1
|
Gong Y, Liang Y, Liu J, Wei J, Zhang S, Chen F, Zhang Q, Wang L, Lan H, Wu L, Ge W, Li S, Wang L, Shan H, He H. DDX24 Is Essential for Cell Cycle Regulation in Vascular Smooth Muscle Cells During Vascular Development via Binding to FANCA mRNA. Arterioscler Thromb Vasc Biol 2023; 43:1653-1667. [PMID: 37470182 DOI: 10.1161/atvbaha.123.319505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The DEAD-box family is essential for tumorigenesis and embryogenesis. Previously, we linked the malfunction of DDX (DEAD-box RNA helicase)-24 to a special type of vascular malformation. Here, we aim to investigate the function of DDX24 in vascular smooth muscle cells (VSMCs) and embryonic vascular development. METHODS Cardiomyocyte (CMC) and VSMC-specific Ddx24 knockout mice were generated by crossing Tagln-Cre mice with Ddx24flox/flox transgenic mice. The development of blood vessels was explored by stereomicroscope photography and immunofluorescence staining. Flow cytometry and cell proliferation assays were used to verify the regulation of DDX24 on the function of VSMCs. RNA sequencing and RNA immunoprecipitation coupled with quantitative real-time polymerase chain reaction were combined to investigate DDX24 downstream regulatory molecules. RNA pull-down and RNA stability experiments were performed to explore the regulation mechanism of DDX24. RESULTS CMC/VSMC-specific Ddx24 knockout mice died before embryonic day 13.5 with defects in vessel formation and abnormal vascular remodeling in extraembryonic tissues. Ddx24 knockdown suppressed VSMC proliferation via cell cycle arrest, likely due to increased DNA damage. DDX24 protein bound to and stabilized the mRNA of FANCA (FA complementation group A) that responded to DNA damage. Consistent with the function of DDX24, depletion of FANCA also impacted cell cycle and DNA repair of VSMCs. Overexpression of FANCA was able to rescue the alterations caused by DDX24 deficiency. CONCLUSIONS Our study unveiled a critical role of DDX24 in VSMC-mediated vascular development, highlighting a potential therapeutic target for VSMC-related pathological conditions.
Collapse
Affiliation(s)
- Yujiao Gong
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yan Liang
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaxing Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Interventional Medicine and Center for Interventional Medicine (J.W., H.S.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shushan Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fangbin Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qianqian Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lijie Wang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huimin Lan
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lily Wu
- Departments of Molecular and Medical Pharmacology (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
- Urology (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
- Pediatrics (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China (W.G.)
| | - Shuai Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Interventional Medicine and Center for Interventional Medicine (J.W., H.S.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
2
|
Bustos P, Schmitt P, Brown DI, Farlora R. Silencing of the Vasa gene by RNA Interference Affects Embryonic Development and Reproductive Output in the Sea Louse Caligus rogercresseyi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:612-623. [PMID: 37526783 DOI: 10.1007/s10126-023-10232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
The sea louse Caligus rogercresseyi is a major ectoparasitic copepod that causes significant economic losses in the salmon farming industry. Despite recent advancements, the mechanisms underlying germline and embryo development in this species remain poorly understood. The Vasa gene encodes a highly conserved DEAD box helicase that is required for germ cell formation and function in many species. In this study, the Vasa gene was characterized in C. rogercresseyi, and its expression and function were analyzed. Phylogenetic analysis showed that the Cr-Vasa gene product formed clusters in clades with Vasa proteins from closely related species of crustaceans. Cr-Vasa gene expression patterns were assessed by qPCR, and the results showed a significantly higher relative expression level in adult females compared to copepodid, chalimus, and adult male stages. Tissue-specific localization of Cr-Vasa mRNA in C. rogercresseyi was determined using chromogenic in situ hybridization, and strong positive signal was observed in male testes, but also in the intestine and cuticle, while in females, it was observed in the ovaries, oocytes, cuticle, intestine, and egg strings. RNAi-mediated gene silencing of Cr-Vasa impacted embryonic development and reproductive output in adult female lice. Females from the dsVasa-treated group displayed unusual phenotypes, including shorter egg strings with numerous extra-embryonic inclusions, irregularly shaped abnormal embryos, and aborted egg strings. This study provides insights into the role of the Vasa gene in C. rogercresseyi embryonic development and reproductive output, which may have implications for the control of this parasitic copepod in the salmon farming industry.
Collapse
Affiliation(s)
- Paulina Bustos
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva (LABYGER), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, 2360102, Valparaíso, Chile
- Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Donald I Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva (LABYGER), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, 2360102, Valparaíso, Chile.
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
3
|
Sundaram P, Rao K, Yajima M. Vasa, a regulator of localized mRNA translation on the spindle. Bioessays 2023; 45:e2300004. [PMID: 36825672 PMCID: PMC10023503 DOI: 10.1002/bies.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Localized mRNA translation is a biological process that allows mRNA to be translated on-site, which is proposed to provide fine control in protein regulation, both spatially and temporally within a cell. We recently reported that Vasa, an RNA-helicase, is a promising factor that appears to regulate this process on the spindle during the embryonic development of the sea urchin, yet the detailed roles and functional mechanisms of Vasa in this process are still largely unknown. In this review article, to elucidate these remaining questions, we first summarize the prior knowledge and our recent findings in the area of Vasa research and further discuss how Vasa may function in localized mRNA translation, contributing to efficient protein regulation during rapid embryogenesis and cancer cell regulation.
Collapse
Affiliation(s)
- Paola Sundaram
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Kavya Rao
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI 02912, USA
| |
Collapse
|
4
|
Noyes C, Kitajima S, Li F, Suita Y, Miriyala S, Isaac S, Ahsan N, Knelson E, Vajdi A, Tani T, Thai TC, Xu D, Murai J, Tapinos N, Takahashi C, Barbie DA, Yajima M. The germline factor DDX4 contributes to the chemoresistance of small cell lung cancer cells. Commun Biol 2023; 6:65. [PMID: 36653474 PMCID: PMC9849207 DOI: 10.1038/s42003-023-04444-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Human cancers often re-express germline factors, yet their mechanistic role in oncogenesis and cancer progression remains unknown. Here we demonstrate that DEAD-box helicase 4 (DDX4), a germline factor and RNA helicase conserved in all multicellular organisms, contributes to increased cell motility and cisplatin-mediated drug resistance in small cell lung cancer (SCLC) cells. Proteomic analysis suggests that DDX4 expression upregulates proteins related to DNA repair and immune/inflammatory response. Consistent with these trends in cell lines, DDX4 depletion compromised in vivo tumor development while its overexpression enhanced tumor growth even after cisplatin treatment in nude mice. Further, the relatively higher DDX4 expression in SCLC patients correlates with decreased survival and shows increased expression of immune/inflammatory response markers. Taken together, we propose that DDX4 increases SCLC cell survival, by increasing the DNA damage and immune response pathways, especially under challenging conditions such as cisplatin treatment.
Collapse
Affiliation(s)
- Christopher Noyes
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Fengkai Li
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yusuke Suita
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Saradha Miriyala
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Shakson Isaac
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK, 73019, USA
| | - Erik Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Amir Vajdi
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Derek Xu
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Nikos Tapinos
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
5
|
Hirano-Maeda Y, Ojima D, Kanematsu M. Molecular characterization of Vasa homolog in the pen shell Atrina pectinata: cDNA cloning and expression analysis during gonadal development. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110798. [PMID: 36064136 DOI: 10.1016/j.cbpb.2022.110798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Vasa is an ATP-dependent RNA helicase of the DEAD (Asp-Glu-Ala-Asp) box family and a representative component of the germ plasm. In this study, we cloned the full-length vasa homolog in the bivalve Atrina pectinata (psvasa), and performed phylogenetic analysis, mRNA expression analysis for tissue-specific distributions, and immunostaining analysis to reveal its histological localization. The sequence of psvasa was 3587 bp in length and contained a 5' untranslated region of 150 bp, an open reading frame of 2214 bp, and a 3' untranslated region of 1223 bp. The deduced amino acid sequence of psvasa was 737 amino acids long and contained evolutionarily conserved sequences reported in other animals. The mRNA expression analysis showed the highest expression levels in the gonads. Expression was especially high in the ovaries, followed by the testes. The immunostaining analysis showed Vasa-positive cells in the developing gonads, suggesting the presence of putative germ stem cells contributing to the supply of germ cells. Furthermore, characteristic Vasa signals were observed in the basophilic nuclei of the oocytes, suggesting that psvasa plays an important role in the progression of meiosis in oocytes.
