provide perspectives of future novel allosteric epigenetic machinery modulators emerging from otherwise undruggable single protein target.
Collapse
Affiliation(s)
- Fei Ye
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jing Huang
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Cheng Luo
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, South Dong Qing Road, Guizhou 550025, China.
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
24
|
Højfeldt JW, Hedehus L, Laugesen A, Tatar T, Wiehle L, Helin K. Non-core Subunits of the PRC2 Complex Are Collectively Required for Its Target-Site Specificity. Mol Cell 2019; 76:423-436.e3. [PMID: 31521506 DOI: 10.1016/j.molcel.2019.07.031] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
The Polycomb repressive complex 2 (PRC2) catalyzes H3K27 methylation across the genome, which impacts transcriptional regulation and is critical for establishment of cell identity. Because of its essential function during development and in cancer, understanding the delineation of genome-wide H3K27 methylation patterns has been the focus of intense investigation. PRC2 methylation activity is abundant and dispersed throughout the genome, but the highest activity is specifically directed to a subset of target sites that are stably occupied by the complex and highly enriched for H3K27me3. Here, we show, by systematically knocking out single and multiple non-core subunits of the PRC2 complex in mouse embryonic stem cells, that they each contribute to directing PRC2 activity to target sites. Furthermore, combined knockout of six non-core subunits reveals that, while dispensable for global H3K27 methylation levels, the non-core PRC2 subunits are collectively required for focusing H3K27me3 activity to specific sites in the genome.
Collapse
Affiliation(s)
- Jonas Westergaard Højfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Lin Hedehus
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Tülin Tatar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Laura Wiehle
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark; Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
| |
Collapse
|
25
|
Abstract
As the process that silences gene expression ensues during development, the stage is set for the activity of Polycomb-repressive complex 2 (PRC2) to maintain these repressed gene profiles. PRC2 catalyzes a specific histone posttranslational modification (hPTM) that fosters chromatin compaction. PRC2 also facilitates the inheritance of this hPTM through its self-contained "write and read" activities, key to preserving cellular identity during cell division. As these changes in gene expression occur without changes in DNA sequence and are inherited, the process is epigenetic in scope. Mutants of mammalian PRC2 or of its histone substrate contribute to the cancer process and other diseases, and research into these aberrant pathways is yielding viable candidates for therapeutic targeting. The effectiveness of PRC2 hinges on its being recruited to the proper chromatin sites; however, resolving the determinants to this process in the mammalian case was not straightforward and thus piqued the interest of many in the field. Here, we chronicle the latest advances toward exposing mammalian PRC2 and its high maintenance.
Collapse
Affiliation(s)
- Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
26
|
van Mierlo G, Veenstra GJC, Vermeulen M, Marks H. The Complexity of PRC2 Subcomplexes. Trends Cell Biol 2019; 29:660-671. [PMID: 31178244 DOI: 10.1016/j.tcb.2019.05.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is a multisubunit protein complex essential for the development of multicellular organisms. Recruitment of PRC2 to target genes, followed by deposition and propagation of its catalytic product histone H3 lysine 27 trimethylation (H3K27me3), are key to the spatiotemporal control of developmental gene expression. Recent breakthrough studies have uncovered unexpected roles for substoichiometric PRC2 subunits in these processes. Here, we elaborate on how the facultative PRC2 subunits regulate catalytic activity, locus-specific PRC2 binding, and propagation of H3K27me3, and how this affects chromatin structure, gene expression, and cell fate.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands; Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500HB, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands; Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands.
