1
|
Milholland KL, Waddey BT, Velázquez-Marrero KG, Lihon MV, Danzeisen EL, Naughton NH, Adams TJ, Schwartz JL, Liu X, Hall MC. Cdc14 phosphatases use an intramolecular pseudosubstrate motif to stimulate and regulate catalysis. J Biol Chem 2024; 300:107644. [PMID: 39122012 PMCID: PMC11407943 DOI: 10.1016/j.jbc.2024.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle. While studying Saccharomyces cerevisiae Cdc14, we discovered a short sequence in the disordered C terminus, distal to the catalytic domain, which mimics an optimal substrate. Kinetic analyses demonstrated this pseudosubstrate binds the active site and strongly stimulates rate-limiting phosphoenzyme hydrolysis, and we named it "substrate-like catalytic enhancer" (SLiCE). The SLiCE motif is found in all Dikarya fungal Cdc14 orthologs and contains an invariant glutamine, which we propose is positioned via substrate-like contacts to assist orientation of the hydrolytic water, similar to a conserved active site glutamine in other PTPs that Cdc14 lacks. AlphaFold2 predictions revealed vertebrate Cdc14 orthologs contain a conserved C-terminal alpha helix bound to the active site. Although apparently unrelated to the fungal sequence, this motif also makes substrate-like contacts and has an invariant glutamine in the catalytic pocket. Altering these residues in human Cdc14A and Cdc14B demonstrated that it functions by the same mechanism as the fungal motif. However, the fungal and vertebrate SLiCE motifs were not functionally interchangeable, illuminating potential active site differences during catalysis. Finally, we show that the fungal SLiCE motif is a target for phosphoregulation of Cdc14 activity. Our study uncovered evolution of an unusual stimulatory pseudosubstrate motif in Cdc14 phosphatases.
Collapse
Affiliation(s)
| | - Benjamin T Waddey
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Michelle V Lihon
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Emily L Danzeisen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Noelle H Naughton
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Timothy J Adams
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jack L Schwartz
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Zehri Z, Khan H, Ahmed S, Khan MJ, Shahwani NA, Nawaz S, Umair M. Delineating the Disease Boundaries: Homozygous CDC14A Variants Underlying Nonsyndromic Hearing Loss and Hearing Impairment Infertile Male Syndrome. Mol Syndromol 2024; 15:269-274. [PMID: 39119445 PMCID: PMC11305659 DOI: 10.1159/000536016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2023] [Indexed: 08/10/2024] Open
Abstract
Background Hereditary hearing loss is a genetically heterogeneous neurosensory disorder that affects many people. Deafness and infertility can coexist in some cases, creating the hearing impairment infertile male syndrome. There are several known molecular mechanisms that can cause deafness either on its own or in conjunction with infertility. Methods and Results Here, we represent two consanguineous families (A, B), both families had clinical evidence of deafness, and family B also had infertility, so we referred to them as having nonsyndromic hearing loss (NSHL) and hearing impairment infertile male syndrome (HIIMS), respectively. These families' genetic makeup was examined using an Affymetrix GeneChip 250K Nsp array followed by Sanger sequencing. In family A, we identified a novel homozygous stop gain variant [NM_003672.4; c.1000C>T; p.(Gln334*)] and a homozygous missense variant [NM_003672.4; c.684C>A; p.(Asn228Lys)] in family B in CDC14A gene (MIM#603504). In animal models, the CDC14A gene causes both hearing loss and infertility; in addition, it also causes NSHL and HIIMS in humans. Conclusions Our study on the CDC14A gene has identified two novel variants, crucial for delineating disease boundaries. Variants in exon 10 and upstream cause HIIMS, and those in exon 11 and downstream are linked exclusively to hearing impairment. This precision enhances diagnostics and offers potential for targeted interventions, marking a significant advancement in understanding the genetic basis of these conditions.
Collapse
Affiliation(s)
- Zamrud Zehri
- Department of Gynecology and Obstetrics, Civil Hospital Quetta, Quetta, Pakistan
| | - Hammal Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sohail Ahmed
- Institute of Biochemistry, University of Balochistan, Quetta, Pakistan
| | | | - Nisar Ahmed Shahwani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Balochistan, Quetta, Pakistan
| | - Shoaib Nawaz
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Muhammad Umair
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
3
|
Lopez Maury L, Ren L, Hassan S, Bähler J, Gould KL. The Cdc14 phosphatase, Clp1, does not affect genome expression. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001089. [PMID: 38415071 PMCID: PMC10897734 DOI: 10.17912/micropub.biology.001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
Schizosaccharomyces pombe Clp1 is a Cdc14-family phosphatase that reverses mitotic Cdk1 phosphorylation. Despite evolutionary conservation, Clp1 's mammalian orthologs do not share this function. Rather, higher eukaryotic Cdc14 enzymes act in DNA repair, ciliogenesis, and gene regulation. To examine if Clp1 regulates gene expression, we compared the transcriptional profiles of cells lacking Clp1 function to that of wildtype. Because clp1∆ cells are sensitive to the actin depolymerizing drug, LatrunculinA, we also investigated whether a transcriptional response was involved. Our results indicate that Clp1 does not detectably affect gene expression and highlight the organism-specific functions of this conserved phosphatase family.