Collapse
Affiliation(s)
- Yuki Hirano-Maeda
- Momoshima Field Station, Fisheries Technology Institute (FTI), Japan Fisheries Research and Education Agency (FRA), Onomichi, Hiroshima 722-0061, Japan.
| | - Daisuke Ojima
- Momoshima Field Station, Fisheries Technology Institute (FTI), Japan Fisheries Research and Education Agency (FRA), Onomichi, Hiroshima 722-0061, Japan
| | - Masaei Kanematsu
- Momoshima Field Station, Fisheries Technology Institute (FTI), Japan Fisheries Research and Education Agency (FRA), Onomichi, Hiroshima 722-0061, Japan
| |
Collapse
|
6
|
Vasa nucleates asymmetric translation along the mitotic spindle during unequal cell divisions. Nat Commun 2022; 13:2145. [PMID: 35444184 PMCID: PMC9021227 DOI: 10.1038/s41467-022-29855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
mRNA translation on the spindle is hypothesized to be an essential strategy for the localized production of cell regulators. This mechanism may be important particularly in early embryonic cells, which have a large diffusion volume and that undergo rapid cell divisions. Evidence to test such a hypothesis has been, however, limited. Here, we use an embryo with both symmetric and asymmetric cell divisions and manipulate Vasa protein, an RNA-helicase, on the spindle in live sea urchin embryos. We learned that the spindle serves as a major site of translation and that protein synthesis within a single spindle can be unequal and help drive asymmetric cell divisions during embryogenesis. Recruiting Vasa to the ectopic sub-cellular region induced a new site of translation, disturbed asymmetric translation on the spindle, and changed the cell fate. Based on these observations, we conclude that Vasa functions in localized translation, which provides a spatiotemporal control in protein synthesis and is essential for rapidly developing embryonic cells. Association of mRNA translation with the mitotic spindle is thought to be involved in localized production of cell fate determinants. Here, the authors show Vasa facilitates asymmetric translation, which contributes to differential regulation during sea urchin embryogenesis.
Collapse
|
7
|
Abstract
The micromeres of the sea urchin embryo are distinct from other blastomeres. After they arise through an asymmetric cell division at the 8- to 16-cell stage, micromeres immediately function as organizers. They also commit themselves to specific cell fates such as larval skeletogenic cells and primordial germ cells, while other blastomeres remain plastic and uncommitted at the 16-cell stage. In the phylum Echinodermata, only the sea urchin (class Echinoidea) embryo forms micromeres that serve as apparent organizers during early embryogenesis. Therefore, it is considered that micromeres are the derived features and that modification(s) of the developmental system allowed evolutionary introduction of this unique cell lineage. In this chapter, we summarize the both historic and recent observations that demonstrate unique properties of micromeres and discuss how this lineage of micromeres may have arisen during echinoderm evolution.
Collapse
Affiliation(s)
- Natsuko Emura
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
8
|
Wavreil FDM, Poon J, Wessel GM, Yajima M. Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin. Dev Biol 2021; 478:13-24. [PMID: 34147471 DOI: 10.1016/j.ydbio.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
Differential protein regulation is a critical biological process that regulates cellular activity and controls cell fate determination. It is especially important during early embryogenesis when post-transcriptional events predominate differential fate specification in many organisms. Light-induced approaches have been a powerful technology to interrogate protein functions with temporal and spatial precision, even at subcellular levels within a cell by controlling laser irradiation on the confocal microscope. However, application and efficacy of these tools need to be tested for each model system or for the cell type of interest because of the complex nature of each system. Here, we introduce two types of light-induced approaches to track and control proteins at a subcellular level in the developing embryo of the sea urchin. We found that the photoconvertible fluorescent protein Kaede is highly efficient to distinguish pre-existing and newly synthesized proteins with no apparent phototoxicity, even when interrogating proteins associated with the mitotic spindle. Further, chromophore-assisted light inactivation (CALI) using miniSOG successfully inactivated target proteins of interest in the vegetal cortex and selectively delayed or inhibited asymmetric cell division. Overall, these light-induced manipulations serve as important molecular tools to identify protein function for for subcellular interrogations in developing embryos.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Jessica Poon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
9
|
Xu X, Chen X, Shen X, Chen R, Zhu C, Zhang Z, Chen Y, Lin W, Xu X, Lin Y, Lai Z. Genome-wide identification and characterization of DEAD-box helicase family associated with early somatic embryogenesis in Dimocarpus longan Lour. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153364. [PMID: 33465637 DOI: 10.1016/j.jplph.2021.153364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
DEAD-box (DDX) proteins belong to the largest subfamily of RNA helicase SF2, which contributes to all biological processes of RNA metabolism in the plant kingdom. Till now, no significant data are available regarding studies on DDX in Somatic Embryogenesis (SE) of woody plants. It is important to investigate the biological function of the DlDDX family in longan SE. Thus, a comprehensive analysis of 58 longan DEAD-box (DlDDX) genes characterization was performed by genome-wide identification and transcript abundance validation analysis. Homologous evolution has revealed that some DlDDXs in longan had high sequence similarity with Mus musculus, Citrus and Saccharomyces cerevisiae, indicating that DlDDXs were highly conservative in the animal, plant, and microorganism. Remarkably, gene duplication, purifying selection, and alternative splicing events, and new auxiliary domains have likely contributed to the functional evolution of DlDDX, indicating that DlDDX appeared neofunctionalization in longan. Besides, DlDDX3, 15, 28, 36 might interact with protein complex (MAC3A, MAC3B, CDC5, CBP20) of miRNA biosynthesis. Notably, DlDDX28 contained a novel auxiliary domain (CAF-1 p150), which might contribute to DNA demethylation in longan early SE. 4 DlDDX genes significantly expressed not only in early SE and zygotic embryogenesis (ZE) but also up-regulated at high levels in 'Honghezi' and 'Quanlongbaihe' with abortive seeds, which are of great significance. Moreover, some DlDDXs presented abiotic stress-response dynamic expression patterns by ABA, SA, JA, and NaCl treatments during early SE. Hence, DEAD-box is essential to SE development and seed abortive in longan.
Collapse
Affiliation(s)
- Xiaoping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xu Shen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rongzhu Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Zhu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzhong Lin
- Quanzhou Agricultural Science Research Institute, Quanzhou, 362212, China
| | - Xuhan Xu
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300, Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Xu D, Wavreil FDM, Waldron A, Yajima M. Functional contribution of DCLKs in sea urchin development. Dev Dyn 2021; 250:1160-1172. [PMID: 33587303 DOI: 10.1002/dvdy.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Doublecortin-like kinase1 and 2 (DCLKs) are protein Ser/Thr kinases important for neuronal development. More recently, they are also reported to regulate plasticity such as cell proliferation and differentiation of stem cells and cancer cells, but the details of their functions in this biological context are still unclear. With an attempt to reveal the functions of DCLKs in plasticity regulation, we here used the sea urchin embryo that undergoes highly regulative development as an experimental model. RESULTS We found that both the transcripts and the proteins of DCLKs are uniformly present during early embryogenesis and with some enrichment in mesenchymal cells after gastrula stage. Knockdown of DCLKs induced general developmental delay and defects at day 2. Further, the damage on the embryo/larva induced ectopic expression of DCLKs in the ectoderm where the damage was most severe. Under a tumor-prone or -suppressive condition, DCLKs expression was upregulated or downregulated, respectively, after damage. In both cases, the embryos showed severe developmental defects. CONCLUSIONS Taken together, a transient upregulation of DCLKs appears to be involved in a damage response both during normal and abnormal development, and which could result in different phenotypes in a context dependent manner.
