1
|
Seirin-Lee S, Kimura A. Geometric factors for cell arrangement: How do cells determine their position in vivo? Semin Cell Dev Biol 2025; 169:103604. [PMID: 40188659 DOI: 10.1016/j.semcdb.2025.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
The spatial arrangement of cells plays a crucial role in ensuring robust development of organisms, directing cells to their specific fates in the right place and at the right time. In early embryogenesis, the cell arrangement is determined by several factors such as the cell division axis, cell-cell interactions, and surrounding geometric constraints. While many species utilize similar principles to determine the cell arrangement, the precise dynamics of cell arrangement differ among species, even at early stages. In particular, geometric constraints significantly impact cell arrangement. Nematode species exhibit diverse cell arrangement dynamics due to their rigid eggshells, which intensively confine the internal cells. In this paper, we review the mechanisms of cell arrangement with a focus on geometric constraints, drawing from interdisciplinary perspectives. We also review mathematical models developed to enhance our understanding of these mechanisms and discuss future directions for theoretical approaches in exploring geometric effects on cell arrangement in various tissues of various species.
Collapse
Affiliation(s)
- Sungrim Seirin-Lee
- Institute for the Advanced Study of Human Biology(ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Kyoto 606-8315, Japan; Department of Mathematical Medicine, Graduated School of Medicine, Kyoto University, Kyoto 606-8315, Japan.
| | - Akatsuki Kimura
- Department of Chromosome Science, National Institute of Genetics, Mishima 411-8540, Japan; Genetics Program, The Graduate University for Advanced Studies, Sokendai, Mishima 411-8540, Japan
| |
Collapse
|
2
|
Lamb H, Fernholz M, Liro MJ, Myles KM, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the Caenorhabditis elegans EMS blastomere. Genetics 2025; 229:iyaf020. [PMID: 39891664 PMCID: PMC12005263 DOI: 10.1093/genetics/iyaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The endomesodermal precursor cell (EMS) of the 4-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 transmembrane protein localized at the EMS-P2 cell contact and the cytoplasmic kinase SRC-1. In response to these signals, the EMS nuclear-centrosome complex rotates, so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here, we identify the Rac1 homolog CED-10 as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification in the EMS cell. SRC-1 dependent phosphorylation at the EMS-P2 contact is reduced. However, the asymmetric division of the P2 cell, which is also MES-1 and SRC-1 dependent, appears normal in ced-10 mutants. These and other results suggest that CED-10 acts upstream of, or at the level of, SRC-1 activity in the EMS cell. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS-P2 cell contact site, in a CED-10-dependent manner. Loss of ARX-2 results in EMS spindle orientation defects, suggesting that CED-10 acts through branched actin to promote spindle orientation in the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Małgorzata J Liro
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Krista M Myles
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
- Biochemistry, Molecular, Cell and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Connors CQ, Mauro MS, Wiles JT, Countryman AD, Martin SL, Lacroix B, Shirasu-Hiza M, Dumont J, Kasza KE, Davies TR, Canman JC. Germ fate determinants protect germ precursor cell division by reducing septin and anillin levels at the cell division plane. Mol Biol Cell 2024; 35:ar94. [PMID: 38696255 PMCID: PMC11244169 DOI: 10.1091/mbc.e24-02-0096-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024] Open
Abstract
Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formincyk-1(ts) mutant Caenorhabditis elegans 4-cell embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide with greatly reduced F-actin levels at the cell division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septinUNC-59 and anillinANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into the regulation of cytokinesis in other cell types, especially in stem cells with high potency.