Collapse
Affiliation(s)
- Luis Lopez Maury
- Department of Genetics, Evolution, and Environment, Institute of Healthy Ageing, University College London, London, UK
- Current: Instituto de Bioquimica Vegetal y Fotosintesis, Universidad de Sevilla, Sevilla, Spain
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shaimaa Hassan
- Department of Genetics, Evolution, and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution, and Environment, Institute of Healthy Ageing, University College London, London, UK
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
4
|
Partscht P, Uddin B, Schiebel E. Human cells lacking CDC14A and CDC14B show differences in ciliogenesis but not in mitotic progression. J Cell Sci 2021; 134:224108. [PMID: 33328327 DOI: 10.1242/jcs.255950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
The budding yeast phosphatase Cdc14 has a central role in mitotic exit and cytokinesis. Puzzlingly, a uniform picture for the three human CDC14 paralogues CDC14A, CDC14B and CDC14C in cell cycle control has not emerged to date. Redundant functions between the three CDC14 phosphatases could explain this unclear picture. To address the possibility of redundancy, we tested expression of CDC14 and analysed cell cycle progression of cells with single and double deletions in CDC14 genes. Our data suggest that CDC14C is not expressed in human RPE1 cells, excluding a function in this cell line. Single- and double-knockouts (KO) of CDC14A and CDC14B in RPE1 cells indicate that both phosphatases are not important for the timing of mitotic phases, cytokinesis and cell proliferation. However, cycling CDC14A KO and CDC14B KO cells show altered ciliogenesis compared to wild-type cells. The cilia of cycling CDC14A KO cells are longer, whereas CDC14B KO cilia are more frequent and disassemble faster. In conclusion, this study demonstrates that the cell cycle functions of CDC14 proteins are not conserved between yeast and human cells.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Borhan Uddin
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| |
Collapse
|
5
|
DeMarco AG, Milholland KL, Pendleton AL, Whitney JJ, Zhu P, Wesenberg DT, Nambiar M, Pepe A, Paula S, Chmielewski J, Wisecaver JH, Tao WA, Hall MC. Conservation of Cdc14 phosphatase specificity in plant fungal pathogens: implications for antifungal development. Sci Rep 2020; 10:12073. [PMID: 32694511 PMCID: PMC7374715 DOI: 10.1038/s41598-020-68921-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
Cdc14 protein phosphatases play an important role in plant infection by several fungal pathogens. This and other properties of Cdc14 enzymes make them an intriguing target for development of new antifungal crop treatments. Active site architecture and substrate specificity of Cdc14 from the model fungus Saccharomyces cerevisiae (ScCdc14) are well-defined and unique among characterized phosphatases. Cdc14 appears absent from some model plants. However, the extent of conservation of Cdc14 sequence, structure, and specificity in fungal plant pathogens is unknown. We addressed this by performing a comprehensive phylogenetic analysis of the Cdc14 family and comparing the conservation of active site structure and specificity among a sampling of plant pathogen Cdc14 homologs. We show that Cdc14 was lost in the common ancestor of angiosperm plants but is ubiquitous in ascomycete and basidiomycete fungi. The unique substrate specificity of ScCdc14 was invariant in homologs from eight diverse species of dikarya, suggesting it is conserved across the lineage. A synthetic substrate mimetic inhibited diverse fungal Cdc14 homologs with similar low µM Ki values, but had little effect on related phosphatases. Our results justify future exploration of Cdc14 as a broad spectrum antifungal target for plant protection.
Collapse
Affiliation(s)
- Andrew G DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Amanda L Pendleton
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - John J Whitney
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel T Wesenberg
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Monessha Nambiar
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Antonella Pepe
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Stefan Paula
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, California State University, 6000 J Street, Sacramento, CA, 95819, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer H Wisecaver
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
When transcripts matter: delineating between non-syndromic hearing loss DFNB32 and hearing impairment infertile male syndrome (HIIMS). J Hum Genet 2020; 65:609-617. [PMID: 32231217 DOI: 10.1038/s10038-020-0740-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Mutations in the CDC14A (Cell Division-Cycle 14A) gene, which encodes a conserved dual-specificity protein tyrosine phosphatase, have been identified as a cause of autosomal recessive non-syndromic hearing loss (DFNB32) and hearing impairment infertility male syndrome (HIIMS). We used next-generation sequencing to screen six deaf probands from six families segregating sensorineural moderate-to-profound hearing loss. Data analysis and variant prioritization were completed using a custom bioinformatics pipeline. We identified three homozygous loss of function variants (p.Arg345Ter, p.Arg376Ter, and p.Ala451Thrfs*43) in the CDC14A gene, segregating with deafness in each family. Of the six families, four segregated the p.Arg376Ter mutation, one family segregated the p.Arg345Ter mutation and one family segregated a novel frameshift (p.Ala451Thrfs*43) mutation. In-depth phenotyping of affected individuals ruled out secondary syndromic findings. This study implicates the p.Arg376Ter mutation might be as a founder mutation in the Iranian population. It also provides the first semen analysis for deaf males carrying mutations in exon 11 of CDC14A and reveals a genotype-phenotype correlation that delineates between DFNB32 and HIIMS. The clinical results from affected males suggest the NM_033313.2 transcript alone is sufficient for proper male fertility, but not for proper auditory function. We conclude that DFNB32 is a distinct phenotypic entity in males.
Collapse
|
7
|
The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control. Int J Mol Sci 2020; 21:ijms21030709. [PMID: 31973188 PMCID: PMC7038166 DOI: 10.3390/ijms21030709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.
Collapse
|
8
|
Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. Int J Mol Sci 2020; 21:ijms21020446. [PMID: 31936707 PMCID: PMC7014277 DOI: 10.3390/ijms21020446] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.
Collapse
|
9
|
Fillatre J, Fauny JD, Fels JA, Li C, Goll M, Thisse C, Thisse B. TEADs, Yap, Taz, Vgll4s transcription factors control the establishment of Left-Right asymmetry in zebrafish. eLife 2019; 8:45241. [PMID: 31513014 PMCID: PMC6759317 DOI: 10.7554/elife.45241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
In many vertebrates, establishment of Left-Right (LR) asymmetry results from the activity of a ciliated organ functioning as the LR Organizer (LRO). While regulation of the formation of this structure by major signaling pathways has been described, the transcriptional control of LRO formation is poorly understood. Using the zebrafish model, we show that the transcription factors and cofactors mediating or regulating the transcriptional outcome of the Hippo signaling pathway play a pivotal role in controlling the expression of genes essential to the formation of the LRO including ligands and receptors of signaling pathways involved in this process and most genes required for motile ciliogenesis. Moreover, the transcription cofactor, Vgll4l regulates epigenetic programming in LRO progenitors by controlling the expression of writers and readers of DNA methylation marks. Altogether, our study uncovers a novel and essential role for the transcriptional effectors and regulators of the Hippo pathway in establishing LR asymmetry.