| |
Collapse
|
27
|
Al-Raawi D, Jones R, Wijesinghe S, Halsall J, Petric M, Roberts S, Hotchin NA, Kanhere A. A novel form of JARID2 is required for differentiation in lineage-committed cells. EMBO J 2018; 38:embj.201798449. [PMID: 30573669 PMCID: PMC6356158 DOI: 10.15252/embj.201798449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Polycomb repressive complex‐2 (PRC2) is a group of proteins that play an important role during development and in cell differentiation. PRC2 is a histone‐modifying complex that catalyses methylation of lysine 27 of histone H3 (H3K27me3) at differentiation genes leading to their transcriptional repression. JARID2 is a co‐factor of PRC2 and is important for targeting PRC2 to chromatin. Here, we show that, unlike in embryonic stem cells, in lineage‐committed human cells, including human epidermal keratinocytes, JARID2 predominantly exists as a novel low molecular weight form, which lacks the N‐terminal PRC2‐interacting domain (ΔN‐JARID2). We show that ΔN‐JARID2 is a cleaved product of full‐length JARID2 spanning the C‐terminal conserved jumonji domains. JARID2 knockout in keratinocytes results in up‐regulation of cell cycle genes and repression of many epidermal differentiation genes. Surprisingly, repression of epidermal differentiation genes in JARID2‐null keratinocytes can be rescued by expression of ΔN‐JARID2 suggesting that, in contrast to PRC2, ΔN‐JARID2 promotes activation of differentiation genes. We propose that a switch from expression of full‐length JARID2 to ΔN‐JARID2 is important for the up‐regulation differentiation genes.
Collapse
Affiliation(s)
- Diaa Al-Raawi
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Rhian Jones
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - John Halsall
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Marija Petric
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Neil A Hotchin
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Youmans DT, Schmidt JC, Cech TR. Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits. Genes Dev 2018; 32:794-805. [PMID: 29891558 PMCID: PMC6049511 DOI: 10.1101/gad.311936.118] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that promotes epigenetic gene silencing, but the dynamics of its interactions with chromatin are largely unknown. Here we quantitatively measured the binding of PRC2 to chromatin in human cancer cells. Genome editing of a HaloTag into the endogenous EZH2 and SUZ12 loci and single-particle tracking revealed that ∼80% of PRC2 rapidly diffuses through the nucleus, while ∼20% is chromatin-bound. Short-term treatment with a small molecule inhibitor of the EED-H3K27me3 interaction had no immediate effect on the chromatin residence time of PRC2. In contrast, separation-of-function mutants of SUZ12, which still form the core PRC2 complex but cannot bind accessory proteins, revealed a major contribution of AEBP2 and PCL homolog proteins to chromatin binding. We therefore quantified the dynamics of this chromatin-modifying complex in living cells and separated the contributions of H3K27me3 histone marks and various PRC2 subunits to recruitment of PRC2 to chromatin.
Collapse
Affiliation(s)
- Daniel T Youmans
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Anschutz Medical Campus, University of Colorado at Denver, Aurora, Colorado 80045, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Jens C Schmidt
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| | - Thomas R Cech
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80303, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, Colorado 80303, USA
| |
Collapse
|
29
|
Perino M, van Mierlo G, Karemaker ID, van Genesen S, Vermeulen M, Marks H, van Heeringen SJ, Veenstra GJC. MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-selective DNA binding. Nat Genet 2018; 50:1002-1010. [DOI: 10.1038/s41588-018-0134-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
|
30
|
Rothberg JLM, Maganti HB, Jrade H, Porter CJ, Palidwor GA, Cafariello C, Battaion HL, Khan ST, Perkins TJ, Paulson RF, Ito CY, Stanford WL. Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discov 2018; 4:21. [PMID: 29736258 PMCID: PMC5928144 DOI: 10.1038/s41421-018-0022-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 01/13/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) accessory proteins play substoichiometric, tissue-specific roles to recruit PRC2 to specific genomic loci or increase enzymatic activity, while PRC2 core proteins are required for complex stability and global levels of trimethylation of histone 3 at lysine 27 (H3K27me3). Here, we demonstrate a role for the classical PRC2 accessory protein Mtf2/Pcl2 in the hematopoietic system that is more akin to that of a core PRC2 protein. Mtf2-/- erythroid progenitors demonstrate markedly decreased core PRC2 protein levels and a global loss of H3K27me3 at promoter-proximal regions. The resulting de-repression of transcriptional and signaling networks blocks definitive erythroid development, culminating in Mtf2-/- embryos dying by e15.5 due to severe anemia. Gene regulatory network (GRN) analysis demonstrated Mtf2 directly regulates Wnt signaling in erythroblasts, leading to activated canonical Wnt signaling in Mtf2-deficient erythroblasts, while chemical inhibition of canonical Wnt signaling rescued Mtf2-deficient erythroblast differentiation in vitro. Using a combination of in vitro, in vivo and systems analyses, we demonstrate that Mtf2 is a critical epigenetic regulator of Wnt signaling during erythropoiesis and recast the role of polycomb accessory proteins in a tissue-specific context.