Collapse
Affiliation(s)
- Caroline Q. Connors
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Michael S. Mauro
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - J. Tristian Wiles
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | - Sophia L. Martin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Benjamin Lacroix
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Université de Montpellier, CNRS, Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237 Montpellier, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Karen E. Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Timothy R. Davies
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Julie C. Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
4
|
Lamb H, Liro M, Myles K, Fernholz M, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the C. elegans EMS blastomere. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588162. [PMID: 38645195 PMCID: PMC11030239 DOI: 10.1101/2024.04.04.588162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The EMS blastomere of the four-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal emanating from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 protein localized at the EMS/P2 cell contact, and the cytoplasmic kinase SRC-1. In response to these pathways, the EMS nuclear-centrosome complex rotates so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here we identify the Rac1 homolog, CED-10, as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification. Although MES-1 is still present at the EMS/P2 contact in ced-10 embryos, SRC-1 dependent phosphorylation is reduced. These and other results suggest that CED-10 acts downstream of MES-1 and upstream of, or at the level of, SRC-1 activity. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS/P2 cell contact site, in a CED-10 dependent manner. Loss of ARX-2 results in spindle positioning defects, suggesting that CED-10 acts through branched actin to promote the asymmetric division of the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Małgorzata Liro
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Krista Myles
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Lesilee S. Rose
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| |
Collapse
|
5
|
Connors CQ, Mauro MS, Tristian Wiles J, Countryman AD, Martin SL, Lacroix B, Shirasu-Hiza M, Dumont J, Kasza KE, Davies TR, Canman JC. Germ fate determinants protect germ precursor cell division by restricting septin and anillin levels at the division plane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.566773. [PMID: 38014027 PMCID: PMC10680835 DOI: 10.1101/2023.11.17.566773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formin cyk-1 (ts) mutant C. elegans embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide without detectable F-actin at the division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septin UNC-59 and anillin ANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into cytokinetic regulation in other cell types, especially in stem cells with high potency.
Collapse
|
6
|
Ng K, Hirani N, Bland T, Borrego-Pinto J, Wagner S, Kreysing M, Goehring NW. Cleavage furrow-directed cortical flows bias PAR polarization pathways to link cell polarity to cell division. Curr Biol 2023; 33:4298-4311.e6. [PMID: 37729912 DOI: 10.1016/j.cub.2023.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/13/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
During development, the conserved PAR polarity network is continuously redeployed, requiring that it adapt to changing cellular contexts and environmental cues. In the early C. elegans embryo, polarity shifts from being a cell-autonomous process in the zygote to one that must be coordinated between neighbors as the embryo becomes multicellular. Here, we sought to explore how the PAR network adapts to this shift in the highly tractable C. elegans germline P lineage. We find that although P lineage blastomeres exhibit a distinct pattern of polarity emergence compared with the zygote, the underlying mechanochemical processes that drive polarity are largely conserved. However, changes in the symmetry-breaking cues of P lineage blastomeres ensure coordination of their polarity axis with neighboring cells. Specifically, we show that furrow-directed cortical flows associated with cytokinesis of the zygote induce symmetry breaking in the germline blastomere P1 by transporting PAR-3 into the nascent cell contact. This pool of PAR-3 then biases downstream PAR polarization pathways to establish the polarity axis of P1 with respect to the position of its anterior sister, AB. Thus, our data suggest that cytokinesis itself induces symmetry breaking through the advection of polarity proteins by furrow-directed flows. By directly linking cell polarity to cell division, furrow-directed cortical flows could be a general mechanism to ensure proper organization of cell polarity within actively dividing systems.
Collapse
Affiliation(s)
- KangBo Ng
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Nisha Hirani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tom Bland
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | | | - Susan Wagner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Buttenschön A, Edelstein-Keshet L. Cell Repolarization: A Bifurcation Study of Spatio-Temporal Perturbations of Polar Cells. Bull Math Biol 2022; 84:114. [PMID: 36058957 DOI: 10.1007/s11538-022-01053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 06/30/2022] [Indexed: 11/02/2022]
Abstract
The intrinsic polarity of migrating cells is regulated by spatial distributions of protein activity. Those proteins (Rho-family GTPases, such as Rac and Rho) redistribute in response to stimuli, determining the cell front and back. Reaction-diffusion equations with mass conservation and positive feedback have been used to explain initial polarization of a cell. However, the sensitivity of a polar cell to a reversal stimulus has not yet been fully understood. We carry out a PDE bifurcation analysis of two polarity models to investigate routes to repolarization: (1) a single-GTPase ("wave-pinning") model and (2) a mutually antagonistic Rac-Rho model. We find distinct routes to reversal in (1) vs. (2). We show numerical simulations of full PDE solutions for the RD equations, demonstrating agreement with predictions of the bifurcation results. Finally, we show that simulations of the polarity models in deforming 1D model cells are consistent with biological experiments.
