1
|
Easa Y, Loza O, Cohen R, Sprinzak D. Fat4 intracellular domain controls internalization of Fat4/Dchs1 planar polarity membrane complexes. Biophys J 2025; 124:1024-1033. [PMID: 39955614 PMCID: PMC11947466 DOI: 10.1016/j.bpj.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/16/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The Fat/Dachsous (Ft/Ds) pathway is a highly conserved pathway regulating planar cell polarity (PCP) across different animal species. Proteins from the Ft and Ds family are large transmembrane protocadherins that form heterophilic complexes on the boundaries between cells. Fat4 and Dchs1, the main mammalian homologs of this pathway, have been implicated in PCP in various epithelial tissues and were shown to form extremely stable complexes at the boundaries between cells. It is unclear, however, what are the dynamics controlling such stable boundary complexes, and how the formation and internalization of these complexes is regulated. Here, we use quantitative live imaging to elucidate the role of the intracellular domains (ICDs) of Fat4 and Dchs1 in regulating Fat4/Dchs1 complex dynamics. We show that removing the ICD of Fat4 results in a reduction of both trans-endocytosis of Dchs1 into the Fat4 cells and boundary accumulation of Fat4/Dchs1 complexes, but does not affect the diffusion of the complexes at the boundary. We further show that the ICD of Fat4 controls the internalization rate of Fat4/Dchs1 complexes. Finally, we find that while actin polymerization is required for the accumulation at the boundary of Fat4/Dchs1 complexes, we do not identify correlations between Fat4/Dchs1 complexes and local actin accumulation. Overall, we suggest that the Fat4 ICD is important for the internalization and plasticity of the highly stable Fat4/Dchs1 complexes associated with PCP.
Collapse
Affiliation(s)
- Yathreb Easa
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Olga Loza
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roie Cohen
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
Rosenblum J, Meuwissen M, Jansen AC, Oegema R, Reddy N, Mankad K, Sudhakar S. Recognisable Neuroradiological Findings in Five Neurogenetic Disorders. Clin Genet 2025; 107:13-22. [PMID: 39462795 DOI: 10.1111/cge.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
The rate of discovery and increased understanding of genetic causes for neurodevelopmental disorders has peaked over the past decade. It is well recognised that some genes show marked variability in neuroradiological phenotypes, and inversely, some radiological phenotypes are associated with several different genetic conditions. However, some readily recognisable brain magnetic resonance imaging (MRI) patterns, especially in the context of corresponding associated clinical findings, should prompt consideration of a pathogenic variant in a specific gene or gene pathway. As these conditions can often prove challenging to diagnose, a clinical suspicion of a specific disorder may be invaluable to guide and interpret genetic testing. This review focuses on five neurogenetic syndromes with recognisable brain findings that radiologists, paediatric neurologists, geneticists, and other specialists involved in neurodevelopmental disorders should be able to recognise in order to pinpoint the gene or gene groups involved and delve into their molecular mechanisms. The comprehensively reviewed conditions include DDX3X-related neurodevelopmental disorder, Van Maldergem syndrome, NMDAR-related disorders, EML1-associated disorder and ARFGEF2-related periventricular nodular heterotopia with microcephaly.
Collapse
Affiliation(s)
- Jessica Rosenblum
- Center of Clinical Genetics, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
- Translational Neurosciences, University of Antwerp, Edegem, Belgium
| | - Marije Meuwissen
- Center of Clinical Genetics, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Anna C Jansen
- Translational Neurosciences, University of Antwerp, Edegem, Belgium
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Renske Oegema
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nihaal Reddy
- Rainbow Children's Hospital and Tenet Diagnostics, Hyderabad, India
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
3
|
Bu T, Wang L, Wu X, Gao S, Yun D, Mao B, Li L, Sun F, Cheng CY. Interacting Fat1 and Dchs Planar Cell Polarity Proteins Supported by Fjx1 Serve as Heterodimeric Intercellular Bridges Crucial to Support Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:355-374. [PMID: 40301264 DOI: 10.1007/978-3-031-82990-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Studies of the planar cell polarity (PCP) protein complexes Fat1/Fjx1 and Dchs/Fjx1 that form heterotypic interacting bridges of Fat1-Dchs between adjacent cells to confer PCP, as noted in Drosophila, are also found in mammalian cells and tissues as orthologs, such as in Sertoli cells and condensed spermatids in the seminiferous epithelium of the testis. Recent studies have shown that these two interacting PCP protein complexes are also crucial regulators of microtubule and actin dynamics, modulating the polymerization of both microtubules and actin filaments in the testis. In this review, we provide a brief update and thought-provoking concept on the PCP core proteins and the associated downstream signaling pathways utilized by PCP proteins to confer PCP and regulation of the microtubule and actin cytoskeletons in the testis. However, we focus on recent data in the field on the Fat1/Fjx1 and Dchs/Fjx1 protein complexes, which are also heterotypic interacting protein complexes, and their functional role in modulating the microtubule and actin cytoskeletal organization. Based on these recent findings, we formulate a hypothetic model depicting the role of these two PCP protein complexes in modulating the timely "opening" and "closing" of the blood-testis barrier (BTB) formed by adjacent Sertoli cells near the base of the seminiferous epithelium. Additionally, these two PCP protein complexes also modulate cytoskeletal dynamics between Sertoli cells and condensed spermatids to support haploid spermatid transport across the seminiferous epithelium during their structural transformation through spermiogenesis, and their eventual release at spermiation during the epithelial cycle of spermatogenesis. This hypothetical model will provide a useful framework for designing functional experiments to understand the role of PCP proteins in supporting spermatogenesis.
Collapse
Affiliation(s)
- Tiao Bu
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong, China
| | - Lingling Wang
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Damin Yun
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Luo J, Min Q, Sun X, Guo X, Song M, Zeng X, Guo J, Zhang H, Han Y, Li L. Comparative Whole-Genome Analysis of Production Traits and Genetic Structure in Baiyu and Chuanzhong Black Goats. Animals (Basel) 2024; 14:3616. [PMID: 39765520 PMCID: PMC11672699 DOI: 10.3390/ani14243616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Natural selection and artificial breeding are crucial methods for developing new animal groups. The Baiyu black goats and Chuanzhong black goats are indigenous goat breeds from distinct ecological regions in Sichuan Province, with dramatically different growth and reproductivity. This study aimed to systematically elucidate the differences in production performance and genetic traits between Baiyu black goats and Chuanzhong black goats. We quantified growth and reproductive attributes for both breeds. Furthermore, we conducted a comprehensive analysis of genetic diversity, population structure, and selection signatures using whole-genome resequencing data. This dataset included 30 individuals from the Baiyu black goat breed, 41 from the Chuanzhong black goat breed, and an additional 59 individuals representing Chengdu grey goats, Tibetan cashmere goats, and Jianchang black goats, totaling 130 individuals across five goat breeds. The comparative analysis of production performance revealed that the weight and body size of Chuanzhong black goats were significantly higher than those of Baiyu black goats (p < 0.01). At the same time, the average kidding rate and kid-weaning survival rate of Chuanzhong black goats were also notably superior to those of Baiyu black goats (p < 0.01). The Baiyu black goats exhibited a more abundant genetic diversity and distinct genetic differences compared to the Chuanzhong black goat, according to an analysis grounded on genomic variation. The Baiyu black goats are more closely related to Tibetan cashmere goats, whereas Chuanzhong black goats share a closer genetic relationship with Chengdu grey goats. Additionally, we employed the π, Fst, and XP-EHH methodologies to identify genes related to immunity (TRIM10, TRIM15, TRIM26, and TRIM5), neurodevelopment (FOXD4L1, PCDHB14, PCDHB4, PCDHB5, PCDHB6, and PCDHB7), reproduction (BTNL2 and GABBR1), body size (NCAPG, IBSP, and MKNK1), and meat quality traits (SUCLG2 and PGM5). These results provide a theoretical basis for further resource conservation and breeding improvement of the Baiyu black goat and Chuanzhong black goat.