Collapse
Affiliation(s)
- Janet L. Manias Rothberg
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Harinad B. Maganti
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
| | - Hani Jrade
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Christopher J. Porter
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Gareth A. Palidwor
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Christopher Cafariello
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Hannah L. Battaion
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - Safwat T. Khan
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Theodore J. Perkins
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
| | - Robert F. Paulson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802 USA
| | - Caryn Y. Ito
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
| | - William L. Stanford
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6 Canada
- Ottawa Institute of Systems Biology, Ottawa, ON Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
31
|
Huang Y, Chen DH, Liu BY, Shen WH, Ruan Y. Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage. Brief Funct Genomics 2017; 16:106-119. [PMID: 27032420 DOI: 10.1093/bfgp/elw007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polycomb group (PcG) proteins are key epigenetic regulators of gene expression in animals and plants. They act in multiprotein complexes, of which the best characterized is the polycomb repressive complex 2 (PRC2), which catalyses the trimethylation of histone H3 at lysine 27 (H3K27me3) at chromatin targets. In Arabidopsis thaliana, PRC2 proteins are involved in the regulation of diverse developmental processes, including cell fate determination, vegetative growth and development, flowering time control and embryogenesis. Here, we systematically analysed the evolutionary conservation and diversification of PRC2 components in lower and higher plants. We searched for and identified PRC2 homologues from the sequenced genomes of several green lineage species, from the unicellular green alga Ostreococcus lucimarinus to more complicated angiosperms. We found that some PRC2 core components, e.g. E(z), ESC/FIE and MSI/p55, are ancient and have multiplied coincidently with multicellular evolution. For one component, some members are newly formed, especially in the Cruciferae. During evolution, higher plants underwent copy number multiplication of various PRC2 components, which occurred independently for each component, without any obvious co-amplification of PRC2 members. Among the amplified members, usually one was well-conserved and the others were more diversified. Gene amplification occurred at different times for different PcG members during green lineage evolution. Certain PRC2 core components or members of them were highly conserved. Our study provides an insight into the evolutionary conservation and diversification of PcG proteins and may guide future functional characterization of these important epigenetic regulators in plants other than Arabidopsis.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Dong-Hong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Bo-Yu Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| | - Wen-Hui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| |
Collapse
|
32
|
Choi J, Bachmann AL, Tauscher K, Benda C, Fierz B, Müller J. DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation. Nat Struct Mol Biol 2017; 24:1039-1047. [DOI: 10.1038/nsmb.3488] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
|
33
|
Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 2017; 549:287-291. [PMID: 28869966 PMCID: PMC5937281 DOI: 10.1038/nature23881] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Abstract
The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and plays essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like proteins (PCLs), including PHF1, MTF2 and PHF19, are PRC2 associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate PRC2’s enzymatic activity or its recruitment to specific genomic loci4–13. Mammalian PRC2 binding sites are enriched in CG content, which correlate with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood. In this study, we solved the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We found that the extended homologous (EH) regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a manner completely different from the canonical winged-helix motif-DNA recognition. We further showed that the PCL EH domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic cells. Our research provides the first direct evidence demonstrating that PCLs are critical for PRC2 recruitment to CpG islands, thereby further clarifying their roles in transcriptional regulation in vivo.
Collapse
|
34
|
Holoch D, Margueron R. Mechanisms Regulating PRC2 Recruitment and Enzymatic Activity. Trends Biochem Sci 2017; 42:531-542. [DOI: 10.1016/j.tibs.2017.04.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 11/29/2022]
|
35
|
Abstract
Polycomb repressive complex 2 (PRC2) is a histone-modifying complex that di/tri-methylates histone H3 lysine 27 (H3K27), a mark of transcriptionally repressed chromatin. However, how PRC2 is specifically recruited to its target loci remains controversial, although it has been postulated that long non-coding RNAs (lncRNAs) can function as guides. Here we purified individual components of PRC2 from human cultured cells and found that EZH2 and SUZ12 can directly bind to RNAs. In agreement with recent evidence, our results support the notion that these two PRC2 subunits have RNA-binding activity, with general preference for longer RNAs. However, the length alone does not explain their cryptic substrate preference. Our data highlight the difficulty of characterizing the RNA-binding activity of PRC2.