Collapse
Affiliation(s)
- Andreas Buttenschön
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| |
Collapse
|
8
|
Seirin-Lee S. Asymmetric cell division from a cell to cells: Shape, length, and location of polarity domain. Dev Growth Differ 2020; 62:188-195. [PMID: 32120453 PMCID: PMC7754510 DOI: 10.1111/dgd.12652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022]
Abstract
Asymmetric cell division is one of the most elegant biological systems by which cells create daughter cells with different functions and increase cell diversity. In particular, PAR polarity in the cell membrane plays a critical role in regulating the whole process of asymmetric cell division. Numerous studies have been conducted to determine the underlying mechanism of PAR polarity formation using both experimental and theoretical approaches in the last 10 years. However, they have mostly focused on answering the fundamental question of how this exclusive polarity is established but the precise dynamics of polarity domain have been little notified. In this review, I focused on studies on the shape, length, and location of PAR polarity from a theoretical perspective that may be important for an integrated understanding of the entire process of asymmetric cell division.
Collapse
Affiliation(s)
- Sungrim Seirin-Lee
- Department of Mathematics, School of Science, Hiroshima University, Higashi-Hiroshima, Japan.,Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
9
|
Developmental Diversity in Cell Division Mechanisms. Dev Cell 2018; 47:535-536. [PMID: 30513295 DOI: 10.1016/j.devcel.2018.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinesis is the subject of intense study, but mechanisms underlying contractility and cell shape change in cytokinesis are still being defined. Furthermore, it is unknown how contractile mechanisms vary among cell types and throughout development. Recent findings uncover differential molecular requirements for cytokinesis depending on cell fate and embryonic context.
Collapse
|
10
|
Davies T, Kim HX, Romano Spica N, Lesea-Pringle BJ, Dumont J, Shirasu-Hiza M, Canman JC. Cell-intrinsic and -extrinsic mechanisms promote cell-type-specific cytokinetic diversity. eLife 2018; 7:36204. [PMID: 30028292 PMCID: PMC6054530 DOI: 10.7554/elife.36204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023] Open
Abstract
Cytokinesis, the physical division of one cell into two, is powered by constriction of an actomyosin contractile ring. It has long been assumed that all animal cells divide by a similar molecular mechanism, but growing evidence suggests that cytokinetic regulation in individual cell types has more variation than previously realized. In the four-cell Caenorhabditis elegans embryo, each blastomere has a distinct cell fate, specified by conserved pathways. Using fast-acting temperature-sensitive mutants and acute drug treatment, we identified cell-type-specific variation in the cytokinetic requirement for a robust forminCYK-1-dependent filamentous-actin (F-actin) cytoskeleton. In one cell (P2), this cytokinetic variation is cell-intrinsically regulated, whereas in another cell (EMS) this variation is cell-extrinsically regulated, dependent on both SrcSRC-1 signaling and direct contact with its neighbor cell, P2. Thus, both cell-intrinsic and -extrinsic mechanisms control cytokinetic variation in individual cell types and can protect against division failure when the contractile ring is weakened. The successful division of one cell into two is essential for all organisms to live, grow and reproduce. For an animal cell, the nucleus – the compartment containing the genetic material – must divide before the surrounding material. The rest of the cell, called the cytoplasm, physically separates later in a process known as cytokinesis. Cytokinesis in animal cells is driven by the formation of a ring in the middle of the dividing cell. The ring is composed of myosin motor proteins and filaments made of a protein called actin. The movements of the motor proteins along the filaments cause the ring to contract and tighten. This pulls the cell membrane inward and physically pinches the cell into two. For a long time, the mechanism of cytokinesis was assumed to be same across different types of animal cell, but later evidence suggested otherwise. For example, in liver, heat and bone cells, cytokinesis naturally fails during development to create cells with two or more nuclei. If a similar ‘failure’ happened in other cell types, it could lead to diseases such as cancers or blood disorders. This raised the question: what are the molecular mechanisms that allow cytokinesis to happen differently in different cell types? Davies et al. investigated this question using embryos of the worm Caenorhabditis elegans at a stage in their development when they consist of just four cells. The proteins forming the contractile ring in this worm are the same as those in humans. However, in the worm, the contractile ring can easily be damaged using chemical inhibitors or by mutating the genes that encode its proteins. Davies et al. show that when the contractile ring was damaged, two of the four cells in the worm embryo still divided successfully. This result indicates the existence of new mechanisms to divide the cytoplasm that allow division even with a weak contractile ring. In a further experiment, the embryos were dissected to isolate each of the four cells. Davies et al. saw that one of the two dividing cells could still divide on its own, while the other cell could not. This shows that this new method of cytokinesis is regulated both by factors inherent to the dividing cell and by external signals from other cells. Moreover, one of these extrinsic signals was found to be a signaling protein that had previously been implicated in human cancers. Future work will determine if these variations in cytokinesis between the different cell types found in the worm apply to humans too; and, more importantly from a therapeutic standpoint, if these new mechanisms exist in human cancers.