Collapse
Affiliation(s)
- Jing Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| | - Qi Min
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| | - Xueliang Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| | - Xinyu Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| | - Meijun Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| | - Xuehui Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| | - Yanguo Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.L.); (Q.M.); (X.S.); (X.G.); (M.S.); (X.Z.); (J.G.); (H.Z.)
| |
Collapse
|
5
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. Development 2024; 151:dev202919. [PMID: 39503213 PMCID: PMC11634027 DOI: 10.1242/dev.202919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here, we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain that contribute to Dachsous activity. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with key partners, including Lowfat, Dachs, Spiny-legs, Fat and MyoID. Subdivision of the D motif identified distinct regions that preferentially contribute to different Dachsous activities. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D. Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Bu T, Wang L, Wu X, Gao S, Li X, Yun D, Yang X, Li L, Cheng CY, Sun F. The Planar Cell Polarity Protein Fat1 in Sertoli Cell Function. Endocrinology 2024; 165:bqae041. [PMID: 38553880 DOI: 10.1210/endocr/bqae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 04/30/2024]
Abstract
Fat (FAT atypical cadherin) and Dchs (Dachsous cadherin-related protein) in adjacent Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interfaces create an important intercellular bridge whose adhesive function is in turn supported by Fjx1, a nonreceptor Ser/Thr protein kinase. This concept is derived from earlier studies of Drosophila, which has been confirmed in this and earlier reports as well. Herein, we use the approach of knockdown of Fat1 by RNAi using primary cultures of Sertoli cells that mimicked the blood-testis barrier (BTB) in vivo, and a series of coherent experiments including functional assays to monitor the Sertoli cell tight junction (TJ) permeability barrier and a functional in vitro TJ integrity assay to assess the role of Fat1 in the testis. It was shown that planar cell polarity (PCP) protein Fat1 affected Sertoli cell function through its modulation of actin and microtubule cytoskeletal function, altering their polymerization activity through the Fat1/Fjx1 complex. Furthermore, Fat1 is intimately associated with β-catenin and α-N-catenin, as well as with Prickle 1 of the Vangl1/Prickle 1 complex, another PCP core protein to support intercellular interactions to confer PCP. In summary, these findings support the notion that the Fat:Dchs and the Vangl2:Fzd PCP intercellular bridges are tightly associated with basal ES/TJ structural proteins to stabilize PCP function at the Sertoli:Sertoli, Sertoli:spermatid, and spermatid:spermatid interface to sustain spermatogenesis.
Collapse
Affiliation(s)
- Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiwen Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Linxi Li
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuen Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
7
|
Kacker S, Parsad V, Singh N, Hordiichuk D, Alvarez S, Gohar M, Kacker A, Rai SK. Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation. J Dev Biol 2024; 12:12. [PMID: 38804432 PMCID: PMC11130840 DOI: 10.3390/jdb12020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024] Open
Abstract
The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior-posterior to left-right embryonic plane polarity through the polarization of cilia in the Kupffer's vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP.
Collapse
Affiliation(s)
- Sandeep Kacker
- Department of Pharmacology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Varuneshwar Parsad
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Naveen Singh
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Daria Hordiichuk
- Department of Human Body Structure and Function, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (V.P.); (D.H.)
| | - Stacy Alvarez
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Mahnoor Gohar
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| | - Anshu Kacker
- Department of Histology and Human Physiology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis;
| | - Sunil Kumar Rai
- Department of Cerll and Molecular Biology, Medical University of the Americas, Charlestown KN 1102, Saint Kitts and Nevis; (N.S.); (S.A.); (M.G.)
| |
Collapse
|
8
|
Singh A, Thale S, Leibner T, Lamparter L, Ricker A, Nüsse H, Klingauf J, Galic M, Ohlberger M, Matis M. Dynamic interplay of microtubule and actomyosin forces drive tissue extension. Nat Commun 2024; 15:3198. [PMID: 38609383 PMCID: PMC11014958 DOI: 10.1038/s41467-024-47596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Sameedha Thale
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Tobias Leibner
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Lucas Lamparter
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Milos Galic
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Mario Ohlberger
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany.
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany.
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587940. [PMID: 38617303 PMCID: PMC11014530 DOI: 10.1101/2024.04.03.587940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain required for normal development. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with four key partners: Lowfat, Dachs, Spiny-legs, and MyoID. Subdivision of the D motif identified distinct regions that are preferentially responsible for association with Lft versus Dachs. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
|
10
|
Chess MM, Douglas W, Saunders J, Ettensohn CA. Genome-wide identification and spatiotemporal expression analysis of cadherin superfamily members in echinoderms. EvoDevo 2023; 14:15. [PMID: 38124068 PMCID: PMC10734073 DOI: 10.1186/s13227-023-00219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cadherins are calcium-dependent transmembrane cell-cell adhesion proteins that are essential for metazoan development. They consist of three subfamilies: classical cadherins, which bind catenin, protocadherins, which contain 6-7 calcium-binding repeat domains, and atypical cadherins. Their functions include forming adherens junctions, establishing planar cell polarity (PCP), and regulating cell shape, proliferation, and migration. Because they are basal deuterostomes, echinoderms provide important insights into bilaterian evolution, but their only well-characterized cadherin is G-cadherin, a classical cadherin that is expressed by many embryonic epithelia. We aimed to better characterize echinoderm cadherins by conducting phylogenetic analyses and examining the spatiotemporal expression patterns of cadherin-encoding genes during Strongylocentrotus purpuratus development. RESULTS Our phylogenetic analyses conducted on two echinoid, three asteroid, and one crinoid species identified ten echinoderm cadherins, including one deuterostome-specific ortholog, cadherin-23, and an echinoderm-specific atypical cadherin that possibly arose in an echinoid-asteroid ancestor. Catenin-binding domains in dachsous-2 orthologs were found to be a deuterostome-specific innovation that was selectively lost in mouse, while those in Fat4 orthologs appeared to be Ambulacraria-specific and were selectively lost in non-crinoid echinoderms. The identified suite of echinoderm cadherins lacks vertebrate-specific innovations but contains two proteins that are present in protostomes and absent from mouse. The spatiotemporal expression patterns of four embryonically expressed cadherins (fat atypical cadherins 1 and 4, dachsous-2, and protocadherin-9) were dynamic and mirrored the expression pattern of Frizzled 5/8, a non-canonical Wnt PCP pathway receptor protein essential for archenteron morphogenesis. CONCLUSIONS The echinoderm cadherin toolkit is more similar to that of an ancient bilaterian predating protostomes and deuterostomes than it is to the suite of cadherins found in extant vertebrates. However, it also appears that deuterostomes underwent several cadherin-related innovations. Based on their similar spatiotemporal expression patterns and orthologous relationships to PCP-related and tumor-suppressing proteins, we hypothesize that sea urchin cadherins may play a role in regulating the shape and growth of embryonic epithelia and organs. Future experiments will examine cadherin expression in non-echinoid echinoderms and explore the functions of cadherins during echinoderm development.