Collapse
Affiliation(s)
- Jonathan Fillatre
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Jean-Daniel Fauny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France.,Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | - Cheng Li
- Department of Genetics, University of Georgia, Athens, United States
| | - Mary Goll
- Department of Genetics, University of Georgia, Athens, United States
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, United States.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
10
|
Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019; 3:70-85. [PMID: 31225502 PMCID: PMC6551743 DOI: 10.15698/cst2019.03.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity is fundamental for cellular physiology. Our hereditary information encoded in the DNA is intrinsically susceptible to suffer variations, mostly due to the constant presence of endogenous and environmental genotoxic stresses. Genomic insults must be repaired to avoid loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental anomalies and tumorigenesis. To safeguard our genome, cells have evolved a series of mechanisms collectively known as the DNA damage response (DDR). This surveillance system regulates multiple features of the cellular response, including the detection of the lesion, a transient cell cycle arrest and the restoration of the broken DNA molecule. While the role of multiple kinases in the DDR has been well documented over the last years, the intricate roles of protein dephosphorylation have only recently begun to be addressed. In this review, we have compiled recent information about the function of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DDR, focusing mainly on their capacity to regulate the DNA damage checkpoint and the repair mechanism encompassed in the restoration of a DNA lesion.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - María Teresa Villoria
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| |
Collapse
|
11
|
Uddin B, Partscht P, Chen NP, Neuner A, Weiß M, Hardt R, Jafarpour A, Heßling B, Ruppert T, Lorenz H, Pereira G, Schiebel E. The human phosphatase CDC14A modulates primary cilium length by regulating centrosomal actin nucleation. EMBO Rep 2018; 20:embr.201846544. [PMID: 30467237 DOI: 10.15252/embr.201846544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 11/09/2022] Open
Abstract
CDC14A codes for a conserved proline-directed phosphatase, and mutations in the gene are associated with autosomal-recessive severe to profound deafness, due to defective kinocilia. A role of CDC14A in cilia formation has also been described in other organisms. However, how human CDC14A impacts on cilia formation remains unclear. Here, we show that human RPE1 hCDC14APD cells, encoding a phosphatase dead version of hCDC14A, have longer cilia than wild-type cells, while hCDC14A overexpression reduces cilia formation. Phospho-proteome analysis of ciliated RPE1 cells identified actin-associated and microtubule binding proteins regulating cilia length as hCDC14A substrates, including the actin-binding protein drebrin. Indeed, we find that hCDC14A counteracts the CDK5-dependent phosphorylation of drebrin at S142 during ciliogenesis. Further, we show that drebrin and hCDC14A regulate the recruitment of the actin organizer Arp2 to centrosomes. In addition, during ciliogenesis hCDC14A also regulates endocytosis and targeting of myosin Va vesicles to the basal body in a drebrin-independent manner, indicating that it impacts primary cilia formation in a multilayered manner.
Collapse
Affiliation(s)
- Borhan Uddin
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany.,Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh.,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Patrick Partscht
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Nan-Peng Chen
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Manuel Weiß
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Robert Hardt
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Aliakbar Jafarpour
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Bernd Heßling
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Holger Lorenz
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- DKFZ-ZMBH Alliance and Molecular Biology of Centrosomes and Cilia Unit, Centre for Organismal Studies and German Cancer Research Center, Heidelberg, Germany
| | - Elmar Schiebel
- DKFZ-ZMBH Allianz, Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Neitzel LR, Broadus MR, Zhang N, Sawyer L, Wallace HA, Merkle JA, Jodoin JN, Sitaram P, Crispi EE, Rork W, Lee LA, Pan D, Gould KL, Page-McCaw A, Lee E. Characterization of a cdc14 null allele in Drosophila melanogaster. Biol Open 2018; 7:bio.035394. [PMID: 29945873 PMCID: PMC6078348 DOI: 10.1242/bio.035394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cdc14 is an evolutionarily conserved serine/threonine phosphatase. Originally identified in Saccharomyces cerevisiae as a cell cycle regulator, its role in other eukaryotic organisms remains unclear. In Drosophila melanogaster, Cdc14 is encoded by a single gene, thus facilitating its study. We found that Cdc14 expression is highest in the testis of adult flies and that cdc14 null flies are viable. cdc14 null female and male flies do not display altered fertility. cdc14 null males, however, exhibit decreased sperm competitiveness. Previous studies have shown that Cdc14 plays a role in ciliogenesis during zebrafish development. In Drosophila, sensory neurons are ciliated. We found that the Drosophila cdc14 null mutants have defects in chemosensation and mechanosensation as indicated by decreased avoidance of repellant substances and decreased response to touch. In addition, we show that cdc14 null mutants have defects in lipid metabolism and resistance to starvation. These studies highlight the diversity of Cdc14 function in eukaryotes despite its structural conservation. Summary: The Cdc14 phosphatase has been implicated in cell cycle regulation in S. cerevisiae. We show that Drosophila cdc14 mutants are viable, but exhibit defects in sperm competition, chemosensation, and mechanosensation.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew R Broadus
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nailing Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Leah Sawyer
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather A Wallace
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Julie A Merkle
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeanne N Jodoin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Poojitha Sitaram
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Emily E Crispi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - William Rork
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura A Lee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Duojia Pan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Villoria MT, Ramos F, Dueñas E, Faull P, Cutillas PR, Clemente-Blanco A. Stabilization of the metaphase spindle by Cdc14 is required for recombinational DNA repair. EMBO J 2016; 36:79-101. [PMID: 27852625 PMCID: PMC5210157 DOI: 10.15252/embj.201593540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 11/24/2022] Open
Abstract
Cells are constantly threatened by multiple sources of genotoxic stress that cause DNA damage. To maintain genome integrity, cells have developed a coordinated signalling network called DNA damage response (DDR). While multiple kinases have been thoroughly studied during DDR activation, the role of protein dephosphorylation in the damage response remains elusive. Here, we show that the phosphatase Cdc14 is essential to fulfil recombinational DNA repair in budding yeast. After DNA double‐strand break (DSB) generation, Cdc14 is transiently released from the nucleolus and activated. In this state, Cdc14 targets the spindle pole body (SPB) component Spc110 to counterbalance its phosphorylation by cyclin‐dependent kinase (Cdk). Alterations in the Cdk/Cdc14‐dependent phosphorylation status of Spc110, or its inactivation during the induction of a DNA lesion, generate abnormal oscillatory SPB movements that disrupt DSB‐SPB interactions. Remarkably, these defects impair DNA repair by homologous recombination indicating that SPB integrity is essential during the repair process. Together, these results show that Cdc14 promotes spindle stability and DSB‐SPB tethering during DNA repair, and imply that metaphase spindle maintenance is a critical feature of the repair process.