Collapse
Affiliation(s)
- Tim Davies
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Han X Kim
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States.,Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Natalia Romano Spica
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Benjamin J Lesea-Pringle
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, United States
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
| |
Collapse
|
11
|
Lang CF, Munro E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development 2017; 144:3405-3416. [PMID: 28974638 DOI: 10.1242/dev.139063] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PAR proteins constitute a highly conserved network of scaffolding proteins, adaptors and enzymes that form and stabilize cortical asymmetries in response to diverse inputs. They function throughout development and across the metazoa to regulate cell polarity. In recent years, traditional approaches to identifying and characterizing molecular players and interactions in the PAR network have begun to merge with biophysical, theoretical and computational efforts to understand the network as a pattern-forming biochemical circuit. Here, we summarize recent progress in the field, focusing on recent studies that have characterized the core molecular circuitry, circuit design and spatiotemporal dynamics. We also consider some of the ways in which the PAR network has evolved to polarize cells in different contexts and in response to different cues and functional constraints.
Collapse
Affiliation(s)
- Charles F Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Tripathi BK, Das R, Mukherjee A, Mutsuddi M. Interaction of Spoonbill with Prospero in Drosophila: Implications in neuroblast development. Genesis 2017; 55. [PMID: 28722203 DOI: 10.1002/dvg.23049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022]
Abstract
Identification of Spoon as a suppressor of SCA8 associated neurodegeneration provides us a hint about its role in neuronal development and maintenance. However, a detailed molecular characterization of spoon has not yet been reported. Here, we describe spatial expression pattern of Spoon during Drosophila development. Quantitative real time-PCR and fluorescent RNA-RNA in situ hybridization indicate that Spoon is expressed at relatively high levels in larval brain and photoreceptors of eye-antennal discs. Immunostaining reveals that Spoon is subcellularly localized in the cytoplasm and is also membrane bound. Strong expression is also seen in adult ovary and testes. Spoon on immunostaining exhibits unique pattern of expression in larval brain. We observed that Spoon in the neuroblasts colocalizes with Prospero, a transcription factor regulating genes involved in neuroblast self-renewal or cell-cycle control. Co-immunoprecipitation suggests that Spoon and Prospero reside in the same protein complex. Using Drosophila model of SCA8 RNA neuropathy we have also shown that loss of Prospero hinders the suppression of SCA8 associated neurodegeneration by Spoonbill, suggesting Prospero and Spoon might genetically interact and function together. Our study presents Spoon as a novel interacting partner of Prospero and this might be critical in determining the polarized localization of cell fate determinants.
Collapse
Affiliation(s)
- Bipin K Tripathi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rituparna Das
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
13
|
Manning L, Doe CQ. Immunofluorescent antibody staining of intact Drosophila larvae. Nat Protoc 2016; 12:1-14. [DOI: 10.1038/nprot.2016.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Seirin Lee S. Positioning of polarity formation by extracellular signaling during asymmetric cell division. J Theor Biol 2016; 400:52-64. [PMID: 27086039 DOI: 10.1016/j.jtbi.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/03/2016] [Accepted: 04/02/2016] [Indexed: 11/20/2022]
Abstract
Anterior-posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which ultimately generates cell diversity. In Caenorhabditis elegans, a single fertilized egg cell (P0), its daughter cell (P1), and the germline precursors (P2 and P3 cells) form two exclusive domains of different PAR proteins on the membrane along the anterior-posterior axis. However, the phenomenon of polarity reversal has been observed in which the axis of asymmetric cell division of the P2 and P3 cells is formed in an opposite manner to that of the P0 and P1 cells. The extracellular signal MES-1/SRC-1 has been shown to induce polarity reversal, but the detailed mechanism remains elusive. Here, using a mathematical model, I explore the mechanism by which MES-1/SRC-1 signaling can induce polarity reversal and ultimately affect the process of polarity formation. I show that a positive correlation between SRC-1 and the on-rate of PAR-2 is the essential mechanism underlying polarity reversal, providing a mathematical basis for the orientation of cell polarity patterns.