Collapse
Affiliation(s)
- Derek Xu
- MCB Department, Brown University, Providence, Rhode Island, USA
| | | | - Ashley Waldron
- MCB Department, Brown University, Providence, Rhode Island, USA
| | - Mamiko Yajima
- MCB Department, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Effects of HSP90 inhibition on primordial germ cells migration: A study in the gonad of the chick embryo. Morphologie 2020; 104:228-236. [PMID: 32896470 DOI: 10.1016/j.morpho.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Primordial Germ Cells (PGCs) differentiate into spermatozoa or oocytes. They appear early during embryonic development before migrating to the gonadal ridges. Because of their long migration, PGCs have been proposed as a valuable model to study long distance cell migration. Some species also present a vascular phase in the migration of the germline and could therefore be compared to metastatic migration. HSP90 is a heat shock protein involved in the stabilization of several client-proteins, including oncoproteins. HSP90 inhibition has been proved to decrease PGCs migration in mouse and zebrafish. MATERIAL AND METHODS We investigated the effect of geldanamycin on PGCs migration in a species with a vascular phase, the chicken. Geldanamycin was injected in the egg at 48h of incubation, PGC's were detected in blood using of blood smears, and in the embryo by immunohistochemistry using anti-HSP90 antibody. RESULTS The effects of the treatment were similar to those observed in mouse and zebrafish. We show the presence of ectopic germs cells in the vasculature and in the dorsal mesentery, and some deformities of the gonads. CONCLUSION Inhibition of HSP90 decreases the migration of PGCs and proposed the migration of PGCs in the chick embryo as an interesting model to study metastatic invasion.
Collapse
|
12
|
Kulkarni A, Lopez DH, Extavour CG. Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
13
|
Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci Rep 2020; 10:9914. [PMID: 32555307 PMCID: PMC7303178 DOI: 10.1038/s41598-020-66020-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
This study aimed to elucidate the physiological processes of oogenesis in Acropora tenuis. Genes/proteins related to oogenesis were investigated: Vasa, a germ cell marker, vitellogenin (VG), a major yolk protein precursor, and its receptor (LDLR). Coral branches were collected monthly from coral reefs around Sesoko Island (Okinawa, Japan) for histological observation by in situ hybridisation (ISH) of the Vasa (AtVasa) and Low Density Lipoprotein Receptor (AtLDLR) genes and immunohistochemistry (IHC) of AtVasa and AtVG. AtVasa immunoreactivity was detected in germline cells and ooplasm, whereas AtVG immunoreactivity was detected in ooplasm and putative ovarian tissues. AtVasa was localised in germline cells located in the retractor muscles of the mesentery, whereas AtLDLR was localised in the putative ovarian and mesentery tissues. AtLDLR was detected in coral tissues during the vitellogenic phase, whereas AtVG immunoreactivity was found in primary oocytes. Germline cells expressing AtVasa are present throughout the year. In conclusion, Vasa has physiological and molecular roles throughout the oogenic cycle, as it determines gonadal germline cells and ensures normal oocyte development, whereas the roles of VG and LDLR are limited to the vitellogenic stages because they act in coordination with lipoprotein transport, vitellogenin synthesis, and yolk incorporation into oocytes.
Collapse
|
14
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
15
|
Ohno H, Sakamoto T, Okochi R, Nishiko M, Sasaki S, Bono H, Tabunoki H, Iwabuchi K. Apoptosis-mediated vasa down-regulation controls developmental transformation in Japanese Copidosoma floridanum female soldiers. Dev Biol 2019; 456:226-233. [PMID: 31542385 DOI: 10.1016/j.ydbio.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022]
Abstract
Copidosoma floridanum is a polyembryonic, caste-forming, wasp species. The ratio of investment in different castes changes with environmental stressors (e.g. multi-parasitism with competitors). The vasa gene was first identified in Drosophila melanogaster as a germ-cell-determining factor, and C. floridanum vasa (Cf-vas) gene positive cells have been known to develop into reproductive larvae. Cf-vas seems to control the ratio of investment in C. floridanum larval castes. In this study, we identified environmental factors that control Cf-vas mRNA expression in Japanese C. floridanum by examining Cf-vas mRNA expression under competitor (Meteorus pulchricornis) venom stress; we treated the male and female morulae with M. pulchricornis venom. We also assessed the effects of multi-parasitism of Japanese C. floridanum with M. pulchricornis and found an increasing number of female soldier larvae. The results showed that several amino acid sequences differ between the Japanese and US Cf-vas. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that Japanese Cf-vas mRNA is expressed in both male and female larvae and pupae, but mRNA expression decreases in adults. Cf-vas mRNA expression significantly decreased, while C. floridanum dronc (Cf-dronc) mRNA expression increased, in female morulae after M. pulchricornis venom treatment at 20 h and 0 h of the culture period, respectively. Females and males showed different Cf-vas or Cf-dronc mRNA expression after M. pulchricornis venom treatment. Therefore, M. pulchricornis venom could affect the ratio of investment in different female castes of Japanese C. floridanum by decreasing Cf-vas mRNA expression via apoptosis.
Collapse
Affiliation(s)
- Hitomi Ohno
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Takuma Sakamoto
- Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Rena Okochi
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Maaya Nishiko
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Shunya Sasaki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan; Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Kikkuo Iwabuchi
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
16
|
Fernandez-Nicolas A, Xu D, Yajima M. A tumor suppressor Retinoblastoma1 is essential for embryonic development in the sea urchin. Dev Dyn 2019; 248:1273-1285. [PMID: 31515896 DOI: 10.1002/dvdy.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Embryonic cells and cancer cells share various cellular characteristics important for their functions. It has been thus proposed that similar mechanisms of regulation may be present in these otherwise disparate cell types. RESULTS To explore how regulative embryonic cells are fundamentally different from cancerous cells, we report here that a fine balance of a tumor suppressor protein Retinoblastoma1 (Rb1) and a germline factor Vasa are important for proper cell proliferation and differentiation of the somatic cells during embryogenesis of the sea urchin. Rb1 knockdown blocked embryonic development and induced Vasa accumulation in the entire embryo, while its overexpression resulted in a smaller-sized embryo with differentiated body structures. These results suggest that a titrated level of Rb1 protein may be essential for a proper balance of cell proliferation and differentiation during development. Vasa knockdown or overexpression, on the other hand, reduced or increased Rb1 protein expression, respectively. CONCLUSIONS Taken together, it appears that Vasa protein positively regulates Rb1 protein while Rb1 protein negatively regulates Vasa protein, balancing the act of these two antagonistic molecules in somatic cells. This mechanism may provide a fine control of cell proliferation and differentiation, which is essential for regulative embryonic development.
Collapse
Affiliation(s)
| | - Derek Xu
- MCB Department, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- MCB Department, Brown University, Providence, Rhode Island
| |
Collapse
|
17
|
Poon J, Fries A, Wessel GM, Yajima M. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. Nat Commun 2019; 10:3779. [PMID: 31439829 PMCID: PMC6706577 DOI: 10.1038/s41467-019-11560-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 02/01/2023] Open
Abstract
Evolution is proposed to result, in part, from acquisition of new developmental programs. One such example is the appearance of the micromeres in a sea urchin that form by an asymmetric cell division at the 4th embryonic cleavage and function as a major signaling center in the embryo. Micromeres are not present in other echinoderms and thus are considered as a derived feature, yet its acquisition mechanism is unknown. Here, we report that the polarity factor AGS and its associated proteins are responsible for micromere formation. Evolutionary modifications of AGS protein seem to have provided the cortical recruitment and binding of AGS to the vegetal cortex, contributing to formation of micromeres in the sea urchins. Indeed, introduction of sea urchin AGS into the sea star embryo induces asymmetric cell divisions, suggesting that the molecular evolution of AGS protein is key in the transition of echinoderms to micromere formation and the current developmental style of sea urchins not seen in other echinoderms.