Collapse
Affiliation(s)
- María Teresa Villoria
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca (USAL), Salamanca, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca (USAL), Salamanca, Spain
| | - Encarnación Dueñas
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca (USAL), Salamanca, Spain
| | - Peter Faull
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council Clinical Science Centre Imperial College, London, UK
| | - Pedro Rodríguez Cutillas
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council Clinical Science Centre Imperial College, London, UK
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
14
|
Baek JI, Kwon SH, Zuo X, Choi SY, Kim SH, Lipschutz JH. Dynamin Binding Protein (Tuba) Deficiency Inhibits Ciliogenesis and Nephrogenesis in Vitro and in Vivo. J Biol Chem 2016; 291:8632-43. [PMID: 26895965 DOI: 10.1074/jbc.m115.688663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
Dysfunction of renal primary cilia leads to polycystic kidney disease. We previously showed that the exocyst, a protein trafficking complex, is essential for ciliogenesis and regulated by multiple Rho and Rab family GTPases, such as Cdc42. Cdc42 deficiency resulted in a disruption of renal ciliogenesis and a polycystic kidney disease phenotype in zebrafish and mice. Here we investigate the role of Dynamin binding protein (also known as Tuba), a Cdc42-specific guanine nucleotide exchange factor, in ciliogenesis and nephrogenesis using Tuba knockdown Madin-Darby canine kidney cells and tuba knockdown in zebrafish. Tuba depletion resulted in an absence of cilia, with impaired apical polarization and inhibition of hepatocyte growth factor-induced tubulogenesis in Tuba knockdown Madin-Darby canine kidney cell cysts cultured in a collagen gel. In zebrafish, tuba was expressed in multiple ciliated organs, and, accordingly, tuba start and splice site morphants showed various ciliary mutant phenotypes in these organs. Co-injection of tuba and cdc42 morpholinos at low doses, which alone had no effect, resulted in genetic synergy and led to abnormal kidney development with highly disorganized pronephric duct cilia. Morpholinos targeting two other guanine nucleotide exchange factors not known to be in the Cdc42/ciliogenesis pathway and a scrambled control morpholino showed no phenotypic effect. Given the molecular nature of Cdc42 and Tuba, our data strongly suggest that tuba and cdc42 act in the same ciliogenesis pathway. Our study demonstrates that Tuba deficiency causes an abnormal renal ciliary and morphogenetic phenotype. Tuba most likely plays a critical role in ciliogenesis and nephrogenesis by regulating Cdc42 activity.
Collapse
Affiliation(s)
- Jeong-In Baek
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Sang-Ho Kwon
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Xiaofeng Zuo
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Soo Young Choi
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Seok-Hyung Kim
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Joshua H Lipschutz
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and the Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
15
|
Kim Y, Choi JW, Lee JH, Kim YS. Loss of CDC14B expression in clear cell renal cell carcinoma: meta-analysis of microarray data sets. Am J Clin Pathol 2014; 141:551-8. [PMID: 24619757 DOI: 10.1309/ajcp4pe4jpsrgbqs] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To discover significant differentially expressed genes (DEGs) in clear cell renal cell carcinoma (ccRCC) that might be unidentified by single microarray analysis. METHODS The effect sizes of five ccRCC microarray data sets were combined using a random-effects model. The most downregulated gene was validated in paired 80 ccRCC tissues by immunohistochemistry. RESULTS CDC14B was the most downregulated gene among 1,761 DEGs. CDC14B was strongly expressed in the apical proximal tubules in the nonneoplastic tissues, while it was completely absent in 10 (12.5%) of 80 or downregulated in 70 (87.5%) of 80 ccRCC cases. The complete loss of CDC14B correlated with high T stage (P = .038), advanced TNM stage (P = .027), tumor recurrence (P = .038), and shorter recurrence-free survival (P = .046) compared with the partial loss of CDC14B. CONCLUSIONS Microarray meta-analysis is a useful tool for pathologists. CDC14B expression is downregulated in ccRCC, suggesting its role in renal carcinogenesis.
Collapse
Affiliation(s)
- Younghye Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
16
|
Dash SN, Lehtonen E, Wasik AA, Schepis A, Paavola J, Panula P, Nelson WJ, Lehtonen S. Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis. J Cell Sci 2014; 127:1476-86. [PMID: 24496452 DOI: 10.1242/jcs.138495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The conserved septin family of filamentous small GTPases plays important roles in mitosis, cell migration and cell morphogenesis by forming scaffolds and diffusion barriers. Recent studies in cultured cells in vitro indicate that a septin complex of septin 2, 7 and 9 is required for ciliogenesis and cilia function, but septin function in ciliogenesis in vertebrate organs in vivo is not understood. We show that sept7b is expressed in ciliated cells in different tissues during early zebrafish development. Knockdown of sept7b by using morpholino antisense oligonucleotides caused misorientation of basal bodies and cilia, reduction of apical actin and the shortening of motile cilia in Kupffer's vesicle and pronephric tubules. This resulted in pericardial and yolk sac edema, body axis curvature and hydrocephaly. Notably, in sept7b morphants we detected strong left-right asymmetry defects in the heart and lateral plate mesoderm (situs inversus), reduced fluid flow in the kidney, the formation of kidney cysts and loss of glomerular filtration barrier function. Thus, sept7b is essential during zebrafish development for pronephric function and ciliogenesis, and loss of expression of sept7b results in defects that resemble human ciliopathies.
Collapse
Affiliation(s)
- Surjya Narayan Dash
- University of Helsinki, Haartman Institute, Department of Pathology, Haartmaninkatu 3, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang S, Xu W, Su B, Luo L. Distinct mechanisms determine organ left-right asymmetry patterning in an uncoupled way. Bioessays 2014; 36:293-304. [PMID: 24464475 DOI: 10.1002/bies.201300128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disruption of Nodal in the lateral plate mesoderm (LPM) usually leads to left-right (LR) patterning defects in multiple organs. However, whether the LR patterning of organs is always regulated in a coupled way has largely not yet been elucidated. In addition, whether other crucial regulators exist in the LPM that coordinate with Nodal in regulating organ LR patterning is also undetermined. In this paper, after briefly summarizing the common process of LR patterning, the most puzzling question regarding the initiation of asymmetry is considered and the divergent mechanisms underlying the uncoupled LR patterning in different organs are discussed. On the basis of cases in which different organ LR patterning is determined in an uncoupled way via an independent mechanism or at a different time, we propose that there are other critical factors in the LPM that coordinate with Nodal to regulate heart LR asymmetry patterning during early LR patterning.