Collapse
Affiliation(s)
- Sungrim Seirin Lee
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8530, Japan.
| |
Collapse
|
15
|
Dynamic Opposition of Clustered Proteins Stabilizes Cortical Polarity in the C. elegans Zygote. Dev Cell 2016; 35:131-42. [PMID: 26460948 DOI: 10.1016/j.devcel.2015.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/05/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022]
Abstract
Dynamic maintenance of cell polarity is essential for development and physiology. Here we combine experiments and modeling to elucidate mechanisms that maintain cortical polarity in the C. elegans zygote. We show that polarity is dynamically stabilized by two coupled cross-inhibitory feedback loops: one involves the oligomeric scaffold PAR-3 and the kinase PAR-1, and the other involves CDC-42 and its putative GAP CHIN-1. PAR-3 and CDC-42 are both required locally to recruit PAR-6/PKC-3, which inhibits PAR-1 (shown previously) and inhibits local growth/accumulation of CHIN-1 clusters. Conversely, PAR-1 inhibits local accumulation of PAR-3 oligomers, while CHIN-1 inhibits CDC-42 (shown previously), such that either PAR-1 or CHIN-1 can prevent recruitment of PAR-6/PKC-3, but loss of both causes complete loss of polarity. Ultrasensitive dependence of CHIN-1 cluster growth on PAR-6/PKC-3 endows this core circuit with bistable dynamics, while transport of CHIN-1 clusters by cortical flow can stabilize the AP boundary against diffusive spread of PAR-6/PKC-3.
Collapse
|
16
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Seirin Lee S, Shibata T. Self-organization and advective transport in the cell polarity formation for asymmetric cell division. J Theor Biol 2015; 382:1-14. [PMID: 26141641 DOI: 10.1016/j.jtbi.2015.06.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 01/01/2023]
Abstract
Anterior-Posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which depends not only on the several genetic process but also biochemical and biophysical interactions. The mechanism of AP formation of Caenorhabditis elegans embryo is characterized into the three processes: (i) membrane association and dissociation of posterior and anterior proteins, (ii) diffusion into the membrane and cytosol, and (iii) active cortical and cytoplasmic flows induced by the contraction of the acto-myosin cortex. We explored the mechanism of symmetry breaking and AP polarity formation using self-recruitment model of posterior proteins. We found that the AP polarity pattern is established over wide range in the total mass of polarity proteins and the diffusion ratio in the cytosol to the membrane. We also showed that the advective transport in both membrane and cytosol during the establishment phase affects optimal time interval of establishment and positioning of the posterior domain, and plays a role to increase the robustness in the AP polarity formation by reducing the number of posterior domains for the sensitivity of initial conditions. We also demonstrated that a proper ratio of the total mass to cell size robustly regulate the length scale of the posterior domain.
Collapse
Affiliation(s)
- Sungrim Seirin Lee
- Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8530, Japan.
| | - Tatsuo Shibata
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; RIKEN Center for Developmental Biology, Minatojima-Minamimachi 2-2-3, Kobe 650-0047, Japan.
| |
Collapse
|
18
|
Arata Y, Takagi H, Sako Y, Sawa H. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans. Front Physiol 2015; 5:529. [PMID: 25674063 PMCID: PMC4309120 DOI: 10.3389/fphys.2014.00529] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/27/2014] [Indexed: 11/13/2022] Open
Abstract
Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and <0.39 in radius, respectively). Thus, the power law relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.
Collapse
Affiliation(s)
- Yukinobu Arata
- Laboratory for Cell Fate Decision, Center for Developmental Biology, RIKEN Hyogo, Japan ; Cellular Informatics Laboratory, RIKEN Saitama, Japan
| | - Hiroaki Takagi
- Department of Physics, School of Medicine, Nara Medical University Nara, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Saitama, Japan
| | - Hitoshi Sawa
- Laboratory for Cell Fate Decision, Center for Developmental Biology, RIKEN Hyogo, Japan ; Multicellular Organization Laboratory, National Institute of Genetics Shizuoka, Japan
| |
Collapse
|
19
|
Goehring NW. PAR polarity: from complexity to design principles. Exp Cell Res 2014; 328:258-66. [PMID: 25128809 DOI: 10.1016/j.yexcr.2014.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022]
Abstract
The par-titioning-defective or PAR proteins comprise the core of an essential cell polarity network that underlies polarization in a wide variety of cell types and developmental contexts. The output of this network in nearly every case is the establishment of opposing and complementary membrane domains that define a cell׳s polarity axis. Yet, behind this simple pattern is a complex system of interactions, regulation and dynamic behaviors. How these various parts combine to generate polarized patterns of protein localization in cells is only beginning to become clear. This review, part of the Special Issue on Cell Polarity, aims to highlight several emerging themes and design principles that underlie the process of cell polarization by components of the PAR network.