Collapse
Affiliation(s)
- Juan G Betancur
- a Institute of Molecular and Cellular Biosciences; The University of Tokyo ; Bunkyo-ku, Tokyo , Japan.,b Department of Medical Genome Sciences ; The University of Tokyo ; Bunkyo-ku, Tokyo , Japan.,c Present affiliation: Laboratory for Developmental Genetics; RIKEN-IMS ; Tsurumi-ku; Yokohama , Kanagawa , Japan
| | - Yukihide Tomari
- a Institute of Molecular and Cellular Biosciences; The University of Tokyo ; Bunkyo-ku, Tokyo , Japan.,b Department of Medical Genome Sciences ; The University of Tokyo ; Bunkyo-ku, Tokyo , Japan
| |
Collapse
|
36
|
Grijzenhout A, Godwin J, Koseki H, Gdula MR, Szumska D, McGouran JF, Bhattacharya S, Kessler BM, Brockdorff N, Cooper S. Functional analysis of AEBP2, a PRC2 Polycomb protein, reveals a Trithorax phenotype in embryonic development and in ESCs. Development 2016; 143:2716-23. [PMID: 27317809 PMCID: PMC5004903 DOI: 10.1242/dev.123935] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/07/2016] [Indexed: 01/02/2023]
Abstract
The Polycomb repressive complexes PRC1 and PRC2 are key mediators of heritable gene silencing in multicellular organisms. Here, we characterise AEBP2, a known PRC2 co-factor which, in vitro, has been shown to stimulate PRC2 activity. We show that AEBP2 localises specifically to PRC2 target loci, including the inactive X chromosome. Proteomic analysis confirms that AEBP2 associates exclusively with PRC2 complexes. However, analysis of embryos homozygous for a targeted mutation of Aebp2 unexpectedly revealed a Trithorax phenotype, normally linked to antagonism of Polycomb function. Consistent with this, we observe elevated levels of PRC2-mediated histone H3K27 methylation at target loci in Aebp2 mutant embryonic stem cells (ESCs). We further demonstrate that mutant ESCs assemble atypical hybrid PRC2 subcomplexes, potentially accounting for enhancement of Polycomb activity, and suggesting that AEBP2 normally plays a role in defining the mutually exclusive composition of PRC2 subcomplexes. Highlighted article: Targeted mutation of the Polycomb protein AEBP2 in mouse provides evidence for a role for this factor in defining the composition and activity of PRC2 complexes.
Collapse
Affiliation(s)
- Anne Grijzenhout
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jonathan Godwin
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Michal Ryszard Gdula
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Dorota Szumska
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Joanna F McGouran
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
37
|
Furlan G, Rougeulle C. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:702-22. [PMID: 27173581 DOI: 10.1002/wrna.1359] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
X-chromosome inactivation (XCI) is a chromosome-wide regulatory process that ensures dosage compensation for X-linked genes in Theria. XCI is established during early embryogenesis and is developmentally regulated. Different XCI strategies exist in mammalian infraclasses and the regulation of this process varies also among closely related species. In Eutheria, initiation of XCI is orchestrated by a cis-acting locus, the X-inactivation center (Xic), which is particularly enriched in genes producing long noncoding RNAs (lncRNAs). Among these, Xist generates a master transcript that coats and propagates along the future inactive X-chromosome in cis, establishing X-chromosome wide transcriptional repression through interaction with several protein partners. Other lncRNAs also participate to the regulation of X-inactivation but the extent to which their function has been maintained in evolution is still poorly understood. In Metatheria, Xist is not conserved, but another, evolutionary independent lncRNA with similar properties, Rsx, has been identified, suggesting that lncRNA-mediated XCI represents an evolutionary advantage. Here, we review current knowledge on the interplay of X chromosome-encoded lncRNAs in ensuring proper establishment and maintenance of chromosome-wide silencing, and discuss the evolutionary implications of the emergence of species-specific lncRNAs in the control of XCI within Theria. WIREs RNA 2016, 7:702-722. doi: 10.1002/wrna.1359 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Giulia Furlan
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216 CNRS, Université Paris Diderot, Paris, France
| | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216 CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
38
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
39
|
Abstract
The Polycomb group of proteins (PcGs) are transcriptional repressor complexes that regulate important biological processes and play critical roles in cancer. Mutating or deleting EZH2 can have both oncogenic and tumor suppressive functions by increasing or decreasing H3K27me3. In contrast, mutations of SUZ12 and EED are reported to have tumor suppressive functions. EZH2 is overexpressed in many cancers, including prostate cancer, which can lead to silencing of tumor suppressors, genes regulating epithelial to mesenchymal transition (EMT), and interferon signaling. In some cases, EZH2 overexpression also leads to its use of non-histone substrates. Lastly, PRC2 associated factors can influence the progression of cancer through progressive mutations or by specific binding to certain target genes. Here, we discuss which mutations and deletions of the PRC2 complex have been detected in different cancers, with a specific focus on the overexpression of EZH2 in prostate cancer.