Collapse
Affiliation(s)
- Macie M Chess
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - William Douglas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Josiah Saunders
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Bu T, Li X, Wang L, Wu X, Gao S, Yun D, Li L, Sun F, Cheng CY. Regulation of sertoli cell function by planar cell polarity (PCP) protein Fjx1. Mol Cell Endocrinol 2023; 571:111936. [PMID: 37119967 DOI: 10.1016/j.mce.2023.111936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Four-jointed box kinase 1 (Fjx1) is a planar cell protein (PCP) and a member of the Fat (FAT atypical cadherin 1)/Dchs (Dachsous cadherin-related protein)/Fjx1 PCP complex. Fjx1 is also a non-receptor Ser/Thr protein kinase capable of phosphorylating Fat1 at is extracellular cadherin domains when it is transport across the Golgi system. As such, Fjx1 is a Golgi-based regulator of Fat1 function by determining its extracellular deposition. Herein, Fjx1 was found to localize across the Sertoli cell cytoplasm, partially co-localized with the microtubules (MTs) across the seminiferous epithelium. It was most notable at the apical ES (ectoplasmic specialization) and basal ES, displaying distinctive stage-specific expression. The apical ES and basal ES are the corresponding testis-specific cell adhesion ultrastructures at the Sertoli-elongated spermatid and Sertoli cell-cell interface, respectively, consistent with the role of Fjx1 as a Golgi-associated Ser/Thr kinase that modulates the Fat (and/or Dchs) integral membrane proteins. Its knockdown (KD) by RNAi using specific Fjx1 siRNA duplexes versus non-targeting negative control siRNA duplexes was found to perturb the Sertoli cell tight junction function, as well as perturbing the function and organization of MT and actin. While Fjx1 KD did not affect the steady-state levels of almost two dozens of BTB-associated Sertoli cell proteins, including structural and regulatory proteins, its KD was found to down-regulate Fat1 (but not Fat2, 3, and 4) and to up-regulate Dchs1 (but not Dchs2) expression. Based on results of biochemical analysis, Fjx1 KD was found to be capable of abolishing phosphorylation of its putative substrate Fat1 at its Ser/Thr sites, but not at its Tyr site, illustrating an intimate functional relationship of Fjx1 and Fat1 in Sertoli cells.
Collapse
Affiliation(s)
- Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
| | - C Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
12
|
Wang J, Chen H, Hou W, Han Q, Wang Z. Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. Dev Neurosci 2023; 45:276-289. [PMID: 37080186 DOI: 10.1159/000530621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haofeng Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wulei Hou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingjian Han
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Jing'an District Central Hospital of Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Miyasaka Y, Kobayashi T, Gotoh N, Kuga M, Kobayashi M, Horio F, Hashimoto K, Kawabe T, Ohno T. Neonatal lethality of mouse A/J-7 SM consomic strain is caused by an insertion mutation in the Dchs1 gene. Mamm Genome 2023; 34:32-43. [PMID: 36434174 DOI: 10.1007/s00335-022-09966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
Homosomic mice of the A/J-7SM consomic mouse strain that introduced the entire chromosome 7 (Chr 7) of SM/J into the A/J strain exhibited neonatal lethality. We tentatively maintained segregating inbred strains (A/J-7ASM and A/J-7DSM) in which the central portion of Chr 7 was heterozygous for the A/J and SM/J strains, and the centromeric and telomeric sides of Chr 7 were homozygous for the SM/J strain, instead of the A/J-7SM strain. Based on the chromosomal constitution of Chr 7 in A/J-7ASM and A/J-7DSM mice, the causative gene for neonatal lethality in homosomic mice was suggested to be located within an approximately 1.620 Mb region between D7Mit125 (104.879 Mb) and D7Mit355 (106.499 Mb) on Chr 7. RT-PCR analysis revealed that homosomic mice lacked dachsous cadherin-related 1 (Dchs1), which is located within the D7Mit125 to D7Mit355 region and functions in the regulation of planar cell polarity. Screening for mutations in Dchs1 indicated that homosomic mice possessed an early transposable (ETn)-like sequence in intron 1 of Dchs1. Moreover, an allelism test between Dchs1 ETn-like-insertion alleles detected in homosomic mice and CRISPR/Cas9-induced Dchs1 deletion alleles revealed that Dchs1 is a causative gene for neonatal lethality in homosomic mice. Based on these results, we concluded that in the A/J-7SM strain, ETn-like elements were inserted into intron 1 of SM/J-derived Dchs1 during strain development, which dramatically reduced Dchs1 expression, thus resulting in neonatal lethality in homosomic mice. Additionally, it was suggested that the timing of lethality in Dchs1 mutant mice is influenced by the genetic background.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| | - Takeshi Kobayashi
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Naoya Gotoh
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Misato Kobayashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan
| | - Fumihiko Horio
- Department of Life Studies and Environmental Science, Nagoya Women's University, 3-40 Shioji-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan
| | - Katsunori Hashimoto
- Faculty of Medical Sciences, Shubun University, 6 Nikko-Cho, Ichinomiya, Aichi, 491-0938, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Dikou-Minami, Higashi-Ku, Nagoya, Aichi, 461-8673, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
14
|
Structure of the planar cell polarity cadherins Fat4 and Dachsous1. Nat Commun 2023; 14:891. [PMID: 36797229 PMCID: PMC9935876 DOI: 10.1038/s41467-023-36435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.
Collapse
|
15
|
Kasiah J, McNeill H. Fat and Dachsous cadherins in mammalian development. Curr Top Dev Biol 2023; 154:223-244. [PMID: 37100519 DOI: 10.1016/bs.ctdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.
Collapse
Affiliation(s)
- Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
16
|
Minegishi K, Sai X, Hamada H. Role of Wnt signaling and planar cell polarity in left-right asymmetry. Curr Top Dev Biol 2023; 153:181-193. [PMID: 36967194 DOI: 10.1016/bs.ctdb.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Wnt signaling plays essential roles in multiple steps of left-right (L-R) determination in development. First, canonical Wnt signaling is required to form the node, where L-R symmetry breaking takes place. Secondly, planar cell polarity (PCP) driven by non-canonical Wnt signaling polarizes node cells along the anterio-posterior (A-P) axis and provides the tilt of rotating cilia at the node, which generate the leftward fluid flow. Thus, reciprocal expression of Wnt5a/5b and their inhibitors Sfrp1, 2, 5 generates a gradient of Wnt5 activity along the embryo's anterior-posterior (A-P) axis. This polarizes cells at the node, by placing PCP core proteins on the anterior or posterior side of each node cell. Polarized PCP proteins subsequently induce asymmetric organization of microtubules along the A-P axis, which is thought to push the centrally localized basal body toward the posterior side of a node cell. Motile cilia that extend from the posteriorly-shifted basal body is tilted toward the posterior side of the embryo. Thirdly, canonical-Wnt signaling regulates the level and expansion of Nodal activity and establishes L-R asymmetric Nodal activity at the node, the first molecular asymmetry in the mouse embryo. Overall, both canonical and non-canonical Wnt signalings are essential for L-R symmetry breaking.
Collapse
Affiliation(s)
| | - Xiaorei Sai
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Hamada
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
17
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
18
|
Derpoorter C, Van Paemel R, Vandemeulebroecke K, Vanhooren J, De Wilde B, Laureys G, Lammens T. Whole genome sequencing and inheritance-based variant filtering as a tool for unraveling missing heritability in pediatric cancer. Pediatr Hematol Oncol 2022; 40:326-340. [PMID: 35876323 DOI: 10.1080/08880018.2022.2101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Survival rates for pediatric cancer have significantly increased the past decades, now exceeding 70-80% for most cancer types. The cause of cancer in children and adolescents remains largely unknown and a genetic susceptibility is considered in up to 10% of the cases, but most likely this is an underestimation. Families with multiple pediatric cancer patients are rare and strongly suggestive for an underlying predisposition to cancer. The absence of identifiable mutations in known cancer predisposing genes in such families could indicate undiscovered heritability. To discover candidate susceptibility variants, whole genome sequencing was performed on germline DNA of a family with two children affected by Burkitt lymphoma. Using an inheritance-based filtering approach, 18 correctly segregating coding variants were prioritized without a biased focus on specific genes or variants. Two variants in FAT4 and DCHS2 were highlighted, both involved in the Hippo signaling pathway, which controls tissue growth and stem cell activity. Similarly, a set of nine non-coding variants was prioritized, which might contribute, in differing degrees, to the increased cancer risk within this family. In conclusion, inheritance-based whole genome sequencing in selected families or cases is a valuable approach to prioritize variants and, thus, to further unravel genetic predisposition in childhood cancer.