Collapse
Affiliation(s)
- Jessica Poon
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Annaliese Fries
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOXG-L277, Providence, RI, 02912, USA.
| |
Collapse
|
18
|
Molina MD, Gache C, Lepage T. Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods Cell Biol 2019; 151:239-282. [PMID: 30948011 DOI: 10.1016/bs.mcb.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the completion of the genome sequencing projects, a new challenge for developmental biologists is to assign a function to the thousands of genes identified. Expression of exogenous mRNAs is a powerful, versatile and rapid technique that can be used to study gene function during development of the sea urchin. This chapter describes how this technique can be used to analyze gene function in echinoderm embryos, how it can be combined with cell transplantation to perform mosaic analysis and how it can be applied to identify downstream targets genes of transcription factors and signaling pathways. We describe specific examples of the use of overexpression of mRNA to analyze gene function, mention the benefits and current limitations of the technique and emphasize the importance of using different controls to assess the specificity of the effects observed. Finally, this chapter details the different steps, vectors and protocols for in vitro production of mRNA and phenotypic analysis.
Collapse
Affiliation(s)
| | - Christian Gache
- Université Pierre et Marie Curie, Observatoire Océanologique de Villefranche sur Mer, UMR7009 CNRS, Paris, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
19
|
Krishnakumar P, Riemer S, Perera R, Lingner T, Goloborodko A, Khalifa H, Bontems F, Kaufholz F, El-Brolosy MA, Dosch R. Functional equivalence of germ plasm organizers. PLoS Genet 2018; 14:e1007696. [PMID: 30399145 PMCID: PMC6219760 DOI: 10.1371/journal.pgen.1007696] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022] Open
Abstract
The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their animal groups. Here, we discover that Osk and Buc show similar activities during germ cell specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and Buc do not show homologous protein motifs that would explain their related function. Nonetheless, we detect that both proteins contain stretches of intrinsically disordered regions (IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change their sequence during evolution, which might obscure biochemical interaction motifs. Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos mRNA indicating conserved biochemical activities. These data provide a molecular framework for two proteins with unrelated sequence but with equivalent function to assemble a conserved core-complex nucleating germ plasm. Multicellular organisms use gametes for their propagation. Gametes are formed from germ cells, which are specified during embryogenesis in some animals by the inheritance of RNP granules known as germ plasm. Transplantation of germ plasm induces extra germ cells, whereas germ plasm ablation leads to the loss of gametes and sterility. Therefore, germ plasm is key for germ cell formation and reproduction. However, the molecular mechanisms of germ cell specification by germ plasm in the vertebrate embryo remain an unsolved question. Proteins, which assemble the germ plasm, are known as germ plasm organizers. Here, we show that the two germ plasm organizers Oskar from the fly and Bucky ball from the fish show similar functions by using a cross species approach. Both are intrinsically disordered proteins, which rapidly changed their sequence during evolution. Moreover, both proteins still interact with conserved components of the germ cell specification pathway. These data might provide a first example of two proteins with the same biological role, but distinct sequence.
Collapse
Affiliation(s)
- Pritesh Krishnakumar
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Stephan Riemer
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roshan Perera
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Thomas Lingner
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Alexander Goloborodko
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Hazem Khalifa
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Franck Bontems
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Switzerland
| | - Felix Kaufholz
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Mohamed A. El-Brolosy
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roland Dosch
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|
20
|
Uchida A, Yajima M. An optogenetic approach to control protein localization during embryogenesis of the sea urchin. Dev Biol 2018; 441:19-30. [PMID: 29958898 DOI: 10.1016/j.ydbio.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022]
Abstract
Light inducible protein-protein interactions have been used to manipulate protein localization and function in the cell with utmost spatial and temporal precision. In this technical report, we use a recently developed optogenetic approach to manipulate protein localization in the developing sea urchin embryo. A photosensitive LOV domain from Avena sativa phototropin1 cages a small peptide that binds the engineered PDZ domain (ePDZ) upon blue light irradiation. Using this system, mCherry tagged proteins fused with the LOV domain were recruited to ectopic sub-cellular regions such as the membrane, microtubules, or actin by GFP tagged proteins fused with the ePDZ domain upon blue light irradiation within 1-3 min in the sea urchin embryo. The efficiency and speed of recruitment of each protein to its respective subcellular region appeared to be dependent on the power and duration of laser irradiation, as well as the respective level of affinity to the tagged location. Controlled laser irradiation allowed partial recruitment of the spindle to the membrane, and resulted in cell blebbing. Vasa, a cell cycle and germline factor that localizes on the spindle and enriches in the micromeres at 8-16 cell stage was recruited to ectopic sites, preventing normal enrichment. Continuous blue light activation with a regular blue aquarium light over two days of culture successfully induced LOV-ePDZ binding in the developing embryos, resulting in continued ectopic recruitment of Vasa and failure in gastrulation at Day 2. Although some cytotoxicity was observed with prolonged blue light irradiation, this optogenetic system provides a promising approach to test the sub-cellular activities of developmental factors, as well as to alter protein localization and development during embryogenesis.
Collapse
Affiliation(s)
- Alicia Uchida
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA.
| |
Collapse
|
21
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Parte SC, Smolenkov A, Batra SK, Ratajczak MZ, Kakar SS. Ovarian Cancer Stem Cells: Unraveling a Germline Connection. Stem Cells Dev 2017; 26:1781-1803. [PMID: 29078734 PMCID: PMC5725638 DOI: 10.1089/scd.2017.0153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is most lethal among gynecological cancers with often fatal consequences due to lack of effective biomarkers and relapse, which propels ovarian cancer research into unique directions to establish solid targeted therapeutics. "Ovarian stem cells" expressing germline pluripotent markers serve as novel paradigm with potential to address infertility, menopause, and probably influence tumor initiation. Cancer stem cells (CSCs) pose vital role in tumor recurrence and hence it is extremely important to study them with respect to ovarian stem cells across various cancer stages and normal ovaries. Pluripotent (OCT4, NANOG, SOX2, SSEA1, and SSEA4), germline (IFITM3, VASA/DDX4), and cancer stem (CD44, LGR5) cell specific markers were characterized for protein and mRNA expression in tumor tissues to understand their distribution in the surface epithelium and ovarian cortex in benign, borderline, and high-grade malignant stages. To elucidate whether pluripotent ovarian germline stem cells and CSCs are common subset of stem cells in tumor tissues, VASA was colocalized with known pluripotent stem (OCT4, SSEA1, SSEA4) and CSC (CD44, LGR5) specific markers by confocal microscopy. Single, smaller spherical (≤5 μm), and larger elliptical fibroblast like (≥10 μm) cells (also in clusters or multiples) were detected implying probable functional behavioral significance of cells in tumor initiation and metastasis across various cancer stages. Cells revealed characteristic staining pattern in ovarian surface epithelium (OSE) and cortex regions exclusive for each marker. Co-expression studies revealed specific subpopulations existing simultaneously in OSE and cortex and that a dynamic hierarchy of (cancer) stem cells with germline properties prevails in normal ovaries and cancer stages. Novel insights into CSC biology with respect to ovarian and germline stem cell perspective were obtained. Understanding molecular signatures and distribution within ovarian tissue may enable identification of precise tumor-initiating CSC populations and signaling pathways thus improving their efficient targeting and strategies to prevent their dissemination causing fatal relapse.