Collapse
Affiliation(s)
- Payal Jain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Spain
| |
Collapse
|
40
|
Kadoch C, Copeland RA, Keilhack H. PRC2 and SWI/SNF Chromatin Remodeling Complexes in Health and Disease. Biochemistry 2016; 55:1600-14. [DOI: 10.1021/acs.biochem.5b01191] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Robert A. Copeland
- Epizyme Inc., 400 Technology
Square, 4th floor, Cambridge, Massachusetts 02139, United States
| | - Heike Keilhack
- Epizyme Inc., 400 Technology
Square, 4th floor, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Munawar N, Olivero G, Jerman E, Doyle B, Streubel G, Wynne K, Bracken A, Cagney G. Native gel analysis of macromolecular protein complexes in cultured mammalian cells. Proteomics 2015. [PMID: 26223664 DOI: 10.1002/pmic.201500045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Native gel electrophoresis enables separation of cellular proteins in their non-denatured state. In experiments aimed at analysing proteins in higher order or multimeric assemblies (i.e. protein complexes) it offers some advantages over rival approaches, particularly as an interface technology with mass spectrometry. Here we separated fractions from HEK293 cells by native electrophoresis in order to survey protein complexes in the cytoplasmic, nuclear and chromatin environments, finding 689 proteins distributed among 217 previously described complexes. As expected, different fractions contained distinct combinations of macromolecular complexes, with subunits of the same complex tending to co-migrate. Exceptions to this observation could often be explained by the presence of subunits shared among different complexes. We investigated one identified complex, the Polycomb Repressor Complex 2 (PRC2), in more detail following affinity purification of the EZH2 subunit. This approach resulted in the identification of all previously reported members of PRC2. Overall, this work demonstrates that the use of native gel electrophoresis as an upstream separating step is an effective approach for analysis of the components and cellular distribution of protein complexes.
Collapse
Affiliation(s)
- Nayla Munawar
- School of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Giorgio Olivero
- School of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Emilia Jerman
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - Benjamin Doyle
- School of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | | | - Kieran Wynne
- School of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Adrian Bracken
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | - Gerard Cagney
- School of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| |
Collapse
|
42
|
Munawar N, Olivero G, Jerman E, Doyle B, Streubel G, Wynne K, Bracken A, Cagney G. Native gel analysis of macromolecular protein complexes in cultured mammalian cells. Proteomics 2015. [DOI: https://doi.org/10.1002/pmic.201500045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nayla Munawar
- School of Biomolecular and Biomedical Research; University College Dublin; Belfield Ireland
| | - Giorgio Olivero
- School of Biomolecular and Biomedical Research; University College Dublin; Belfield Ireland
| | - Emilia Jerman
- Smurfit Institute of Genetics; Trinity College; Dublin Ireland
| | - Benjamin Doyle
- School of Biomolecular and Biomedical Research; University College Dublin; Belfield Ireland
| | | | - Kieran Wynne
- School of Biomolecular and Biomedical Research; University College Dublin; Belfield Ireland
| | - Adrian Bracken
- Smurfit Institute of Genetics; Trinity College; Dublin Ireland
| | - Gerard Cagney
- School of Biomolecular and Biomedical Research; University College Dublin; Belfield Ireland
| |
Collapse
|
43
|
Cerase A, Pintacuda G, Tattermusch A, Avner P. Xist localization and function: new insights from multiple levels. Genome Biol 2015; 16:166. [PMID: 26282267 PMCID: PMC4539689 DOI: 10.1186/s13059-015-0733-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
In female mammals, one of the two X chromosomes in each cell is transcriptionally silenced in order to achieve dosage compensation between the genders in a process called X chromosome inactivation. The master regulator of this process is the long non-coding RNA Xist. During X-inactivation, Xist accumulates in cis on the future inactive X chromosome, triggering a cascade of events that provoke the stable silencing of the entire chromosome, with relatively few genes remaining active. How Xist spreads, what are its binding sites, how it recruits silencing factors and how it induces a specific topological and nuclear organization of the chromatin all remain largely unanswered questions. Recent studies have improved our understanding of Xist localization and the proteins with which it interacts, allowing a reappraisal of ideas about Xist function. We discuss recent advances in our knowledge of Xist-mediated silencing, focusing on Xist spreading, the nuclear organization of the inactive X chromosome, recruitment of the polycomb complex and the role of the nuclear matrix in the process of X chromosome inactivation.