Collapse
Affiliation(s)
- Nathan W Goehring
- Cancer Research UK London Research Institute, 44 Lincoln׳s Inn Fields, London WC2A 3LY, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Du Z, Santella A, He F, Tiongson M, Bao Z. De novo inference of systems-level mechanistic models of development from live-imaging-based phenotype analysis. Cell 2014; 156:359-72. [PMID: 24439388 PMCID: PMC3998820 DOI: 10.1016/j.cell.2013.11.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/25/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022]
Abstract
Elucidation of complex phenotypes for mechanistic insights presents a significant challenge in systems biology. We report a strategy to automatically infer mechanistic models of cell fate differentiation based on live-imaging data. We use cell lineage tracing and combinations of tissue-specific marker expression to assay progenitor cell fate and detect fate changes upon genetic perturbation. Based on the cellular phenotypes, we further construct a model for how fate differentiation progresses in progenitor cells and predict cell-specific gene modules and cell-to-cell signaling events that regulate the series of fate choices. We validate our approach in C. elegans embryogenesis by perturbing 20 genes in over 300 embryos. The result not only recapitulates current knowledge but also provides insights into gene function and regulated fate choice, including an unexpected self-renewal. Our study provides a powerful approach for automated and quantitative interpretation of complex in vivo information.
Collapse
Affiliation(s)
- Zhuo Du
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Anthony Santella
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Fei He
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Michael Tiongson
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
21
|
Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013; 140:1843-56. [PMID: 23571210 DOI: 10.1242/dev.087627] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expanding list of spindle orientation regulators, and a molecular model for how cells couple cortical polarity with spindle positioning has begun to emerge. Here, we review both the well-established spindle orientation pathways and recently identified regulators, focusing on how communication between the cell cortex and the spindle is achieved, to provide a contemporary view of how positioning of the mitotic spindle occurs.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
22
|
Wang JT, Seydoux G. Germ cell specification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:17-39. [PMID: 22872473 DOI: 10.1007/978-1-4614-4015-4_2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The germline of Caenorhabditis elegans derives from a single founder cell, the germline blastomere P(4). P(4) is the product of four asymmetric cleavages that divide the zygote into distinct somatic and germline (P) lineages. P(4) inherits a specialized cytoplasm ("germ plasm") containing maternally encoded proteins and RNAs. The germ plasm has been hypothesized to specify germ cell fate, but the mechanisms involved remain unclear. Three processes stand out: (1) inhibition of mRNA transcription to prevent activation of somatic development, (2) translational regulation of the nanos homolog nos-2 and of other germ plasm mRNAs, and (3) establishment of a unique, partially repressive chromatin. Together, these processes ensure that the daughters of P(4), the primordial germ cells Z2 and Z3, gastrulate inside the embryo, associate with the somatic gonad, initiate the germline transcriptional program, and proliferate during larval development to generate ∼2,000 germ cells by adulthood.
Collapse
Affiliation(s)
- Jennifer T Wang
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
23
|
A genome-wide RNAi screen for enhancers of par mutants reveals new contributors to early embryonic polarity in Caenorhabditis elegans. Genetics 2012; 192:929-42. [PMID: 22887819 DOI: 10.1534/genetics.112.143727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The par genes of Caenorhabditis elegans are essential for establishment and maintenance of early embryo polarity and their homologs in other organisms are crucial polarity regulators in diverse cell types. Forward genetic screens and simple RNAi depletion screens have identified additional conserved regulators of polarity in C. elegans; genes with redundant functions, however, will be missed by these approaches. To identify such genes, we have performed a genome-wide RNAi screen for enhancers of lethality in conditional par-1 and par-4 mutants. We have identified 18 genes for which depletion is synthetically lethal with par-1 or par-4, or both, but produces little embryo lethality in wild type. Fifteen of the 18 genes identified in our screen are not previously known to function in C. elegans embryo polarity and 11 of them also increase lethality in a par-2 mutant. Among the strongest synthetic lethal genes, polarity defects are more apparent in par-2 early embryos than in par-1 or par-4, except for strd-1(RNAi), which enhances early polarity phenotypes in all three mutants. One strong enhancer of par-1 and par-2 lethality, F25B5.2, corresponds to nop-1, a regulator of actomyosin contractility for which the molecular identity was previously unknown. Other putative polarity enhancers identified in our screen encode cytoskeletal and membrane proteins, kinases, chaperones, and sumoylation and deubiquitylation proteins. Further studies of these genes should give mechanistic insight into pathways regulating establishment and maintenance of cell polarity.