Collapse
Affiliation(s)
- Seema C. Parte
- Department of Physiology, University of Louisville, Louisville, Kentucky
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Andrei Smolenkov
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mariusz Z. Ratajczak
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, Kentucky
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
23
|
Oulhen N, Wessel G. A quiet space during rush hour: Quiescence in primordial germ cells. Stem Cell Res 2017; 25:296-299. [PMID: 29157935 DOI: 10.1016/j.scr.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022] Open
Abstract
Quiescence is a common character in stem cells. Low cellular activity in these cells may function to minimize the potential damaging effects of oxidative stress, reduce the number of cells needed for tissue replenishment, and as a consequence, perhaps occupy unique niches. Quiescent stem cells are found in many adult human tissues, the hematopoietic stem cells are paradigmatic, and more recently it appears that stem cell of the germ line in many animals display quiescence characters. Here we explore the diversity of quiescence phenotypes in primordial germ cells, leveraging the diverse mechanisms of germ cell formation to extract evolutionary significance to common processes.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Gary Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
24
|
Shimaoka K, Mukumoto Y, Tanigawa Y, Komiya T. Xenopus Vasa Homolog XVLG1 is Essential for Migration and Survival of Primordial Germ Cells. Zoolog Sci 2017; 34:93-104. [PMID: 28397605 DOI: 10.2108/zs160198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Xenopus vasa-like gene 1 (XVLG1), a DEAD-Box Helicase 4 (DDX4) gene identified as a vertebrate vasa homologue, is required for the formation of primordial germ cells (PGCs). However, it remains to be clarified when and how XVLG1 functions in the formation of the germ cells. To gain a better understanding of the molecular mechanisms underlying XVLG1 during PGC development, we injected XVLG1 morpholino oligos into germ-plasm containing blastomeres of 32-cell stage of Xenopus embryos, and traced cell fates of the injected blastomere-derived PGCs. As a result of this procedure, migration of the PGCs was impaired and the number of PGCs derived from the blastomeres was significantly decreased. In addition, TUNEL staining in combination with in situ hybridization revealed that the loss of PGCs peaked at stage 27 was caused by apoptosis. This data strongly suggests an essential role for XVLG1 in migration and survival of the germ cells.
Collapse
Affiliation(s)
- Kazumi Shimaoka
- 1 Department of Biological Function, Faculty of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-0022, Japan
| | - Yoshiko Mukumoto
- 1 Department of Biological Function, Faculty of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-0022, Japan.,2 Genetic Engineering Team, RIKEN Center for Life Science Technologies, Minatojimaminamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Yoko Tanigawa
- 1 Department of Biological Function, Faculty of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-0022, Japan
| | - Tohru Komiya
- 1 Department of Biological Function, Faculty of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-0022, Japan
| |
Collapse
|
25
|
Schudrowitz N, Takagi S, Wessel GM, Yajima M. Germline factor DDX4 functions in blood-derived cancer cell phenotypes. Cancer Sci 2017; 108:1612-1619. [PMID: 28612512 PMCID: PMC5543511 DOI: 10.1111/cas.13299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
DDX4 (the human ortholog of Drosophila Vasa) is an RNA helicase and is present in the germ lines of all metazoans tested. It was historically thought to be expressed specifically in germline, but with additional organisms studied, it is now clear that in some animals DDX4/Vasa functions outside of the germline, in a variety of somatic cells in the embryo and in the adult. In this report, we document that DDX4 is widely expressed in soma-derived cancer cell lines, including myeloma (IM-9) and leukemia (THP-1) cells. In these cells, the DDX4 protein localized to the mitotic spindle, consistent with findings in other somatic cell functions, and its knockout in IM-9 cells compromised cell proliferation and migration activities, and downregulated several cell cycle/oncogene factors such as CyclinB and the transcription factor E2F1. These results suggest that DDX4 positively regulates cell cycle progression of diverse somatic-derived blood cancer cells, implying its broad contributions to the cancer cell phenotype and serves as a potential new target for chemotherapy.
Collapse
Affiliation(s)
- Natalie Schudrowitz
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Satoshi Takagi
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
26
|
Oulhen N, Heyland A, Carrier TJ, Zazueta-Novoa V, Fresques T, Laird J, Onorato TM, Janies D, Wessel G. Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. Mech Dev 2016; 142:10-21. [PMID: 27555501 PMCID: PMC5154901 DOI: 10.1016/j.mod.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Some metazoa have the capacity to regenerate lost body parts. This phenomenon in adults has been classically described in echinoderms, especially in sea stars (Asteroidea). Sea star bipinnaria larvae can also rapidly and effectively regenerate a complete larva after surgical bisection. Understanding the capacity to reverse cell fates in the larva is important from both a developmental and biomedical perspective; yet, the mechanisms underlying regeneration in echinoderms are poorly understood. RESULTS Here, we describe the process of bipinnaria regeneration after bisection in the bat star Patiria miniata. We tested transcriptional, translational, and cell proliferation activity after bisection in anterior and posterior bipinnaria halves as well as expression of SRAP, reported as a sea star regeneration associated protease (Vickery et al., 2001b). Moreover, we found several genes whose transcripts increased in abundance following bisection, including: Vasa, dysferlin, vitellogenin 1 and vitellogenin 2. CONCLUSION These results show a transformation following bisection, especially in the anterior halves, of cell fate reassignment in all three germ layers, with clear and predictable changes. These results define molecular events that accompany the cell fate changes coincident to the regenerative response in echinoderm larvae.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA
| | - Andreas Heyland
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA; University of Guelph, Integrative Biology, Canada.
| | - Tyler J Carrier
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA; University of North Carolina at Charlotte, Department of Biological Sciences, USA
| | | | - Tara Fresques
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA
| | - Jessica Laird
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA
| | | | - Daniel Janies
- University of North Carolina at Charlotte, Department of Bioinformatics and Genomics, USA
| | - Gary Wessel
- Brown University, Molecular Biology, Cell Biology, and Biochemistry, USA.
| |
Collapse
|
27
|
Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database. J Proteomics 2016; 150:281-289. [PMID: 27705816 DOI: 10.1016/j.jprot.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/10/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Insecticide resistance is an increasingly global problem that hampers pest control. We sought the mechanism responsible for survival following pyrethroid treatment and the factors connected to paralysis/death of the pollen beetle Meligethes aeneus through a proteome-level analysis using nanoLC coupled with Orbitrap Fusion™ Tribrid™ mass spectrometry. A tolerant field population of beetles was treated with deltamethrin, and the ensuing proteome changes were observed in the survivors (resistant), dead (paralyzed) and control-treated beetles. The protein database consisted of the translated transcriptome, and the resulting changes were manually annotated via BLASTP. We identified a number of high-abundance changes in which there were several dominant proteins, e.g., the electron carrier cytochrome b5, ribosomal proteins 60S RPL28, 40S RPS23 and RPS26, eIF4E-transporter, anoxia up-regulated protein, 2 isoforms of vitellogenin and pathogenesis-related protein 5. Deltamethrin detoxification was influenced by different cytochromes P450, which were likely boosted by increased cytochrome b5, but glutathione-S-transferase ε and UDP-glucuronosyltransferases also contributed. Moreover, we observed changes in proteins related to RNA interference, RNA binding and epigenetic modifications. The high changes in ribosomal proteins and associated factors suggest specific control of translation. Overall, we showed modulation of expression processes by epigenetic markers, alternative splicing and translation. Future functional studies will benefit. BIOLOGICAL SIGNIFICANCE Insects develop pesticide resistance, which has become one of the key issues in plant protection. This growing resistance increases the demand for pesticide applications and the development of new substances. Knowledge in the field regarding the resistance mechanism and its responses to pesticide treatment provides us the opportunity to propose a solution for this issue. Although the pollen beetle Meligethes aeneus was effectively controlled with pyrethroids for many years, there have been reports of increasing resistance. We show protein changes including production of isoforms in response to deltamethrin at the protein level. These results illustrate the insect's survival state as a resistant beetle and in its paralyzed state (evaluated as dead) relative to resistant individuals.
Collapse
|
28
|
Fresques T, Swartz SZ, Juliano C, Morino Y, Kikuchi M, Akasaka K, Wada H, Yajima M, Wessel GM. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification. Evol Dev 2016; 18:267-78. [PMID: 27402572 PMCID: PMC4943673 DOI: 10.1111/ede.12197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution.