Collapse
Affiliation(s)
- Andrea Cerase
- EMBL Mouse Biology Unit, Monterotondo, 00015 (RM), Italy.
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anna Tattermusch
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Philip Avner
- EMBL Mouse Biology Unit, Monterotondo, 00015 (RM), Italy. .,Institut Pasteur, Unite de Genetique Moleculaire Murine, CNRS, URA2578, Paris, France.
| |
Collapse
|
44
|
Wang W, Qin JJ, Voruganti S, Nag S, Zhou J, Zhang R. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications. Med Res Rev 2015; 35:1220-67. [PMID: 26227500 DOI: 10.1002/med.21358] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-classical-Pc-functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the Pc-repressive and non-classical-Pc-functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Sukesh Voruganti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106.,Center for Cancer Biology and Therapy, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106
| |
Collapse
|
45
|
Dixon-McDougall T, Brown C. The making of a Barr body: the mosaic of factors that eXIST on the mammalian inactive X chromosome. Biochem Cell Biol 2015; 94:56-70. [PMID: 26283003 DOI: 10.1139/bcb-2015-0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During X-chromosome inactivation (XCI), nearly an entire X chromosome is permanently silenced and converted into a Barr body, providing dosage compensation for eutherians between the sexes. XCI is facilitated by the upregulation of the long non-coding RNA gene, XIST, which coats its chromosome of origin, recruits heterochromatin factors, and silences gene expression. During XCI, at least two distinct types of heterochromatin are established, and in this review we discuss the enrichment of facultative heterochromatin marks such as H3K27me3, H2AK119ub, and macroH2A as well as pericentric heterochromatin marks such as HP1, H3K9me3, and H4K20me3. The extremely stable maintenance of silencing is a product of reinforcing interactions within and between these domains. This paper "Xplores" the current knowledge of the pathways involved in XCI, how the pathways interact, and the gaps in our understanding that need to be filled.
Collapse
Affiliation(s)
- Thomas Dixon-McDougall
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
46
|
Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. Blood 2015; 125:1890-900. [PMID: 25645357 DOI: 10.1182/blood-2014-10-603969] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) plays a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use short hairpin RNA-mediated knockdown to survey the function of PRC2 accessory factors that were defined in embryonic stem cells (ESCs) by testing the competitive reconstitution capacity of transduced murine HSPCs. We find that, similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult mouse HSPCs. Furthermore, we demonstrate that depletion of JARID2 enhances the in vitro expansion and in vivo reconstitution capacity of human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function.