Collapse
Affiliation(s)
- Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | | | | | | |
Collapse
|
18
|
Zhou X, Fan LX, Li K, Ramchandran R, Calvet JP, Li X. SIRT2 regulates ciliogenesis and contributes to abnormal centrosome amplification caused by loss of polycystin-1. Hum Mol Genet 2013; 23:1644-55. [PMID: 24203696 DOI: 10.1093/hmg/ddt556] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying many of the human disease phenotypes associated with ciliary dysfunction and abnormal centrosome amplification have yet to be fully elucidated. Here, we present for the first time that SIRT2, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, regulates ciliogenesis and centrosome amplification. Overexpression of SIRT2 in renal epithelial cells appeared to disrupt cilia formation, causing decreased numbers of cells with cilia and decreased cilia length, while inhibition of SIRT2 activity by nicotinamide treatment or knockdown of SIRT2 with siRNA was shown to block cilia disassembly during the cell cycle. Overexpression of SIRT2 in zebrafish decreased cilia numbers in Kupffer's vesicle, while morpholino knock down of SIRT2 increased cilia length. Aberrant centrosome amplification and polyploidy were seen with overexpression of SIRT2 in mouse inner medullary collecting duct 3 cells, similar to that observed following Pkd1 knockdown. SIRT2 was up-regulated in both Pkd1 mutant and knockdown cells. Depletion of SIRT2 prevented the abnormal centrosome amplification and polyploidy associated with loss of polycystin-1 (PC1) alone. Thus, we conclude that the aberrant centrosome amplification and polyploidy in Pkd1 mutant or depleted cells was mediated through overexpression of SIRT2. Our results suggest a novel function of SIRT2 in cilia dynamics and centrosome function, and in ciliopathy-associated disease progression.
Collapse
|
19
|
Wang S, Dong Z. Primary cilia and kidney injury: current research status and future perspectives. Am J Physiol Renal Physiol 2013; 305:F1085-98. [PMID: 23904226 DOI: 10.1152/ajprenal.00399.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cilia, membrane-enclosed organelles protruding from the apical side of cells, can be divided into two classes: motile and primary cilia. During the past decades, motile cilia have been intensively studied. However, it was not until the 1990s that people began to realize the importance of primary cilia as cellular-specific sensors, particularly in kidney tubular epithelial cells. Furthermore, accumulating evidence indicates that primary cilia may be involved in the regulation of cell proliferation, differentiation, apoptosis, and planar cell polarity. Many signaling pathways, such as Wnt, Notch, Hedgehog, and mammalian target of rapamycin, have been located to the primary cilia. Thus primary cilia have been regarded as a hub that integrates signals from the extracellular environment. More importantly, dysfunction of this organelle may contribute to the pathogenesis of a large spectrum of human genetic diseases, named ciliopathies. The significance of primary cilia in acquired human diseases such as hypertension and diabetes has gradually drawn attention. Interestingly, recent reports disclosed that cilia length varies during kidney injury, and shortening of cilia enhances the sensitivity of epithelial cells to injury cues. This review briefly summarizes the current status of cilia research and explores the potential mechanisms of cilia-length changes during kidney injury as well as provides some thoughts to allure more insightful ideas and promotes the further study of primary cilia in the context of kidney injury.
Collapse
Affiliation(s)
- Shixuan Wang
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912.
| | | |
Collapse
|
20
|
Activation loop phosphorylation of a protein kinase is a molecular marker of organelle size that dynamically reports flagellar length. Proc Natl Acad Sci U S A 2013; 110:12337-42. [PMID: 23836633 DOI: 10.1073/pnas.1302364110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Specification of organelle size is crucial for cell function, yet we know little about the molecular mechanisms that report and regulate organelle growth and steady-state dimensions. The biflagellated green alga Chlamydomonas requires continuous-length feedback to integrate the multiple events that support flagellar assembly and disassembly and at the same time maintain the sensory and motility functions of the organelle. Although several length mutants have been characterized, the requisite molecular reporter of length has not been identified. Previously, we showed that depletion of Chlamydomonas aurora-like protein kinase CALK inhibited flagellar disassembly and that a gel-shift-associated phosphorylation of CALK marked half-length flagella during flagellar assembly. Here, we show that phosphorylation of CALK on T193, a consensus phosphorylation site on the activation loop required for kinase activity, is distinct from the gel-shift-associated phosphorylation and is triggered when flagellar shortening is induced, thereby implicating CALK protein kinase activity in the shortening arm of length control. Moreover, CALK phosphorylation on T193 is dynamically related to flagellar length. It is reduced in cells with short flagella, elevated in the long flagella mutant, lf4, and dynamically tracks length during both flagellar assembly and flagellar disassembly in WT, but not in lf4. Thus, phosphorylation of CALK in its activation loop is implicated in the disassembly arm of a length feedback mechanism and is a continuous and dynamic molecular marker of flagellar length during both assembly and disassembly.
Collapse
|
21
|
Wang G, Yost HJ, Amack JD. Analysis of gene function and visualization of cilia-generated fluid flow in Kupffer's vesicle. J Vis Exp 2013. [PMID: 23567922 DOI: 10.3791/50038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Internal organs such as the heart, brain, and gut develop left-right (LR) asymmetries that are critical for their normal functions. Motile cilia are involved in establishing LR asymmetry in vertebrate embryos, including mouse, frog, and zebrafish. These 'LR cilia' generate asymmetric fluid flow that is necessary to trigger a conserved asymmetric Nodal (TGF-β superfamily) signaling cascade in the left lateral plate mesoderm, which is thought to provide LR patterning information for developing organs. Thus, to understand mechanisms underlying LR patterning, it is essential to identify genes that regulate the organization of LR ciliated cells, the motility and length of LR cilia and their ability to generate robust asymmetric flow. In the zebrafish embryo, LR cilia are located in Kupffer's vesicle (KV). KV is comprised of a single layer of monociliated epithelial cells that enclose a fluid-filled lumen. Fate mapping has shown that KV is derived from a group of ~20-30 cells known as dorsal forerunner cells (DFCs) that migrate at the dorsal blastoderm margin during epiboly stages. During early somite stages, DFCs cluster and differentiate into ciliated epithelial cells to form KV in the tailbud of the embryo. The ability to identify and track DFCs-in combination with optical transparency and rapid development of the zebrafish embryo-make zebrafish KV an excellent model system to study LR ciliated cells. Interestingly, progenitors of the DFC/KV cell lineage retain cytoplasmic bridges between the yolk cell up to 4 hr post-fertilization (hpf), whereas cytoplasmic bridges between the yolk cell and other embryonic cells close after 2 hpf(8). Taking advantage of these cytoplasmic bridges, we developed a stage-specific injection strategy to deliver morpholino oligonucleotides (MO) exclusively to DFCs and knockdown the function of a targeted gene in these cells. This technique creates chimeric embryos in which gene function is knocked down in the DFC/KV lineage developing in the context of a wild-type embryo. To analyze asymmetric fluid flow in KV, we inject fluorescent microbeads into the KV lumen and record bead movement using videomicroscopy. Fluid flow is easily visualized and can be quantified by tracking bead displacement over time. Here, using the stage-specific DFC-targeted gene knockdown technique and injection of fluorescent microbeads into KV to visualize flow, we present a protocol that provides an effective approach to characterize the role of a particular gene during KV development and function.