Collapse
Affiliation(s)
- Tara Fresques
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - S. Zachary Swartz
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - Celina Juliano
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis CA 95616
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mani Kikuchi
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Koajiro 1024, Misaki, Miura 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Koajiro 1024, Misaki, Miura 238-0225, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| |
Collapse
|
29
|
Poon J, Wessel GM, Yajima M. An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis. Dev Biol 2016; 415:24-32. [PMID: 27179696 PMCID: PMC4902722 DOI: 10.1016/j.ydbio.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Growing evidence in diverse organisms shows that genes originally thought to function uniquely in the germ line may also function in somatic cells, and in some cases even contribute to tumorigenesis. Here we review the somatic functions of Vasa, one of the most conserved "germ line" factors among metazoans. Vasa expression in somatic cells is tightly regulated and often transient during normal development, and appears to play essential roles in regulation of embryonic cells and regenerative tissues. Its dysregulation, however, is believed to be an important element of tumorigenic cell regulation. In this perspectives paper, we propose how some conserved functions of Vasa may be selected for somatic cell regulation, including its potential impact on efficient and localized translational activities and in some cases on cellular malfunctioning and tumorigenesis.
Collapse
Affiliation(s)
- Jessica Poon
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA.
| |
Collapse
|
30
|
Chassé H, Mulner-Lorillon O, Boulben S, Glippa V, Morales J, Cormier P. Cyclin B Translation Depends on mTOR Activity after Fertilization in Sea Urchin Embryos. PLoS One 2016; 11:e0150318. [PMID: 26962866 PMCID: PMC4786324 DOI: 10.1371/journal.pone.0150318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein). PP242 inhibits global protein synthesis, delays cyclin B accumulation, cyclin B/CDK1 complex activation and consequently entry into the mitotic phase of the cell cycle triggered by fertilization. PP242 inhibits cyclin B mRNA recruitment into active polysomes triggered by fertilization. An amount of cyclin B mRNA present in active polysomes appears to be insensitive to PP242 treatment. Taken together, our results suggest that, following sea urchin egg fertilization, cyclin B mRNA translation is controlled by two independent mechanisms: a PP242-sensitive and an additional PP242-insentitive mechanism.
Collapse
Affiliation(s)
- Héloïse Chassé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Odile Mulner-Lorillon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- * E-mail: (PC); (JM); (OML)
| | - Sandrine Boulben
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Virginie Glippa
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| | - Julia Morales
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- * E-mail: (PC); (JM); (OML)
| | - Patrick Cormier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
- * E-mail: (PC); (JM); (OML)
| |
Collapse
|
31
|
Abstract
Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patchwork quilt of our understanding of germ line formation during embryogenesis.
Collapse
Affiliation(s)
- Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
32
|
Yakovlev KV. Localization of germ plasm-related structures during sea urchin oogenesis. Dev Dyn 2015; 245:56-66. [PMID: 26385846 DOI: 10.1002/dvdy.24348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/12/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Animal germ cells have specific organelles that are similar to ribonucleoprotein complex, called germ plasm, which is accumulated in eggs. Germ plasm is essential for inherited mechanism of germ line segregation in early embryogenesis. Sea urchins have early germ line segregation in early embryogenesis. Nevertheless, organization of germ plasm-related organelles and their molecular composition are still unclear. Another issue is whether maternally accumulated germ plasm exists in the sea urchin eggs. RESULTS I analyzed intracellular localization of germ plasm during oogenesis in sea urchin Strongylocentrotus intermedius by using morphological approach and immunocytochemical detection of Vasa, a germ plasm marker. All ovarian germ cells have germ plasm-related organelles in the form of germ granules, Balbiani bodies, and perinuclear nuage found previously in germ cells in other animals. Maternal germ plasm is accumulated in late oogenesis at the cell periphery. Cytoskeletal drug treatment showed an association of Vasa-positive granules with actin filaments in the egg cortex. CONCLUSIONS All female germ cells of sea urchins have germ plasm-related organelles. Eggs have a maternally accumulated germ plasm associated with cortical cytoskeleton. These findings correlate with early segregation of germ line in sea urchins.
Collapse
Affiliation(s)
- Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
33
|
Abstract
With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their life cycle. Despite this near-universal requirement for sexual reproduction, there exists an incredible diversity in germ line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, nonreproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes--germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here, we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early--at the 32-cell stage--and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal-to-embryonic transition. We collectively refer to this model as the Time Capsule method for germ line determination.
Collapse
Affiliation(s)
- S Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA
| | - Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
34
|
Yajima M, Wessel GM. Essential elements for translation: the germline factor Vasa functions broadly in somatic cells. Development 2015; 142:1960-70. [PMID: 25977366 PMCID: PMC4460737 DOI: 10.1242/dev.118448] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/30/2015] [Indexed: 01/23/2023]
Abstract
Vasa is a conserved RNA-helicase found in the germ lines of all metazoans tested. Whereas Vasa presence is often indicated as a metric for germline determination in animals, it is also expressed in stem cells of diverse origin. Recent research suggests, however, that Vasa has a much broader function, including a significant role in cell cycle regulation. Results herein indicate that Vasa is utilized widely, and often induced transiently, during development in diverse somatic cells and adult precursor tissues. We identified that Vasa in the sea urchin is essential for: (1) general mRNA translation during embryogenesis, (2) developmental re-programming upon manipulations to the embryo and (3) larval wound healing. We also learned that Vasa interacted with mRNAs in the perinuclear area and at the spindle in an Importin-dependent manner during cell cycle progression. These results suggest that, when present, Vasa functions are essential to contributing to developmental regulation.
Collapse
Affiliation(s)
- Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| |
Collapse
|
35
|
Milani L, Maurizii MG. Vasa expression in spermatogenic cells during the reproductive-cycle phases ofPodarcis sicula(Reptilia, Lacertidae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:424-34. [DOI: 10.1002/jez.b.22628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/02/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Liliana Milani
- Department of Scienze Biologiche; Geologiche ed Ambientali, University of Bologna; Bologna Italy
| | - Maria Gabriella Maurizii
- Department of Scienze Biologiche; Geologiche ed Ambientali, University of Bologna; Bologna Italy
| |
Collapse
|
36
|
Stewart MJ, Stewart P, Rivera-Posada J. De novo assembly of the transcriptome ofAcanthaster plancitestes. Mol Ecol Resour 2014; 15:953-66. [DOI: 10.1111/1755-0998.12360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Michael James Stewart
- Genecology Research Centre; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Queensland 4558 Australia
| | - Praphaporn Stewart
- Genecology Research Centre; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Queensland 4558 Australia
| | - Jairo Rivera-Posada
- ARC Centre of Excellence for Coral Reefs Studies; James Cook University; Townsville Queensland 4812 Australia
- Australian Institute of Marine Science; PMB No. 3 Townsville Queensland 4810 Australia
| |
Collapse
|
37
|
Hartung O, Forbes MM, Marlow FL. Zebrafish vasa is required for germ-cell differentiation and maintenance. Mol Reprod Dev 2014; 81:946-61. [PMID: 25257909 PMCID: PMC4198436 DOI: 10.1002/mrd.22414] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
Vasa is a universal marker of the germ line in animals, yet mutations disrupting vasa cause sexually dimorphic infertility, with impaired development of the ovary in some animals and the testis in others. The basis for this sexually dimorphic requirement for Vasa is not clear; in most animals examined, both the male and female gonad express vasa throughout the life of the germ line. Here we characterized a loss-of-function mutation disrupting zebrafish vasa. We show that maternally provided Vasa is stable through the first ten days of development in zebrafish, and thus likely fulfills any early roles for Vasa during germ-line specification, migration, survival, and maintenance. Although zygotic Vasa is not essential for the development of juvenile gonads, vasa mutants develop exclusively as sterile males. Furthermore, phenotypes of vasa;p53 compound mutants are indistinguishable from those of vasa mutants, therefore the failure of vasa mutants to differentiate as females and to support germ-cell development in the testis is not due to p53-mediated apoptosis. Instead, we found that failure to progress beyond the pachytene stage of meiosis causes the loss of germ-line stem cells, leaving empty somatic tubules. Our studies provide insight into the function of zebrafish vasa during female meiosis, differentiation, and maintenance of germ-line stem cells.