Collapse
Affiliation(s)
- Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Ruben Van Paemel
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Katrien Vandemeulebroecke
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jolien Vanhooren
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Bram De Wilde
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Geneviève Laureys
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
19
|
Fan S, Smith MS, Keeney J, O’Leary MN, Nusrat A, Parkos CA. JAM-A signals through the Hippo pathway to regulate intestinal epithelial proliferation. iScience 2022; 25:104316. [PMID: 35602956 PMCID: PMC9114518 DOI: 10.1016/j.isci.2022.104316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
JAM-A is a tight-junction-associated protein that contributes to regulation of intestinal homeostasis. We report that JAM-A interacts with NF2 and LATS1, functioning as an initiator of the Hippo signaling pathway, well-known for regulation of proliferation. Consistent with these findings, we observed increased YAP activity in JAM-A-deficient intestinal epithelial cells (IEC). Furthermore, overexpression of a dimerization-deficient mutant, JAM-A-DL1, failed to initiate Hippo signaling, phenocopying JAM-A-deficient IEC, whereas overexpression of JAM-A-WT activated Hippo signaling and suppressed proliferation. Lastly, we identify EVI1, a transcription factor reported to promote cellular proliferation, as a contributor to the pro-proliferative phenotype in JAM-A-DL1 overexpressing IEC downstream of YAP. Collectively, our findings establish a new role for JAM-A as a cell-cell contact sensor, raising implications for understanding the contribution(s) of JAM-A to IEC proliferation in the mammalian epithelium.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle Sydney Smith
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin Keeney
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Monique N. O’Leary
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Sai X, Ikawa Y, Nishimura H, Mizuno K, Kajikawa E, Katoh TA, Kimura T, Shiratori H, Takaoka K, Hamada H, Minegishi K. Planar cell polarity-dependent asymmetric organization of microtubules for polarized positioning of the basal body in node cells. Development 2022; 149:275058. [PMID: 35420656 DOI: 10.1242/dev.200315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
For left-right symmetry breaking in the mouse embryo, the basal body must become positioned at the posterior side of node cells, but the precise mechanism for this has remained unknown. Here, we examined the role of microtubules (MTs) and actomyosin in this basal body positioning. Exposure of mouse embryos to agents that stabilize or destabilize MTs or F-actin impaired such positioning. Active myosin II was detected at the anterior side of node cells before the posterior shift of the basal body, and this asymmetric activation was lost in Prickle and dachsous mutant embryos. The organization of basal-body associated MTs (baMTs) was asymmetric between the anterior and posterior sides of node cells, with anterior baMTs extending horizontally and posterior baMTs extending vertically. This asymmetry became evident after polarization of the PCP core protein Vangl1 and before the posterior positioning of the basal body, and it also required the PCP core proteins Prickle and dachsous. Our results suggest that the asymmetry in baMT organization may play a role in correct positioning of the basal body for left-right symmetry breaking.
Collapse
Affiliation(s)
- Xiaorei Sai
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takanobu A Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Toshiya Kimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hidetaka Shiratori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| |
Collapse
|
21
|
Gridnev A, Misra JR. Emerging Mechanisms of Growth and Patterning Regulation by Dachsous and Fat Protocadherins. Front Cell Dev Biol 2022; 10:842593. [PMID: 35372364 PMCID: PMC8967653 DOI: 10.3389/fcell.2022.842593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in Drosophila, where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes. Further, we discuss the progress in our understanding about how they function in mammals.
Collapse
|
22
|
Moore KS, Moore R, Fulmer DB, Guo L, Gensemer C, Stairley R, Glover J, Beck TC, Morningstar JE, Biggs R, Muhkerjee R, Awgulewitsch A, Norris RA. DCHS1, Lix1L, and the Septin Cytoskeleton: Molecular and Developmental Etiology of Mitral Valve Prolapse. J Cardiovasc Dev Dis 2022; 9:62. [PMID: 35200715 PMCID: PMC8874669 DOI: 10.3390/jcdd9020062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common cardiac valve disease that often progresses to serious secondary complications requiring surgery. MVP manifests as extracellular matrix disorganization and biomechanically incompetent tissues in the adult setting. However, MVP has recently been shown to have a developmental basis, as multiple causal genes expressed during embryonic development have been identified. Disease phenotypes have been observed in mouse models with human MVP mutations as early as birth. This study focuses on the developmental function of DCHS1, one of the first genes to be shown as causal in multiple families with non-syndromic MVP. By using various biochemical techniques as well as mouse and cell culture models, we demonstrate a unique link between DCHS1-based cell adhesions and the septin-actin cytoskeleton through interactions with cytoplasmic protein Lix1-Like (LIX1L). This DCHS1-LIX1L-SEPT9 axis interacts with and promotes filamentous actin organization to direct cell-ECM alignment and valve tissue shape.
Collapse
Affiliation(s)
- Kelsey S. Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Reece Moore
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Diana B. Fulmer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lilong Guo
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rebecca Stairley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Janiece Glover
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Tyler C. Beck
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rachel Biggs
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Rupak Muhkerjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Alexander Awgulewitsch
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.S.M.); (R.M.); (L.G.); (C.G.); (R.S.); (J.G.); (T.C.B.); (J.E.M.); (R.B.); (A.A.)
| |
Collapse
|
23
|
Avilés EC, Krol A, Henle SJ, Burroughs-Garcia J, Deans MR, Goodrich LV. Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly. Cell Rep 2022; 38:110307. [PMID: 35108541 PMCID: PMC8865054 DOI: 10.1016/j.celrep.2022.110307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
The polarized flow of information through neural circuits depends on the orderly arrangement of neurons, their processes, and their synapses. This polarity emerges sequentially in development, starting with the directed migration of neuronal precursors, which subsequently elaborate neurites that form synapses in specific locations. In other organs, Fat cadherins sense the position and then polarize individual cells by inducing localized changes in the cytoskeleton that are coordinated across the tissue. Here, we show that the Fat-related protein Fat3 plays an analogous role during the assembly of polarized circuits in the murine retina. We find that the Fat3 intracellular domain (ICD) binds to cytoskeletal regulators and synaptic proteins, with discrete motifs required for amacrine cell migration and neurite retraction. Moreover, upon ICD deletion, extra neurites form but do not make ectopic synapses, suggesting that Fat3 independently regulates synapse localization. Thus, Fat3 serves as a molecular node to coordinate asymmetric cell behaviors across development.
Collapse
Affiliation(s)
- Evelyn C Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Krol
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven J Henle
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Burroughs-Garcia
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Michael R Deans
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
In search of conserved principles of planar cell polarization. Curr Opin Genet Dev 2021; 72:69-81. [PMID: 34871922 DOI: 10.1016/j.gde.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/26/2023]
Abstract
The making of an embryo and its internal organs entails the spatial coordination of cellular activities. This manifests during tissue morphogenesis as cells change shape, rearrange and divide along preferential axis and during cell differentiation. Cells live in a polarized field and respond to it by polarizing their cellular activities in the plane of the tissue by a phenomenon called planar cell polarization. This phenomenon is ubiquitous in animals and depends on a few conserved planar cell polarity (PCP) pathways. All PCP pathways share two essential characteristics: the existence of local interactions between protein complexes present at the cell surface leading to their asymmetric distribution within cells; a supracellular graded cue that aligns these cellular asymmetries at the tissue level. Here, we discuss the potential common principles of planar cell polarization by comparing the local and global mechanisms employed by the different PCP pathways identified so far. The focus of the review is on the logic of the system rather than the molecules per se.