Collapse
Affiliation(s)
- Guangliang Wang
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, New York, NY, USA
| | | | | |
Collapse
|
22
|
Broekhuis JR, Rademakers S, Burghoorn J, Jansen G. SQL-1, homologue of the Golgi protein GMAP210, modulates intraflagellar transport in C. elegans. J Cell Sci 2013; 126:1785-95. [PMID: 23444385 DOI: 10.1242/jcs.116640] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary cilia are microtubule-based organelles that have important sensory functions. For their function, cilia rely on the delivery of specific proteins, both by intracellular trafficking and intraflagellar transport (IFT). In the cilia of Caenorhabditis elegans, anterograde IFT is mediated by kinesin-II and OSM-3. Previously, we have shown that expression of a dominant active G protein α subunit (GPA-3QL) in amphid channel neurons affects the coordination of kinesin-II and OSM-3 and also affects cilia length, suggesting that environmental signals can modulate these processes. Here, we show that loss-of-function of sql-1 (suppressor of gpa-3QL 1), which encodes the homologue of the mammalian Golgi protein GMAP210, suppresses the gpa-3QL cilia length phenotype. SQL-1 localizes to the Golgi apparatus, where it contributes to maintaining Golgi organization. Loss of sql-1 by itself does not affect cilia length, whereas overexpression of sql-1 results in longer cilia. Using live imaging of fluorescently tagged IFT proteins, we show that in sql-1 mutants OSM-3 moves faster, kinesin-II moves slower and that some complex A and B proteins move at an intermediate velocity, while others move at the same velocity as OSM-3. This indicates that mutation of sql-1 destabilizes the IFT complex. Finally, we show that simultaneous inactivation of sql-1 and activation of gpa-3QL affects the velocity of OSM-3. In summary, we show that in C. elegans the Golgin protein SQL-1 plays an important role in maintaining the stability of the IFT complex.
Collapse
Affiliation(s)
- Joost R Broekhuis
- Department of Cell Biology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Broekhuis JR, Leong WY, Jansen G. Regulation of cilium length and intraflagellar transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:101-38. [PMID: 23445809 DOI: 10.1016/b978-0-12-407697-6.00003-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary cilia are highly conserved sensory organelles that extend from the surface of almost all vertebrate cells. The importance of cilia is evident from their involvement in many diseases, called ciliopathies. Primary cilia contain a microtubular axoneme that is used as a railway for transport of both structural components and signaling proteins. This transport machinery is called intraflagellar transport (IFT). Cilia are dynamic organelles whose presence on the cell surface, morphology, length and function are highly regulated. It is clear that the IFT machinery plays an important role in this regulation. However, it is not clear how, for example environmental cues or cell fate decisions are relayed to modulate IFT and cilium morphology or function. This chapter presents an overview of molecules that have been shown to regulate cilium length and IFT. Several examples where signaling modulates IFT and cilium function are used to discuss the importance of these systems for the cell and for understanding of the etiology of ciliopathies.
Collapse
|
24
|
Ko HW. The primary cilium as a multiple cellular signaling scaffold in development and disease. BMB Rep 2012; 45:427-32. [PMID: 22917026 DOI: 10.5483/bmbrep.2012.45.8.167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Primary cilia, single hair-like appendage on the surface of the most mammalian cells, were once considered to be vestigial cellular organelles for a past century because of their tiny structure and unknown function. Although they lack ancestral motility function of cilia or flagella, they share common ground with multiciliated motile cilia and flagella on internal structure such as microtubule based nine outer doublets nucleated from the base of mother centrioles called basal body. Making cilia, ciliogenesis, in cells depends on the cell cycle stage due to reuse of centrioles for cell division forming mitotic spindle pole (M phase) and assembling cilia from basal body (starting G1 phase and maintaining most of interphase). Ciliary assembly required two conflicting processes such as assembly and disassembly and balance between these two processes determines the length of cilia. Both process required highly conserved transport system to supply needed substance to grow tip of cilia and bring ciliary turnover product back to the base of cilia using motor protein, kinesin and dynein, and transport protein complex, IFT particles. Disruption of ciliary structure or function causes multiple human disorder called ciliopathies affecting disease of diverse ciliated tissues ranging from eye, kidney, respiratory tract and brain. Recent explosion of research on the primary cilia and their involvement on animal development and disease attracts scientific interest on how extensively the function of cilia related to specific cell physiology and signaling pathway. In this review, I introduce general features of primary cilia and recent progress in understanding of the ciliary length control and signaling pathways transduced through primary cilia in vertebrates.
Collapse
Affiliation(s)
- Hyuk Wan Ko
- College of Pharmacy, Dongguk University, Goyang, Korea.
| |
Collapse
|
25
|
Clément A, Solnica-Krezel L, Gould KL. Functional redundancy between Cdc14 phosphatases in zebrafish ciliogenesis. Dev Dyn 2012; 241:1911-21. [PMID: 23027426 PMCID: PMC3508521 DOI: 10.1002/dvdy.23876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinases (Cdks) and their counteracting phosphatases are key regulators of cell cycle progression. In yeasts, the Cdc14 family of phosphatases promotes exit from mitosis and progression through cytokinesis by reversing phosphorylation of Cdk1 substrates. In vertebrates, CDC14 paralogs, CDC14A and CDC14B, have so far been implicated in processes ranging from DNA damage repair, meiosis, centrosome duplication to ciliogenesis. However, the question of whether CDC14 paralogs can functionally compensate for each other has yet to be addressed. RESULTS Here, using antisense morpholino oligonucleotides to inhibit Cdc14A1 function, we observed that Cdc14A1 depleted zebrafish embryos displayed ventrally curved body and left-right asymmetry defects, similar to Cdc14B deficient embryos and zebrafish mutants with cilia defects. Accordingly, we found that Cdc14A1, like Cdc14B, plays a role in ciliogenesis in the Kupffer's vesicle (KV) and other ciliated tissues, and can do so independently of its function in cell cycle. Furthermore, we observed reciprocal suppression of KV cilia length defects of Cdc14A1 and Cdc14B deficient embryos by cdc14b and cdc14a1 RNAs, respectively. CONCLUSIONS Together, these studies demonstrate for the first time that Cdc14A and Cdc14B have overlapping functions in the ciliogenesis process during zebrafish development.