Collapse
Affiliation(s)
- Odelya Hartung
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine. Yeshiva University. Bronx, NY (USA)
| | - Meredyth M. Forbes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine. Yeshiva University. Bronx, NY (USA)
| | - Florence L. Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine. Yeshiva University. Bronx, NY (USA)
- Department of Neuroscience. Albert Einstein College of Medicine. Yeshiva University. Bronx, NY (USA)
| |
Collapse
|
38
|
Schwager EE, Meng Y, Extavour CG. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Dev Biol 2014; 402:276-90. [PMID: 25257304 DOI: 10.1016/j.ydbio.2014.08.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 08/13/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Yue Meng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA.
| |
Collapse
|
39
|
Paz-Gómez D, Villanueva-Chimal E, Navarro RE. The DEAD Box RNA helicase VBH-1 is a new player in the stress response in C. elegans. PLoS One 2014; 9:e97924. [PMID: 24844228 PMCID: PMC4028217 DOI: 10.1371/journal.pone.0097924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/25/2014] [Indexed: 12/29/2022] Open
Abstract
For several years, DEAD box RNA helicase Vasa (DDX4) has been used as a bona fide germline marker in different organisms. C. elegans VBH-1 is a close homolog of the Vasa protein, which plays an important role in gametogenesis, germ cell survival and embryonic development. Here, we show that VBH-1 protects nematodes from heat shock and oxidative stress. Using the germline-defective mutant glp-4(bn2) we found that a potential somatic expression of vbh-1 might be important for stress survival. We also show that the VBH-1 paralog LAF-1 is important for stress survival, although this protein is not redundant with its counterpart. Furthermore, we observed that the mRNAs of the heat shock proteins hsp-1 and sip-1 are downregulated when vbh-1 or laf-1 are silenced. Previously, we reported that in C. elegans, VBH-1 was primarily expressed in P granules of germ cells and in the cytoplasm of all blastomeres. Here we show that during stress, VBH-1 co-localizes with CGH-1 in large aggregates in the gonad core and oocytes; however, VBH-1 aggregates do not overlap with CGH-1 foci in early embryos under the same conditions. These data demonstrate that, in addition to the previously described role for this protein in the germline, VBH-1 plays an important role during the stress response in C. elegans through the potential direct or indirect regulation of stress response mRNAs.
Collapse
Affiliation(s)
- Daniel Paz-Gómez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Emmanuel Villanueva-Chimal
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
40
|
Yajima M, Gustafson EA, Song JL, Wessel GM. Piwi regulates Vasa accumulation during embryogenesis in the sea urchin. Dev Dyn 2014; 243:451-8. [PMID: 24218044 PMCID: PMC4018429 DOI: 10.1002/dvdy.24096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/29/2013] [Accepted: 11/07/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Piwi proteins are essential for germ line development, stem cell maintenance, and more recently found to function in epigenetic and somatic gene regulation. In the sea urchin Strongylocentrotus purpuratus, two Piwi proteins, Seawi and Piwi-like1, have been identified, yet their functional contributions have not been reported. RESULTS Here we found that Seawi protein was localized uniformly in the early embryo and then became enriched in the primordial germ cells (PGCs) (the small micromere lineage) from blastula stage and thereafter. Morpholino knockdown of Sp-seawi diminished PGC-specific localization of Seawi proteins, and altered expression of other germ line markers such as Vasa and Gustavus, but had no effect on Nanos. Furthermore, Seawi knockdown transiently resulted in Vasa positive cell proliferation in the right coelomic pouch that appear to be derived from the small micromere lineage, yet they quickly disappeared with an indication of apoptosis by larval stage. Severe Seawi knockdown resulted in an increased number of apoptotic cells in the entire gut area. CONCLUSION Piwi proteins appear to regulate PGC proliferation perhaps through control of Vasa accumulation. In this organism, Piwi is likely regulating mRNAs, not just transposons, and is potentially functioning both inside and outside of the germ line during embryogenesis.
Collapse
Affiliation(s)
- Mamiko Yajima
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Eric A. Gustafson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | | | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| |
Collapse
|
41
|
Mani SR, Juliano CE. Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 2013; 80:632-64. [PMID: 23712694 DOI: 10.1002/mrd.22195] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Small RNAs impact several cellular processes through gene regulation. Argonaute proteins bind small RNAs to form effector complexes that control transcriptional and post-transcriptional gene expression. PIWI proteins belong to the Argonaute protein family, and bind PIWI-interacting RNAs (piRNAs). They are highly abundant in the germline, but are also expressed in some somatic tissues. The PIWI/piRNA pathway has a role in transposon repression in Drosophila, which occurs both by epigenetic regulation and post-transcriptional degradation of transposon mRNAs. These functions are conserved, but clear differences in the extent and mechanism of transposon repression exist between species. Mutations in piwi genes lead to the upregulation of transposon mRNAs. It is hypothesized that this increased transposon mobilization leads to genomic instability and thus sterility, although no causal link has been established between transposon upregulation and genome instability. An alternative scenario could be that piwi mutations directly affect genomic instability, and thus lead to increased transposon expression. We propose that the PIWI/piRNA pathway controls genome stability in several ways: suppression of transposons, direct regulation of chromatin architecture and regulation of genes that control important biological processes related to genome stability. The PIWI/piRNA pathway also regulates at least some, if not many, protein-coding genes, which further lends support to the idea that piwi genes may have broader functions beyond transposon repression. An intriguing possibility is that the PIWI/piRNA pathway is using transposon sequences to coordinate the expression of large groups of genes to regulate cellular function.
Collapse
Affiliation(s)
- Sneha Ramesh Mani
- Yale Stem Cell Center, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
42
|
Seervai RNH, Wessel GM. Lessons for inductive germline determination. Mol Reprod Dev 2013; 80:590-609. [PMID: 23450642 DOI: 10.1002/mrd.22151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022]
Abstract
Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates-two of the milestones of reproduction and development-in which animals use contrasting strategies to activate similar pathways.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02192, USA
| | | |
Collapse
|
43
|
Yajima M, Suglia E, Gustafson EA, Wessel GM. Meiotic gene expression initiates during larval development in the sea urchin. Dev Dyn 2013; 242:155-63. [PMID: 23172739 PMCID: PMC3553291 DOI: 10.1002/dvdy.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Meiosis is a unique mechanism in gamete production and a fundamental process shared by all sexually reproducing eukaryotes. Meiosis requires several specialized and highly conserved genes whose expression can also identify the germ cells undergoing gametogenic differentiation. Sea urchins are echinoderms, which form a phylogenetic sister group of chordates. Sea urchin embryos undergo a feeding, planktonic larval phase in which they construct an adult rudiment prior to metamorphosis. Although a series of conserved meiosis genes (e.g., dmc1, msh5, rad21, rad51, and sycp1) is expressed in sea urchin oocytes, we sought to determine when in development meiosis would first be initiated. RESULTS We surveyed the expression of several meiotic genes and their corresponding proteins in the sea urchin Strongylocentrotus purpuratus. Surprisingly, meiotic genes are highly expressed not only in ovaries but beginning in larvae. Both RNA and protein localizations strongly suggest that meiotic gene expression initiates in tissues that will eventually give rise to the adult rudiment of the late larva. CONCLUSIONS These results demonstrate that broad expression of the molecules associated with meiotic differentiation initiates prior to metamorphosis and may have additional functions in these cells, or mechanisms repressing their function, until later in development when gametogenesis begins.