Collapse
|
25
|
Ishii M, Tateya T, Matsuda M, Hirashima T. Stalling interkinetic nuclear migration in curved pseudostratified epithelium of developing cochlea. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211024. [PMID: 34909216 PMCID: PMC8652271 DOI: 10.1098/rsos.211024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
The bending of epithelial tubes is a fundamental process in organ morphogenesis, driven by various multicellular behaviours. The cochlea in the mammalian inner ear is a representative example of spiral tissue architecture where the continuous bending of the duct is a fundamental component of its morphogenetic process. Although the cochlear duct morphogenesis has been studied by genetic approaches extensively, it is still unclear how the cochlear duct morphology is physically formed. Here, we report that nuclear behaviour changes are associated with the curvature of the pseudostratified epithelium during murine cochlear development. Two-photon live-cell imaging reveals that the nuclei shuttle between the luminal and basal edges of the cell is in phase with cell-cycle progression, known as interkinetic nuclear migration, in the flat region of the pseudostratified epithelium. However, the nuclei become stationary on the luminal side following mitosis in the curved region. Mathematical modelling together with perturbation experiments shows that this nuclear stalling facilitates luminal-basal differential growth within the epithelium, suggesting that the nuclear stalling would contribute to the bending of the pseudostratified epithelium during the cochlear duct development. The findings suggest a possible scenario of differential growth which sculpts the tissue shape, driven by collective nuclear dynamics.
Collapse
Affiliation(s)
- Mamoru Ishii
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoko Tateya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Speech and Hearing Sciences and Disorders, Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Hirashima
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- The Hakubi Center, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
26
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
27
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
28
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
29
|
Balendran V, Skidmore JM, Ritter KE, Gao J, Cimerman J, Beyer LA, Hurd EA, Raphael Y, Martin DM. Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning. Dev Biol 2021; 477:11-21. [PMID: 34004180 DOI: 10.1016/j.ydbio.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene transcription by chromatin remodeling proteins has recently emerged as an important contributing factor in inner ear development. Pathogenic variants in CHD7, the gene encoding Chromodomain Helicase DNA binding protein 7, cause CHARGE syndrome, which presents with malformations in the developing ear. Chd7 is broadly expressed in the developing mouse otocyst and mature auditory epithelium, yet the pathogenic effects of Chd7 loss in the cochlea are not well understood. Here we characterized cochlear epithelial phenotypes in mice with deletion of Chd7 throughout the otocyst (using Foxg1Cre/+ and Pax2Cre), in the otic mesenchyme (using TCre), in hair cells (using Atoh1Cre), in developing neuroblasts (using NgnCre), or in spiral ganglion neurons (using ShhCre/+). Pan-otic deletion of Chd7 resulted in shortened cochleae with aberrant projections and axonal looping, disorganized, supernumerary hair cells at the apical turn and a narrowed epithelium with missing hair cells in the middle region. Deletion of Chd7 in the otic mesenchyme had no effect on overall cochlear morphology. Loss of Chd7 in hair cells did not disrupt their formation or organization of the auditory epithelium. Similarly, absence of Chd7 in spiral ganglion neurons had no effect on axonal projections. In contrast, deletion of Chd7 in developing neuroblasts led to smaller spiral ganglia and disorganized cochlear neurites. Together, these observations reveal dosage-, tissue-, and time-sensitive cell autonomous roles for Chd7 in cochlear elongation and cochlear neuron organization, with minimal functions for Chd7 in hair cells. These studies provide novel information about roles for Chd7 in development of auditory neurons.
Collapse
Affiliation(s)
- Vinodh Balendran
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | | | - K Elaine Ritter
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jingxia Gao
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jelka Cimerman
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | | | - Yehoash Raphael
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donna M Martin
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA; Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA; Human Genetics, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Landin Malt A, Clancy S, Hwang D, Liu A, Smith C, Smith M, Hatley M, Clemens C, Lu X. Non-Canonical Wnt Signaling Regulates Cochlear Outgrowth and Planar Cell Polarity via Gsk3β Inhibition. Front Cell Dev Biol 2021; 9:649830. [PMID: 33937247 PMCID: PMC8086559 DOI: 10.3389/fcell.2021.649830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 11/26/2022] Open
Abstract
During development, sensory hair cells (HCs) in the cochlea assemble a stereociliary hair bundle on their apical surface with planar polarized structure and orientation. We have recently identified a non-canonical, Wnt/G-protein/PI3K signaling pathway that promotes cochlear outgrowth and coordinates planar polarization of the HC apical cytoskeleton and alignment of HC orientation across the cochlear epithelium. Here, we determined the involvement of the kinase Gsk3β and the small GTPase Rac1 in non-canonical Wnt signaling and its regulation of the planar cell polarity (PCP) pathway in the cochlea. We provided the first in vivo evidence for Wnt regulation of Gsk3β activity via inhibitory Ser9 phosphorylation. Furthermore, we carried out genetic rescue experiments of cochlear defects caused by blocking Wnt secretion. We showed that cochlear outgrowth was partially rescued by genetic ablation of Gsk3β but not by expression of stabilized β-catenin; while PCP defects, including hair bundle polarity and junctional localization of the core PCP proteins Fzd6 and Dvl2, were partially rescued by either Gsk3β ablation or constitutive activation of Rac1. Our results identify Gsk3β and likely Rac1 as downstream components of non-canonical Wnt signaling and mediators of cochlear outgrowth, HC planar polarity, and localization of a subset of core PCP proteins in the cochlea.
Collapse
Affiliation(s)
- Andre Landin Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Shaylyn Clancy
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Diane Hwang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Alice Liu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Connor Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Margaret Smith
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Maya Hatley
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Christopher Clemens
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
31
|
Wang M, Xu T, Feng W, Liu J, Wang Z. Advances in Understanding the LncRNA-Mediated Regulation of the Hippo Pathway in Cancer. Onco Targets Ther 2021; 14:2397-2415. [PMID: 33854336 PMCID: PMC8039192 DOI: 10.2147/ott.s283157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 nucleotides and cannot encode proteins. Over the past decade, lncRNAs have been defined as regulatory elements of multiple biological processes, and their aberrant expression contributes to the development and progression of various malignancies. Recent studies have shown that lncRNAs are involved in key cancer-related signaling pathways, including the Hippo signaling pathway, which plays a prominent role in controlling organ size and tissue homeostasis by regulating cell proliferation, apoptosis, and differentiation. However, dysregulation of this pathway is associated with pathological conditions, especially cancer. Accumulating evidence has revealed that lncRNAs can modulate the Hippo signaling pathway in cancer. In this review, we elaborate on the role of the Hippo signaling pathway and the advances in the understanding of its lncRNA-mediated regulation in cancer. This review provides additional insight into carcinogenesis and will be of great clinical value for developing novel early detection and treatment strategies for this deadly disease.