Collapse
|
47
|
Vizán P, Beringer M, Ballaré C, Di Croce L. Role of PRC2-associated factors in stem cells and disease. FEBS J 2014; 282:1723-35. [PMID: 25271128 DOI: 10.1111/febs.13083] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023]
Abstract
The Polycomb group (PcG) of proteins form chromatin-binding complexes with histone-modifying activity. The two main PcG repressive complexes studied (PRC1 and PRC2) are generally associated with chromatin in its repressed state. PRC2 is responsible for methylation of histone H3 at lysine 27 (H3K27me3), an epigenetic mark that is linked with numerous biological processes, including development, adult homeostasis and cancer. The core canonical complex PRC2, which contains the EZH1/2, SUZ12 and EED proteins, may be extended and functionally manipulated through interactions with several other proteins. In this review, we focus on these PRC2-associated proteins. As PRC2 functions are diverse, the variability conferred by these sub-stoichiometrically associated members may help to understand specific changes in PRC2 activity, chromatin recruitment and distribution required for gene repression.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
Abstract
Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Long non-coding RNAs (lncRNAs) can recruit PRC2 to chromatin. Previous studies identified PRC2 subunits in a complex with the apparent molecular weight of a dimer, which might be accounted for by the incorporation of additional protein subunits or RNA rather than PRC2 dimerization. Here we show that reconstituted human PRC2 is in fact a dimer, using multiple independent approaches including analytical size exclusion chromatography (SEC), SEC combined with multi-angle light scattering and co-immunoprecipitation of differentially tagged subunits. Even though it contains at least two RNA-binding subunits, each PRC2 dimer binds only one RNA molecule. Yet, multiple PRC2 dimers bind a single RNA molecule cooperatively. These observations suggest a model in which the first RNA binding event promotes the recruitment of multiple PRC2 complexes to chromatin, thereby nucleating repression.
Collapse
Affiliation(s)
- Chen Davidovich
- Department of Chemistry & Biochemistry, Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO 80309-0596, USA
| | - Karen J Goodrich
- Department of Chemistry & Biochemistry, Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO 80309-0596, USA
| | - Anne R Gooding
- Department of Chemistry & Biochemistry, Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO 80309-0596, USA
| | - Thomas R Cech
- Department of Chemistry & Biochemistry, Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO 80309-0596, USA
| |
Collapse
|
49
|
Abstract
In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in cis by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of Xist expression, the propagation of the Xist RNA along the chromosome, and the cis-elements and trans-acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.
Collapse
Affiliation(s)
- Anne-Valerie Gendrel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, 75248 Paris, France;
| | | |
Collapse
|
50
|
Merzouk S, Deuve JL, Dubois A, Navarro P, Avner P, Morey C. Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells. Epigenetics Chromatin 2014; 7:11. [PMID: 25053977 PMCID: PMC4105886 DOI: 10.1186/1756-8935-7-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 01/09/2023] Open
Abstract
Background Silencing of the paternal X chromosome (Xp), a phenomenon known as imprinted X-chromosome inactivation (I-XCI), characterises, amongst mouse extraembryonic lineages, the primitive endoderm and the extraembryonic endoderm (XEN) stem cells derived from it. Results Using a combination of chromatin immunoprecipitation characterisation of histone modifications and single-cell expression studies, we show that whilst the Xp in XEN cells, like the inactive X chromosome in other cell types, globally accumulates the repressive histone mark H3K27me3, a large number of Xp genes locally lack H3K27me3 and escape from I-XCI. In most cases this escape is specific to the XEN cell lineage. Importantly, the degree of escape and the genes concerned remain unchanged upon XEN conversion into visceral endoderm, suggesting stringent control of I-XCI in XEN derivatives. Surprisingly, chemical inhibition of EZH2, a member of the Polycomb repressive complex 2 (PRC2), and subsequent loss of H3K27me3 on the Xp, do not drastically perturb the pattern of silencing of Xp genes in XEN cells. Conclusions The observations that we report here suggest that the maintenance of gene expression profiles of the inactive Xp in XEN cells involves a tissue-specific mechanism that acts partly independently of PRC2 catalytic activity.
Collapse
Affiliation(s)
- Sarra Merzouk
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Pasteur Cell, Pierre and Marie Curie University (UPMC), 25 rue du Dr Roux, 75015 Paris, France
| | - Jane Lynda Deuve
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Pierre and Marie Curie University (UPMC), UMR7622, Institute of Biology of Paris-Seine (IBPS), 75005 Paris, France
| | - Agnès Dubois
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Epigenetics of Stem Cells Laboratory', Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Pablo Navarro
- Present address: Epigenetics of Stem Cells Laboratory', Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| | - Philip Avner
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France ; Present address: Dynamics of Epigenetic Regulation, EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Céline Morey
- Mouse Molecular Genetics Laboratory, Pasteur Institute, 25 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|