Collapse
|
24
|
Schulze J, Houthoofd W, Uenk J, Vangestel S, Schierenberg E. Plectus - a stepping stone in embryonic cell lineage evolution of nematodes. EvoDevo 2012; 3:13. [PMID: 22748136 PMCID: PMC3464786 DOI: 10.1186/2041-9139-3-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have challenged the widespread view that the pattern of embryogenesis found in Caenorhabditis elegans (clade 9) is characteristic of nematodes in general. To understand this still largely unexplored landscape of developmental events, we set out to examine more distantly related nematodes in detail for temporospatial differences in pattern formation and cell specification. Members of the genus Plectus (clade 6) seem to be suitable candidates to show variety, with certain idiosyncratic features during early development and the convenient availability of cultivatable species. METHODS The study was conducted using 4-D lineage analysis, 3-D modeling of developing embryos and laser-induced ablation of individual blastomeres. RESULTS Detailed cell lineage studies of several Plectus species reveal that pattern formation and cell fate assignment differ markedly from C. elegans. Descendants of the first somatic founder cell S1 (AB) - but not the progeny of other founder cells - demonstrate extremely variable spatial arrangements illustrating that here distinct early cell-cell interactions between invariant partners, as found in C. elegans, cannot take place. Different from C. elegans, in Plectus alternative positional variations among early S1 blastomeres resulting in a 'situs inversus' pattern, nevertheless give rise to adults with normal left-right asymmetries. In addition, laser ablations of early blastomeres uncover inductions between variable cell partners. CONCLUSIONS Our results suggest that embryonic cell specification in Plectus is not correlated with cell lineage but with position. With this peculiarity, Plectus appears to occupy an intermediate position between basal nematodes displaying a variable early development and the C. elegans-like invariant pattern. We suggest that indeterminate pattern formation associated with late, position-dependent fate assignment represents a plesiomorphic character among nematodes predominant in certain basal clades but lost in derived clades. Thus, the behavior of S1 cells in Plectus can be considered an evolutionary relict in a transition phase between two different developmental strategies.
Collapse
Affiliation(s)
- Jens Schulze
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Wouter Houthoofd
- Department of Biology, Ghent University, Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Jana Uenk
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Sandra Vangestel
- Department of Biology, Ghent University, Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Einhard Schierenberg
- Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| |
Collapse
|
25
|
|
26
|
Schulze J, Schierenberg E. Evolution of embryonic development in nematodes. EvoDevo 2011; 2:18. [PMID: 21929824 PMCID: PMC3195109 DOI: 10.1186/2041-9139-2-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/20/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nematodes can be subdivided into basal Enoplea (clades 1 and 2) and more derived Chromadorea (clades 3 to 12). Embryogenesis of Caenorhabditis elegans (clade 9) has been analyzed in most detail. Their establishment of polarity and asymmetric cleavage requires the differential localization of PAR proteins. Earlier studies on selected other nematodes revealed that embryonic development of nematodes is more diverse than the essentially invariant development of C. elegans and the classic study object Ascaris had suggested. To obtain a more detailed picture of variations and evolutionary trends we compared embryonic cell lineages and pattern formation in embryos of all 12 nematode clades. METHODS The study was conducted using 4-D microscopy and 3-D modeling of developing embryos. RESULTS We found dramatic differences compared to C. elegans in Enoplea but also considerable variations among Chromadorea. We discovered 'Polarity Organizing Centers' (POCs) that orient cleavage spindles along the anterior-posterior axis in distinct cells over consecutive cell generations. The resulting lineally arranged blastomeres represent a starting point for the establishment of bilateral symmetry within individual lineages. We can discern six different early cleavage types and suggest that these variations are due to modifications in the activity of the POCs in conjunction with changes in the distribution of PAR proteins. In addition, our studies indicate that lineage complexity advanced considerably during evolution, that is we observe trends towards an increase of somatic founder cells, from monoclonal to polyclonal lineages and from a variable (position-dependent) to an invariable (lineage-dependent) way of cell fate specification. In contrast to the early phase of embryogenesis, the second half ('morphogenesis') appears similar in all studied nematodes. Comparison of early cleavage between the basal nematode Tobrilus stefanskii and the tardigrade Hypsibius dujardini revealed surprising similarities indicating that the presence of POCs is not restricted to nematode embryos. CONCLUSIONS The pattern of cleavage, spatial arrangement and differentiation of cells diverged dramatically during the history of the phylum Nematoda without corresponding changes in the phenotype. While in all studied representatives the same distinctive developmental steps need to be taken, cell behavior leading to these is not conserved.