Collapse
Affiliation(s)
- Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenyan Feng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junxia Liu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
32
|
Ishii M, Tateya T, Matsuda M, Hirashima T. Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis. eLife 2021; 10:e61092. [PMID: 33667159 PMCID: PMC7935486 DOI: 10.7554/elife.61092] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
A notable example of spiral architecture in organs is the mammalian cochlear duct, where the morphology is critical for hearing function. Genetic studies have revealed necessary signaling molecules, but it remains unclear how cellular dynamics generate elongating, bending, and coiling of the cochlear duct. Here, we show that extracellular signal-regulated kinase (ERK) activation waves control collective cell migration during the murine cochlear duct development using deep tissue live-cell imaging, Förster resonance energy transfer (FRET)-based quantitation, and mathematical modeling. Long-term FRET imaging reveals that helical ERK activation propagates from the apex duct tip concomitant with the reverse multicellular flow on the lateral side of the developing cochlear duct, resulting in advection-based duct elongation. Moreover, model simulations, together with experiments, explain that the oscillatory wave trains of ERK activity and the cell flow are generated by mechanochemical feedback. Our findings propose a regulatory mechanism to coordinate the multicellular behaviors underlying the duct elongation during development.
Collapse
Affiliation(s)
- Mamoru Ishii
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Tomoko Tateya
- Department of Speech and Hearing Sciences and Disorders, Faculty of Health and Medical Sciences, Kyoto University of Advanced ScienceKyotoJapan
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Tsuyoshi Hirashima
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- The Hakubi Center, Kyoto UniversityKyotoJapan
- Japan Science and Technology Agency, PRESTOKawaguchiJapan
| |
Collapse
|
33
|
Papakrivopoulou E, Jafree DJ, Dean CH, Long DA. The Biological Significance and Implications of Planar Cell Polarity for Nephrology. Front Physiol 2021; 12:599529. [PMID: 33716764 PMCID: PMC7952641 DOI: 10.3389/fphys.2021.599529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The orientation of cells in two-dimensional and three-dimensional space underpins how the kidney develops and responds to disease. The process by which cells orientate themselves within the plane of a tissue is termed planar cell polarity. In this Review, we discuss how planar cell polarity and the proteins that underpin it govern kidney organogenesis and pathology. The importance of planar cell polarity and its constituent proteins in multiple facets of kidney development is emphasised, including ureteric bud branching, tubular morphogenesis and nephron maturation. An overview is given of the relevance of planar cell polarity and its proteins for inherited human renal diseases, including congenital malformations with unknown aetiology and polycystic kidney disease. Finally, recent work is described outlining the influence of planar cell polarity proteins on glomerular diseases and highlight how this fundamental pathway could yield a new treatment paradigm for nephrology.
Collapse
Affiliation(s)
- Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Internal Medicine and Nephrology, Clinique Saint Jean, Brussels, Belgium
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,UCL MB/Ph.D. Programme, Faculty of Medical Science, University College London, London, United Kingdom
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
34
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
35
|
Betterman KL, Sutton DL, Secker GA, Kazenwadel J, Oszmiana A, Lim L, Miura N, Sorokin L, Hogan BM, Kahn ML, McNeill H, Harvey NL. Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. J Clin Invest 2021; 130:3315-3328. [PMID: 32182215 DOI: 10.1172/jci99027] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
The atypical cadherin FAT4 has established roles in the regulation of planar cell polarity and Hippo pathway signaling that are cell context dependent. The recent identification of FAT4 mutations in Hennekam syndrome, features of which include lymphedema, lymphangiectasia, and mental retardation, uncovered an important role for FAT4 in the lymphatic vasculature. Hennekam syndrome is also caused by mutations in collagen and calcium binding EGF domains 1 (CCBE1) and ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3), encoding a matrix protein and protease, respectively, that regulate activity of the key prolymphangiogenic VEGF-C/VEGFR3 signaling axis by facilitating the proteolytic cleavage and activation of VEGF-C. The fact that FAT4, CCBE1, and ADAMTS3 mutations underlie Hennekam syndrome suggested that all 3 genes might function in a common pathway. We identified FAT4 as a target gene of GATA-binding protein 2 (GATA2), a key transcriptional regulator of lymphatic vascular development and, in particular, lymphatic vessel valve development. Here, we demonstrate that FAT4 functions in a lymphatic endothelial cell-autonomous manner to control cell polarity in response to flow and is required for lymphatic vessel morphogenesis throughout development. Our data reveal a crucial role for FAT4 in lymphangiogenesis and shed light on the mechanistic basis by which FAT4 mutations underlie a human lymphedema syndrome.
Collapse
Affiliation(s)
- Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Drew L Sutton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Genevieve A Secker
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| | - Lillian Lim
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, Queensland, Australia.,Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
37
|
Seo Y, Park SY, Kim HS, Nam JS. The Hippo-YAP Signaling as Guardian in the Pool of Intestinal Stem Cells. Biomedicines 2020; 8:biomedicines8120560. [PMID: 33271948 PMCID: PMC7760694 DOI: 10.3390/biomedicines8120560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Despite endogenous insults such as mechanical stress and danger signals derived from the microbiome, the intestine can maintain its homeostatic condition through continuous self-renewal of the crypt–villus axis. This extraordinarily rapid turnover of intestinal epithelium, known to be 3 to 5 days, can be achieved by dynamic regulation of intestinal stem cells (ISCs). The crypt base-located leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) ISCs maintain intestinal integrity in the steady state. Under severe damage leading to the loss of conventional ISCs, quiescent stem cells and even differentiated cells can be reactivated into stem-cell-like cells with multi-potency and contribute to the reconstruction of the intestinal epithelium. This process requires fine-tuning of the various signaling pathways, including the Hippo–YAP system. In this review, we summarize recent advances in understanding the correlation between Hippo–YAP signaling and intestinal homeostasis, repair, and tumorigenesis, focusing specifically on ISC regulation.
Collapse
Affiliation(s)
- Yoojin Seo
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
| | - So-Yeon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea;
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Correspondence: (H.-S.K.); (J.-S.N.); Tel.: +82-51-510-8231 (H.-S.K.); +82-62-715-2893 (J.-S.N.)
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
- Correspondence: (H.-S.K.); (J.-S.N.); Tel.: +82-51-510-8231 (H.-S.K.); +82-62-715-2893 (J.-S.N.)
| |
Collapse
|
38
|
Lodge EJ, Xekouki P, Silva TS, Kochi C, Longui CA, Faucz FR, Santambrogio A, Mills JL, Pankratz N, Lane J, Sosnowska D, Hodgson T, Patist AL, Francis-West P, Helmbacher F, Stratakis CA, Andoniadou CL. Requirement of FAT and DCHS protocadherins during hypothalamic-pituitary development. JCI Insight 2020; 5. [PMID: 33108146 PMCID: PMC7714405 DOI: 10.1172/jci.insight.134310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pituitary developmental defects lead to partial or complete hormone deficiency and significant health problems. The majority of cases are sporadic and of unknown cause. We screened 28 patients with pituitary stalk interruption syndrome (PSIS) for mutations in the FAT/DCHS family of protocadherins that have high functional redundancy. We identified seven variants, four of which putatively damaging, in FAT2 and DCHS2 in six patients with pituitary developmental defects recruited through a cohort of patients with mostly ectopic posterior pituitary gland and/or pituitary stalk interruption. All patients had growth hormone deficiency and two presented with multiple hormone deficiencies and small glands. FAT2 and DCHS2 were strongly expressed in the mesenchyme surrounding the normal developing human pituitary. We analyzed Dchs2-/- mouse mutants and identified anterior pituitary hypoplasia and partially penetrant infundibular defects. Overlapping infundibular abnormalities and distinct anterior pituitary morphogenesis defects were observed in Fat4-/- and Dchs1-/- mouse mutants but all animal models displayed normal commitment to the anterior pituitary cell type. Together our data implicate FAT/DCHS protocadherins in normal hypothalamic-pituitary development and identify FAT2 and DCHS2 as candidates underlying pituitary gland developmental defects such as ectopic pituitary gland and/or pituitary stalk interruption.