Collapse
Affiliation(s)
- Aurélie Clément
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
26
|
Broadus MR, Gould KL. Multiple protein kinases influence the redistribution of fission yeast Clp1/Cdc14 phosphatase upon genotoxic stress. Mol Biol Cell 2012; 23:4118-28. [PMID: 22918952 PMCID: PMC3469525 DOI: 10.1091/mbc.e12-06-0475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Nucleolar release of Cdc14 phosphatases allows them access to substrates. Multiple kinases directly affect the Clp1/Cdc14 phosphostate and the nucleolar to nucleoplasmic transition of Clp1 in fission yeast upon genotoxic stress. In addition, Clp1 regulates its own nucleolar sequestration by antagonizing a subset of these networks. The Cdc14 phosphatase family antagonizes Cdk1 phosphorylation and is important for mitotic exit. To access their substrates, Cdc14 phosphatases are released from nucleolar sequestration during mitosis. Clp1/Flp1, the Schizosaccharomyces pombe Cdc14 orthologue, and Cdc14B, a mammalian orthologue, also exit the nucleolus during interphase upon DNA replication stress or damage, respectively, implicating Cdc14 phosphatases in the response to genotoxic insults. However, a mechanistic understanding of Cdc14 phosphatase nucleolar release under these conditions is incomplete. We show here that relocalization of Clp1 during genotoxic stress is governed by complex phosphoregulation. Specifically, the Rad3 checkpoint effector kinases Cds1 and/or Chk1, the cell wall integrity mitogen-activated protein kinase Pmk1, and the cell cycle kinase Cdk1 directly phosphorylate Clp1 to promote genotoxic stress–induced nucleoplasmic accumulation. However, Cds1 and/or Chk1 phosphorylate RxxS sites preferentially upon hydroxyurea treatment, whereas Pmk1 and Cdk1 preferentially phosphorylate Clp1 TP sites upon H2O2 treatment. Abolishing both Clp1 RxxS and TP phosphosites eliminates any genotoxic stress–induced redistribution. Reciprocally, preventing dephosphorylation of Clp1 TP sites shifts the distribution of the enzyme to the nucleoplasm constitutively. This work advances our understanding of pathways influencing Clp1 localization and may provide insight into mechanisms controlling Cdc14B phosphatases in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew R Broadus
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
27
|
Centrosomes in the zebrafish (Danio rerio): a review including the related basal body. Cilia 2012; 1:9. [PMID: 23351173 PMCID: PMC3555702 DOI: 10.1186/2046-2530-1-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022] Open
Abstract
Ever since Edouard Van Beneden and Theodor Boveri first formally described the centrosome in the late 1800s, it has captivated cell biologists. The name clearly indicated its central importance to cell functioning, even to these early investigators. We now know of its role as a major microtubule-organizing center (MTOC) and of its dynamic roles in cell division, vesicle trafficking and for its relative, the basal body, ciliogenesis. While centrosomes are found in most animal cells, notably it is absent in most oocytes and higher plant cells. Nevertheless, it appears that critical components of the centrosome act as MTOCs in these cells as well. The zebrafish has emerged as an exciting and promising new model organism, primarily due to the pioneering efforts of George Streisinger to use zebrafish in genetic studies and due to Christiane Nusslein-Volhard, Wolfgang Driever and their teams of collaborators, who applied forward genetics to elicit a large number of mutant lines. The transparency and rapid external development of the embryo allow for experiments not easily done in other vertebrates. The ease of producing transgenic lines, often with the use of fluorescent reporters, and gene knockdowns with antisense morpholinos further contributes to the appeal of the model as an experimental system. The added advantage of high-throughput screening of small-molecule libraries, as well as the ease of mass rearing together with low cost, makes the zebrafish a true frontrunner as a model vertebrate organism. The zebrafish has a body plan shared by all vertebrates, including humans. This conservation of body plan provides added significance to the existing lines of zebrafish as human disease models and adds an impetus to the ongoing efforts to develop new models. In this review, the current state of knowledge about the centrosome in the zebrafish model is explored. Also, studies on the related basal body in zebrafish and their relationship to ciliogenesis are reviewed.
Collapse
|
28
|
Stooke-Vaughan GA, Huang P, Hammond KL, Schier AF, Whitfield TT. The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle. Development 2012; 139:1777-87. [PMID: 22461562 DOI: 10.1242/dev.079947] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Otoliths are biomineralised structures required for the sensation of gravity, linear acceleration and sound in the zebrafish ear. Otolith precursor particles, initially distributed throughout the otic vesicle lumen, become tethered to the tips of hair cell kinocilia (tether cilia) at the otic vesicle poles, forming two otoliths. We have used high-speed video microscopy to investigate the role of cilia and ciliary motility in otolith formation. In wild-type ears, groups of motile cilia are present at the otic vesicle poles, surrounding the immotile tether cilia. A few motile cilia are also found on the medial wall, but most cilia (92-98%) in the otic vesicle are immotile. In mutants with defective cilia (iguana) or ciliary motility (lrrc50), otoliths are frequently ectopic, untethered or fused. Nevertheless, neither cilia nor ciliary motility are absolutely required for otolith tethering: a mutant that lacks cilia completely (MZovl) is still capable of tethering otoliths at the otic vesicle poles. In embryos with attenuated Notch signalling [mindbomb mutant or Su(H) morphant], supernumerary hair cells develop and otolith precursor particles bind to the tips of all kinocilia, or bind directly to the hair cells' apical surface if cilia are absent [MZovl injected with a Su(H)1+2 morpholino]. However, if the first hair cells are missing (atoh1b morphant), otolith formation is severely disrupted and delayed. Our data support a model in which hair cells produce an otolith precursor-binding factor, normally localised to tether cell kinocilia. We also show that embryonic movement plays a minor role in the formation of normal otoliths.