Collapse
Affiliation(s)
- Jens Schulze
- University of Cologne, Biocenter, Zuelpicher Str. 47b 50967 Köln, Germany
| | | |
Collapse
|
27
|
Werts AD, Roh-Johnson M, Goldstein B. Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling. Development 2011; 138:4411-22. [PMID: 21903670 DOI: 10.1242/dev.070979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell divisions are sometimes oriented by extrinsic signals, by mechanisms that are poorly understood. Proteins containing TPR and GoLoco-domains (C. elegans GPR-1/2, Drosophila Pins, vertebrate LGN and AGS3) are candidates for mediating mitotic spindle orientation by extrinsic signals, but the mechanisms by which TPR-GoLoco proteins may localize in response to extrinsic cues are not well defined. The C. elegans TPR-GoLoco protein pair GPR-1/2 is enriched at a site of contact between two cells - the endomesodermal precursor EMS and the germline precursor P(2) - and both cells align their divisions toward this shared cell-cell contact. To determine whether GPR-1/2 is enriched at this site within both cells, we generated mosaic embryos with GPR-1/2 bearing a different fluorescent tag in different cells. We were surprised to find that GPR-1/2 distribution is symmetric in EMS, where GPR-1/2 had been proposed to function as an asymmetric cue for spindle orientation. Instead, GPR-1/2 is asymmetrically distributed only in P(2). We demonstrate a role for normal GPR-1/2 localization in P(2) division orientation. We show that MES-1/Src signaling plays an instructive role in P(2) for asymmetric GPR-1/2 localization and normal spindle orientation. We ruled out a model in which signaling localizes GPR-1/2 by locally inhibiting LET-99, a GPR-1/2 antagonist. Instead, asymmetric GPR-1/2 distribution is established by destabilization at one cell contact, diffusion, and trapping at another cell contact. Once the mitotic spindle of P(2) is oriented normally, microtubule-dependent removal of GPR-1/2 prevented excess accumulation, in an apparent negative-feedback loop. These results highlight the role of dynamic TPR-GoLoco protein localization as a key mediator of mitotic spindle alignment in response to instructive, external cues.
Collapse
Affiliation(s)
- Adam D Werts
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
28
|
Werts AD, Goldstein B. How signaling between cells can orient a mitotic spindle. Semin Cell Dev Biol 2011; 22:842-9. [PMID: 21807106 DOI: 10.1016/j.semcdb.2011.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 10/25/2022]
Abstract
In multicellular animals, cell communication sometimes serves to orient the direction in which cells divide. Control of division orientation has been proposed to be critical for partitioning developmental determinants and for maintaining epithelial architecture. Surprisingly, there are few cases where we understand the mechanisms by which external cues, transmitted by intercellular signaling, specify the division orientation of animal cells. One would predict that cytosolic molecules or complexes exist that are capable of interpreting extrinsic cues, translating the positions of these cues into forces on microtubules of the mitotic spindle. In recent years, a key intracellular complex has been identified that is required for pulling forces on mitotic spindles in Drosophila, Caenorhabditis elegans and vertebrate systems. One member of this complex, a protein with tetratricopeptide repeat (TPR) and GoLoco (Gα-binding) domains, has been found localized in positions that coincide with the positions of spindle-orienting extracellular cues. Do TPR-GoLoco proteins function as conserved, spatially regulated mediators of spindle orientation by intercellular signaling? Here, we review the relevant evidence among cases from diverse animal systems where this protein complex has been found to localize to specific cell-cell contacts and to be involved in orienting mitotic spindles.
Collapse
Affiliation(s)
- Adam D Werts
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|