Collapse
Affiliation(s)
- Emily J. Lodge
- Centre for Craniofacial & Regenerative Biology, King’s College London, Guy’s Campus, London, United Kingdom
| | - Paraskevi Xekouki
- Centre for Craniofacial & Regenerative Biology, King’s College London, Guy’s Campus, London, United Kingdom
| | - Tatiane S. Silva
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Cristiane Kochi
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Carlos A. Longui
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Alice Santambrogio
- Centre for Craniofacial & Regenerative Biology, King’s College London, Guy’s Campus, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - James L. Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Dominika Sosnowska
- Centre for Craniofacial & Regenerative Biology, King’s College London, Guy’s Campus, London, United Kingdom
| | - Tina Hodgson
- Centre for Craniofacial & Regenerative Biology, King’s College London, Guy’s Campus, London, United Kingdom
| | - Amanda L. Patist
- Centre for Craniofacial & Regenerative Biology, King’s College London, Guy’s Campus, London, United Kingdom
| | - Philippa Francis-West
- Centre for Craniofacial & Regenerative Biology, King’s College London, Guy’s Campus, London, United Kingdom
| | | | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Cynthia L. Andoniadou
- Centre for Craniofacial & Regenerative Biology, King’s College London, Guy’s Campus, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
39
|
Rao-Bhatia A, Zhu M, Yin WC, Coquenlorge S, Zhang X, Woo J, Sun Y, Dean CH, Liu A, Hui CC, Shivdasani RA, McNeill H, Hopyan S, Kim TH. Hedgehog-Activated Fat4 and PCP Pathways Mediate Mesenchymal Cell Clustering and Villus Formation in Gut Development. Dev Cell 2020; 52:647-658.e6. [PMID: 32155439 DOI: 10.1016/j.devcel.2020.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
During development, intestinal epithelia undergo dramatic morphogenesis mediated by mesenchymal signaling to form villi, which are required for efficient nutrient absorption and host defense. Although both smooth-muscle-induced physical forces and mesenchymal cell clustering beneath emerging villi are implicated in epithelial folding, the underlying cellular mechanisms are unclear. Hedgehog (Hh) signaling can mediate both processes. We therefore analyzed its direct targetome and revealed GLI2 transcriptional activation of atypical cadherin and planar cell polarity (PCP) genes. By examining Fat4 and Dchs1 knockout mice, we demonstrate their critical roles in villus formation. Analyses of PCP-mutant mice and genetic interaction studies show that the Fat4-Dchs1 axis acts in parallel to the core-Vangl2 PCP axis to control mesenchymal cell clustering. Moreover, live light-sheet fluorescence microscopy and cultured PDGFRα+ cells reveal a requirement for PCP in their oriented cell migration guided by WNT5A. Therefore, mesenchymal PCP induced by Hh signaling drives cell clustering and subsequent epithelial remodeling.
Collapse
Affiliation(s)
- Abilasha Rao-Bhatia
- Program in Developmental & Stem Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Min Zhu
- Program in Developmental & Stem Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Wen-Chi Yin
- Program in Developmental & Stem Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabrina Coquenlorge
- Program in Developmental & Stem Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiaoyun Zhang
- Program in Developmental & Stem Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Janghee Woo
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Aimin Liu
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Molecular Investigation of Neurological Disorders, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sevan Hopyan
- Program in Developmental & Stem Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
40
|
Nunes JRS, Pértille F, Andrade SCS, Perazza CA, Villela PMS, Almeida-Val VMF, Gao ZX, Coutinho LL, Hilsdorf AWS. Genome-wide association study reveals genes associated with the absence of intermuscular bones in tambaqui (Colossoma macropomum). Anim Genet 2020; 51:899-909. [PMID: 33006182 DOI: 10.1111/age.13001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/21/2023]
Abstract
The presence of intermuscular bones in fisheries products limits the consumption and commercialization potential of many fish species, including tambaqui (Colossoma macropomum). These bones have caused medical emergencies and are an undesirable characteristic for fish farming because their removal is labor-intensive during fish processing. Despite the difficulty in identifying genes related to the lack of intermuscular bone in diverse species of fish, the discovery of individuals lacking intermuscular bones in a Neotropical freshwater characiform fish has provided a unique opportunity to delve into the genetic mechanisms underlying the pathways of intermuscular bone formation. In this study, we carried out a GWAS among boneless and wt tambaqui populations to identify markers associated with a lack of intermuscular bone. After analyzing 11 416 SNPs in 360 individuals (12 boneless and 348 bony), we report 675 significant (Padj < 0.003) associations for this trait. Of those, 13 associations were located near candidate genes related to the reduction of bone mass, promotion of bone formation, inhibition of bone resorption, central control of bone remodeling, bone mineralization and other related functions. To the best of our knowledge, for the first time, we have successfully identified genes related to a lack of intermuscular bones using GWAS in a non-model species.
Collapse
Affiliation(s)
- J R S Nunes
- Nature and Culture Institute, Federal University of Amazon (UFAM), Benjamin Constant, Amazonas, 69630-000, Brazil.,Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - F Pértille
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil.,Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, 58 183, Sweden
| | - S C S Andrade
- Genetics and Evolutionary Biology Department, University of São Paulo (USP)/Bioscience Institute (IB), São Paulo, São Paulo, 05508-090, Brazil
| | - C A Perazza
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, São Paulo, 08780-911, Brazil
| | - P M S Villela
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - V M F Almeida-Val
- Brazilian National Institute for Research of the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Manaus, Amazonas, 69067-375, Brazil
| | - Z-X Gao
- College of Fisheries, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Hongshan District, Wuhan, 430070, China
| | - L L Coutinho
- Animal Science Department, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, 13418-900, Brazil
| | - A W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, São Paulo, 08780-911, Brazil
| |
Collapse
|
41
|
Abstract
The cochlea, a coiled structure located in the ventral region of the inner ear, acts as the primary structure for the perception of sound. Along the length of the cochlear spiral is the organ of Corti, a highly derived and rigorously patterned sensory epithelium that acts to convert auditory stimuli into neural impulses. The development of the organ of Corti requires a series of inductive events that specify unique cellular characteristics and axial identities along its three major axes. Here, we review recent studies of the cellular and molecular processes regulating several aspects of cochlear development, such as axial patterning, cochlear outgrowth and cellular differentiation. We highlight how the precise coordination of multiple signaling pathways is required for the successful formation of a complete organ of Corti.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Noncanonical Wnt planar cell polarity signaling in lung development and disease. Biochem Soc Trans 2020; 48:231-243. [PMID: 32096543 DOI: 10.1042/bst20190597] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
The planar cell polarity (PCP) signaling pathway is a potent developmental regulator of directional cell behaviors such as migration, asymmetric division and morphological polarization that are critical for shaping the body axis and the complex three-dimensional architecture of tissues and organs. PCP is considered a noncanonical Wnt pathway due to the involvement of Wnt ligands and Frizzled family receptors in the absence of the beta-catenin driven gene expression observed in the canonical Wnt cascade. At the heart of the PCP mechanism are protein complexes capable of generating molecular asymmetries within cells along a tissue-wide axis that are translated into polarized actin and microtubule cytoskeletal dynamics. PCP has emerged as an important regulator of developmental, homeostatic and disease processes in the respiratory system. It acts along other signaling pathways to create the elaborately branched structure of the lung by controlling the directional protrusive movements of cells during branching morphogenesis. PCP operates in the airway epithelium to establish and maintain the orientation of respiratory cilia along the airway axis for anatomically directed mucociliary clearance. It also regulates the establishment of the pulmonary vasculature. In adult tissues, PCP dysfunction has been linked to a variety of chronic lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary arterial hypertension, stemming chiefly from the breakdown of proper tissue structure and function and aberrant cell migration during regenerative wound healing. A better understanding of these (impaired) PCP mechanisms is needed to fully harness the therapeutic opportunities of targeting PCP in chronic lung diseases.