Collapse
Affiliation(s)
- Georgina A Stooke-Vaughan
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | | | |
Collapse
|
29
|
Avasthi P, Marshall WF. Stages of ciliogenesis and regulation of ciliary length. Differentiation 2011; 83:S30-42. [PMID: 22178116 DOI: 10.1016/j.diff.2011.11.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
Abstract
Cilia and flagella are highly conserved eukaryotic microtubule-based organelles that protrude from the surface of most mammalian cells. These structures require large protein complexes and motors for distal addition of tubulin and extension of the ciliary membrane. In order for ciliogenesis to occur, coordination of many processes must take place. An intricate concert of cell cycle regulation, vesicular trafficking, and ciliary extension must all play out with accurate timing to produce a cilium. Here, we review the stages of ciliogenesis as well as regulation of the length of the assembled cilium. Regulation of ciliogenesis during cell cycle progression centers on centrioles, from which cilia extend upon maturation into basal bodies. Centriole maturation involves a shift from roles in cell division to cilium nucleation via migration to the cell surface and docking at the plasma membrane. Docking is dependent on a variety of proteinaceous structures, termed distal appendages, acquired by the mother centriole. Ciliary elongation by the process of intraflagellar transport (IFT) ensues. Direct modification of ciliary structures, as well as modulation of signal transduction pathways, play a role in maintenance of the cilium. All of these stages are tightly regulated to produce a cilium of the right size at the right time. Finally, we discuss the implications of abnormal ciliogenesis and ciliary length control in human disease as well as some open questions.
Collapse
Affiliation(s)
- Prachee Avasthi
- Department of Biochemistry & Biophysics, University of California GH-N372F Genentech Hall, Box 2200, UCSF, 600 16th St. San Francisco, CA 94158, USA
| | | |
Collapse
|
30
|
Roy SH, Clayton JE, Holmen J, Beltz E, Saito RM. Control of Cdc14 activity coordinates cell cycle and development in Caenorhabditis elegans. Mech Dev 2011; 128:317-26. [PMID: 21723944 PMCID: PMC3199030 DOI: 10.1016/j.mod.2011.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 02/08/2023]
Abstract
Much of our understanding of the function and regulation of the Cdc14 family of dual-specificity phosphatases originates from studies in yeasts. In these unicellular organisms Cdc14 is an important regulator of M-phase events. In contrast, the Caenorhabditis elegans homolog, cdc-14, is not necessary for mitosis, rather it is crucial for G(1)/S regulation to establish developmental cell-cycle quiescence. Despite the importance of integrating cdc-14 regulation with development, the mechanisms by which this coordination occurs are largely unknown. Here, we demonstrate that several processes conspire to focus the activity of cdc-14. First, the cdc-14 locus can produce at least six protein variants through alternative splicing. We find that a single form, CDC-14C, is the key variant acting during vulva development. Second, CDC-14C expression is limited to a subset of cells, including vulva precursors, through post-transcriptional regulation. Lastly, the CDC-14C subcellular location, and thus its potential interactions with other regulatory proteins, is regulated by nucleocytoplasmic shuttling. We find that the active export of CDC-14C from the nucleus during interphase is dependent on members of the Cyclin D and Crm1 families. We propose that these mechanisms collaborate to restrict the activity of cdc-14 as central components of an evolutionarily conserved regulatory network to coordinate cell-cycle progression with development.
Collapse
Affiliation(s)
| | | | - Jenna Holmen
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
| | - Eleanor Beltz
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
| | - R. Mako Saito
- Corresponding author. Tel.: (603) 650-1110; fax: (603) 650-1188, (R.M. Saito)
| |
Collapse
|
31
|
Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS. Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 2011; 510:93-100. [PMID: 21513695 PMCID: PMC3114296 DOI: 10.1016/j.abb.2011.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Recent evidence has revealed that the dynein motors and highly conserved signaling proteins are localized within the ciliary 9+2 axoneme. One key mechanism for regulation of motility is phosphorylation. Here, we review diverse evidence, from multiple experimental organisms, that ciliary motility is regulated by phosphorylation/dephosphorylation of the dynein arms through kinases and phosphatases that are anchored immediately adjacent to their axonemal substrates.
Collapse
Affiliation(s)
- Maureen Wirschell
- Emory University School of Medicine, Department of Cell Biology, 615 Michael St. Atlanta, GA USA 30322
| | - Ryosuke Yamamoto
- Emory University School of Medicine, Department of Cell Biology, 615 Michael St. Atlanta, GA USA 30322
| | - Lea Alford
- Emory University School of Medicine, Department of Cell Biology, 615 Michael St. Atlanta, GA USA 30322
| | - Avanti Gokhale
- Emory University School of Medicine, Department of Cell Biology, 615 Michael St. Atlanta, GA USA 30322
| | - Anne Gaillard
- Sam Houston State University, Department of Biological Sciences, 1900 Ave. I, P.O Box 2116, Huntsville, TX USA 77341
| | - Winfield S. Sale
- Emory University School of Medicine, Department of Cell Biology, 615 Michael St. Atlanta, GA USA 30322
| |
Collapse
|
32
|
Miyamoto T, Porazinski S, Wang H, Borovina A, Ciruna B, Shimizu A, Kajii T, Kikuchi A, Furutani-Seiki M, Matsuura S. Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Hum Mol Genet 2011; 20:2058-70. [PMID: 21389084 DOI: 10.1093/hmg/ddr090] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Budding uninhibited by benzimidazole-related 1 (BUBR1) is a central molecule of the spindle assembly checkpoint. Germline mutations in the budding uninhibited by benzimidazoles 1 homolog beta gene encoding BUBR1 cause premature chromatid separation (mosaic variegated aneuploidy) [PCS (MVA)] syndrome, which is characterized by constitutional aneuploidy and a high risk of childhood cancer. Patients with the syndrome often develop Dandy-Walker complex and polycystic kidneys; implying a critical role of BUBR1 in morphogenesis. However, little is known about the function of BUBR1 other than mitotic control. Here, we report that BUBR1 is essential for the primary cilium formation, and that the PCS (MVA) syndrome is thus a novel ciliopathy. Morpholino knockdown of bubr1 in medaka fish also caused ciliary dysfunction characterized by defects in cerebellar development and perturbed left-right asymmetry of the embryo. Biochemical analyses demonstrated that BUBR1 is required for ubiquitin-mediated proteasomal degradation of cell division cycle protein 20 in the G0 phase and maintains anaphase-promoting complex/cyclosome-CDC20 homolog 1 activity that regulates the optimal level of dishevelled for ciliogenesis.
Collapse
Affiliation(s)
- Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Clement A, Solnica-Krezel L, Gould KL. The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. J Cell Sci 2011. [DOI: 10.1242/jcs.085290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|