Collapse
Affiliation(s)
- Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Elena Suglia
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Eric A. Gustafson
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M. Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| |
Collapse
|
44
|
Solana J. Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. EvoDevo 2013; 4:2. [PMID: 23294912 PMCID: PMC3599645 DOI: 10.1186/2041-9139-4-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/04/2012] [Indexed: 01/14/2023] Open
Abstract
Background Germline determination is believed to occur by either preformation or epigenesis. Animals that undergo germ cell specification by preformation have a continuous germline. However, animals with germline determination by epigenesis have a discontinuous germline, with somatic cells intercalated. This vision is contrary to August Weismann’s Germ Plasm Theory and has led to several controversies. Recent data from metazoans as diverse as planarians, annelids and sea urchins reveal the presence of pluripotent stem cell populations that express germ plasm components, despite being considered to be somatic. These data also show that germ plasm is continuous in some of these animals, despite their discontinuous germline. Presentation of the hypothesis Here, based on recent molecular data on germ plasm components, I revise the germline concept. I introduce the concept of primordial stem cells, which are evolutionarily conserved stem cells that carry germ plasm components from the zygote to the germ cells. These cells, delineated by the classic concept of the Weismann barrier, can contribute to different extents to somatic tissues or be present in a rudimentary state. The primordial stem cells are a part of the germline that can drive asexual reproduction. Testing the hypothesis Molecular information on the expression of germ plasm components is needed during early development of non-classic model organisms, with special attention to those capable of undergoing asexual reproduction and regeneration. The cell lineage of germ plasm component-containing cells will also shed light on their position with respect to the Weismann barrier. This information will help in understanding the germline and its associated stem cells across metazoan phylogeny. Implications of the hypothesis This revision of the germline concept explains the extensive similarities observed among stem cells and germline cells in a wide variety of animals, and predicts the expression of germ plasm components in many others. The life history of these animals can be simply explained by changes in the extent of self-renewal, proliferation and developmental potential of the primordial stem cells. The inclusion of the primordial stem cells as a part of the germline, therefore, solves many controversies and provides a continuous germline, just as originally envisaged by August Weismann.
Collapse
Affiliation(s)
- Jordi Solana
- Laboratory of Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
45
|
Yamaguchi T, Taguchi A, Watanabe K, Orii H. DEADSouth protein localizes to germ plasm and is required for the development of primordial germ cells in Xenopus laevis. Biol Open 2012; 2:191-9. [PMID: 23429978 PMCID: PMC3575653 DOI: 10.1242/bio.20123111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/11/2012] [Indexed: 12/26/2022] Open
Abstract
DEADSouth mRNA is a component of germ plasm in Xenopus laevis and encodes a DDX25 DEAD-box RNA helicase. To determine the intracellular localization of DEADSouth protein, we injected mRNA encoding DEADSouth tagged with mCherry fluorescent protein into fertilized eggs from transgenic Xenopus expressing EGFP fused with a mitochondrial targeting signal. The DEADSouth-mCherry fusion protein was localized to the germ plasm, a mitochondria-rich region in primordial germ cells (PGCs). DEADSouth overexpression resulted in a reduction of PGC numbers after stage 20. Conversely, DEADSouth knockdown using an antisense locked nucleic acid gapmer inhibited movement of the germ plasm from the cortex to the perinuclear region, resulting in inhibition of PGC division at stage 12 and a decrease in PGC numbers at later stages. The knockdown phenotype was rescued by intact DEADSouth mRNA, but not mutant mRNA encoding inactive DEADSouth helicase. Surprisingly, it was also rescued by mouse vasa homolog and Xenopus vasa-like gene 1 mRNAs that encode DDX4 RNA helicases. The rescue was dependent on the 3' untranslated region (3'UTR) of DEADSouth mRNA, which was used for PGC-specific expression. The 3'UTR contributed to localization of the injected mRNA to the germ plasm, resulting in effective localization of DEADSouth protein. These results demonstrate that localization of DEADSouth helicase to the germ plasm is required for proper PGC development in Xenopus laevis.
Collapse
Affiliation(s)
- Takeshi Yamaguchi
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun , Hyogo 678-1297 , Japan
| | | | | | | |
Collapse
|
46
|
Yajima M, Fairbrother WG, Wessel GM. ISWI contributes to ArsI insulator function in development of the sea urchin. Development 2012; 139:3613-22. [PMID: 22949616 DOI: 10.1242/dev.081828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulators are genomic elements that regulate transcriptional activity by forming chromatin boundaries. Various DNA insulators have been identified or are postulated in many organisms, and the paradigmatic CTCF-dependent insulators are perhaps the best understood and most widespread in function. The diversity of DNA insulators is, however, understudied, especially in the context of embryonic development, when many new gene territories undergo transitions in functionality. Here we report the functional analysis of the arylsulfatase insulator (ArsI) derived from the sea urchin, which has conserved insulator activity throughout the many metazoans tested, but for which the molecular mechanism of function is unknown. Using a rapid in vivo assay system and a high-throughput mega-shift assay, we identified a minimal region in ArsI that is responsible for its insulator function. We discovered a small set of proteins specifically bound to the minimal ArsI region, including ISWI, a known chromatin-remodeling protein. During embryogenesis, ISWI was found to interact with select ArsI sites throughout the genome, and when inactivated led to misregulation of select gene expression, loss of insulator activity and aberrant morphogenesis. These studies reveal a mechanistic basis for ArsI function in the gene regulatory network of early development.
Collapse
Affiliation(s)
- Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA.
| | | | | |
Collapse
|
47
|
Yajima M, Wessel GM. Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin. Development 2012; 139:3786-94. [PMID: 22991443 PMCID: PMC3445309 DOI: 10.1242/dev.082230] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2012] [Indexed: 01/22/2023]
Abstract
The process of germ line determination involves many conserved genes, yet is highly variable. Echinoderms are positioned at the base of Deuterostomia and are crucial to understanding these evolutionary transitions, yet the mechanism of germ line specification is not known in any member of the phyla. Here we demonstrate that small micromeres (SMics), which are formed at the fifth cell division of the sea urchin embryo, illustrate many typical features of primordial germ cell (PGC) specification. SMics autonomously express germ line genes in isolated culture, including selective Vasa protein accumulation and transcriptional activation of nanos; their descendants are passively displaced towards the animal pole by secondary mesenchyme cells and the elongating archenteron during gastrulation; Cadherin (G form) has an important role in their development and clustering phenotype; and a left/right integration into the future adult anlagen appears to be controlled by a late developmental mechanism. These results suggest that sea urchin SMics share many more characteristics typical of PGCs than previously thought, and imply a more widely conserved system of germ line development among metazoans.
Collapse
Affiliation(s)
- Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M. Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| |
Collapse
|
48
|
Renault AD. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster. Biol Open 2012; 1:1043-8. [PMID: 23213382 PMCID: PMC3507172 DOI: 10.1242/bio.20121909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/31/2012] [Indexed: 11/28/2022] Open
Abstract
Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.
Collapse
Affiliation(s)
- Andrew D Renault
- Max Planck Institute for Developmental Biology , Spemannstrasse 35, 72076 Tübingen , Germany
| |
Collapse
|
49
|
Zhao H, Hong N, Lu W, Zeng H, Song J, Hong Y. Fusion gene vectors allowing for simultaneous drug selection, cell labeling, and reporter assay in vitro and in vivo. Anal Chem 2012; 84:987-93. [PMID: 22081858 DOI: 10.1021/ac202541t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vector systems allowing simultaneously for rapid drug selection, cell labeling, and reporter assay are highly desirable in biomedical research including stem cell biology. Here, we present such a vector system including pCVpf or pCVpr, plasmids that express pf or pr, a fusion protein between puromycin acetyltransferase and green or red fluorescent protein from CV, the human cytomegalovirus enhancer/promoter. Transfection with pCVpf or pCVpr produced a ∼10% efficiency of gene transfer. A 2-day pulse puromycin selection resulted in ∼13-fold enrichment for transgenic cells, and continuous puromycin selection produced stable transgenic stem cell clones with retained pluripotency. Furthermore, we developed a PAC assay protocol for quantification of transgene expression. To test the usefulness for cell labeling and PAC assay in vivo, we constructed pVASpf containing pf linked to the regulatory sequence of medaka germ gene vasa and generated transgenic fish with visible GFP expression in germ cells. PAC assay revealed the highest expression in the testis. Interestingly, PAC activity was also detectable in somatic organs including the eye, which was validated by fluorescence in situ hybridization. Therefore, the pf and pr vectors provide a useful system for simultaneous drug selection, live labeling, and reporter assay in vitro and in vivo.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
"Germ granules" are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|