Collapse
|
43
|
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020; 71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The transcription factors Myc and p53 associated with oncogenesis play determinant roles in a human genetic disorder, autosomal dominant polycystic kidney disease (ADPKD), that was coined early in ADPKD etiology a «neoplasia in disguise ». These factors are interdependent master cell regulators of major biological processes including proliferation, apoptosis, cell growth, metabolism, inflammation, fibrosis and differentiation that are all modulated in ADPKD. Myc and p53 proteins evolved to respond and carry out overlapping functions via opposing mechanisms of action. Studies in human ADPKD kidneys, caused by mutations in the PKD1 or PKD2 genes, reveal reduced p53 expression and high expression of Myc in the cystic tubular epithelium. Myc and p53 via direct interaction act respectively, as transcriptional activator and repressor of PKD1 gene expression, consistent with increased renal PKD1 levels in ADPKD. Mouse models generated by Pkd1 and Pkd2 gene dosage dysregulation reproduce renal cystogenesis with activation of Myc expression and numerous signaling pathways, strikingly similar to those determined in human ADPKD. In fact, upregulation of renal Myc expression is also detected in virtually all non-orthologous animal models of PKD. A definitive causal connection of Myc with cystogenesis was established by renal overexpression of Myc in transgenic mice that phenocopies human ADPKD. The network of activated signaling pathways in human and mouse cystogenesis individually or in combination can target Myc as a central node of PKD pathogenesis. One or many of the multiple functions of Myc upon activation can play a role in every phases of ADPKD development and lend credence to the notion of "Myc addiction" for cystogenesis. We propose that the residual p53 levels are conducive to an ADPKD biological program without cancerogenesis while a "p53 dependent annihilation" mechanism would be permissive to oncogenesis. Of major importance, Myc ablation in orthologous mouse models or direct inhibition in non-orthologous mouse model significantly delays cystogenesis consistent with pharmacologic or genetic inhibition of Myc upstream regulator or downstream targets in the mouse. Together, these studies on PKD proteins upon dysregulation not only converged on Myc as a focal point but also attribute to Myc upregulation a causal and « driver » role in pathogenesis. This review will present and discuss our current knowledge on Myc and p53, focused on PKD mouse models and ADPKD.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
44
|
Fat/Dachsous family cadherins in cell and tissue organisation. Curr Opin Cell Biol 2020; 62:96-103. [DOI: 10.1016/j.ceb.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
45
|
Montcouquiol M, Kelley MW. Development and Patterning of the Cochlea: From Convergent Extension to Planar Polarity. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a033266. [PMID: 30617059 DOI: 10.1101/cshperspect.a033266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Within the mammalian cochlea, sensory hair cells and supporting cells are aligned in curvilinear rows that extend along the length of the tonotopic axis. In addition, all of the cells within the epithelium are uniformly polarized across the orthogonal neural-abneural axis. Finally, each hair cell is intrinsically polarized as revealed by the presence of an asymmetrically shaped and apically localized stereociliary bundle. It has been known for some time that many of the developmental processes that regulate these patterning events are mediated, to some extent, by the core planar cell polarity (PCP) pathway. This article will review more recent work demonstrating how components of the PCP pathway interact with cytoskeletal motor proteins to regulate cochlear outgrowth. Finally, a signaling pathway originally identified for its role in asymmetric cell divisions has recently been shown to mediate several aspects of intrinsic hair cell polarity, including kinocilia migration, bundle shape, and elongation.
Collapse
Affiliation(s)
- Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, F-33077 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33077 Bordeaux, France
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
47
|
Shea CA, Rolfe RA, McNeill H, Murphy P. Localization of YAP activity in developing skeletal rudiments is responsive to mechanical stimulation. Dev Dyn 2019; 249:523-542. [PMID: 31747096 DOI: 10.1002/dvdy.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.
Collapse
Affiliation(s)
- Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
49
|
Crespo-Enriquez I, Hodgson T, Zakaria S, Cadoni E, Shah M, Allen S, Al-Khishali A, Mao Y, Yiu A, Petzold J, Villagomez-Olea G, Pitsillides AA, Irvine KD, Francis-West P. Dchs1-Fat4 regulation of osteogenic differentiation in mouse. Development 2019; 146:146/14/dev176776. [PMID: 31358536 DOI: 10.1242/dev.176776] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
In human, mutations of the protocadherins FAT4 and DCHS1 result in Van Maldergem syndrome, which is characterised, in part, by craniofacial abnormalities. Here, we analyse the role of Dchs1-Fat4 signalling during osteoblast differentiation in mouse. We show that Fat4 and Dchs1 mutants mimic the craniofacial phenotype of the human syndrome and that Dchs1-Fat4 signalling is essential for osteoblast differentiation. In Dchs1/Fat4 mutants, proliferation of osteoprogenitors is increased and osteoblast differentiation is delayed. We show that loss of Dchs1-Fat4 signalling is linked to increased Yap-Tead activity and that Yap is expressed and required for proliferation in osteoprogenitors. In contrast, Taz is expressed in more-committed Runx2-expressing osteoblasts, Taz does not regulate osteoblast proliferation and Taz-Tead activity is unaffected in Dchs1/Fat4 mutants. Finally, we show that Yap and Taz differentially regulate the transcriptional activity of Runx2, and that the activity of Yap-Runx2 and Taz-Runx2 complexes is altered in Dchs1/Fat4 mutant osteoblasts. In conclusion, these data identify Dchs1-Fat4 as a signalling pathway in osteoblast differentiation, reveal its crucial role within the early Runx2 progenitors, and identify distinct requirements for Yap and Taz during osteoblast differentiation.
Collapse
Affiliation(s)
- Ivan Crespo-Enriquez
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Tina Hodgson
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Sana Zakaria
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Erika Cadoni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Mittal Shah
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Stephen Allen
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Ayman Al-Khishali
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Yaopan Mao
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Angela Yiu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Guillermo Villagomez-Olea
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Andrew A Pitsillides
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
50
|
Formica C, Happé H, Veraar KA, Vortkamp A, Scharpfenecker M, McNeill H, Peters DJ. Four-jointed knock-out delays renal failure in an ADPKD model with kidney injury. J Pathol 2019; 249:114-125. [PMID: 31038742 PMCID: PMC6772084 DOI: 10.1002/path.5286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease is characterised by the development of fluid‐filled cysts in the kidneys which lead to end‐stage renal disease (ESRD). In the majority of cases, the disease is caused by a mutation in the Pkd1 gene. In a previous study, we demonstrated that renal injury can accelerate cyst formation in Pkd1 knock‐out (KO) mice. In that study, we found that after injury four‐jointed (Fjx1), an upstream regulator of planar cell polarity and the Hippo pathway, was aberrantly expressed in Pkd1 KO mice compared to WT. Therefore, we hypothesised a role for Fjx1 in injury/repair and cyst formation. We generated single and double deletion mice for Pkd1 and Fjx1, and we induced toxic renal injury using the nephrotoxic compound 1,2‐dichlorovinyl‐cysteine. We confirmed that nephrotoxic injury can accelerate cyst formation in Pkd1 mutant mice. This caused Pkd1 KO mice to reach ESRD significantly faster; unexpectedly, double KO mice survived significantly longer. Cyst formation was comparable in both models, but we found significantly less fibrosis and macrophage infiltration in double KO mice. Taken together, these data suggest that Fjx1 disruption protects the cystic kidneys against kidney failure by reducing inflammation and fibrosis. Moreover, we describe, for the first time, an interesting (yet unidentified) mechanism that partially discriminates cyst growth from fibrogenesis. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chiara Formica
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester Happé
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberley Am Veraar
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrea Vortkamp
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Dorien Jm Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|