1
|
The crustacean Parhyale. Nat Methods 2022; 19:1015-1016. [PMID: 36068313 DOI: 10.1038/s41592-022-01596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Almazán A, Çevrim Ç, Musser JM, Averof M, Paris M. Crustacean leg regeneration restores complex microanatomy and cell diversity. SCIENCE ADVANCES 2022; 8:eabn9823. [PMID: 36001670 PMCID: PMC9401613 DOI: 10.1126/sciadv.abn9823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Animals can regenerate complex organs, yet this process frequently results in imprecise replicas of the original structure. In the crustacean Parhyale, embryonic and regenerating legs differ in gene expression dynamics but produce apparently similar mature structures. We examine the fidelity of Parhyale leg regeneration using complementary approaches to investigate microanatomy, sensory function, cellular composition, and cell molecular profiles. We find that regeneration precisely replicates the complex microanatomy and spatial distribution of external sensory organs and restores their sensory function. Single-nuclei sequencing shows that regenerated and uninjured legs are indistinguishable in terms of cell-type composition and transcriptional profiles. This remarkable fidelity highlights the ability of organisms to achieve identical outcomes via distinct processes.
Collapse
Affiliation(s)
- Alba Almazán
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Çağrı Çevrim
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Jacob M. Musser
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Centre National de la Recherche Scientifique (CNRS), École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, 69007 Lyon, France
| |
Collapse
|
3
|
Sinigaglia C, Almazán A, Lebel M, Sémon M, Gillet B, Hughes S, Edsinger E, Averof M, Paris M. Distinct gene expression dynamics in developing and regenerating crustacean limbs. Proc Natl Acad Sci U S A 2022; 119:e2119297119. [PMID: 35776546 PMCID: PMC9271199 DOI: 10.1073/pnas.2119297119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/14/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerating animals have the ability to reproduce body parts that were originally made in the embryo and subsequently lost due to injury. Understanding whether regeneration mirrors development is an open question in most regenerative species. Here, we take a transcriptomics approach to examine whether leg regeneration shows similar temporal patterns of gene expression as leg development in the embryo, in the crustacean Parhyale hawaiensis. We find that leg development in the embryo shows stereotypic temporal patterns of gene expression. In contrast, the dynamics of gene expression during leg regeneration show a higher degree of variation related to the physiology of individual animals. A major driver of this variation is the molting cycle. We dissect the transcriptional signals of individual physiology and regeneration to obtain clearer temporal signals marking distinct phases of leg regeneration. Comparing the transcriptional dynamics of development and regeneration we find that, although the two processes use similar sets of genes, the temporal patterns in which these genes are deployed are different and cannot be systematically aligned.
Collapse
Affiliation(s)
- Chiara Sinigaglia
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Alba Almazán
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Marie Lebel
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Marie Sémon
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, 69364 Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| |
Collapse
|
4
|
Paris M, Wolff C, Patel NH, Averof M. The crustacean model Parhyale hawaiensis. Curr Top Dev Biol 2022; 147:199-230. [PMID: 35337450 DOI: 10.1016/bs.ctdb.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.
Collapse
Affiliation(s)
- Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France
| | - Carsten Wolff
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, United States; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France.
| |
Collapse
|
5
|
Oda H, Iwasaki-Yokozawa S, Usui T, Akiyama-Oda Y. Experimental duplication of bilaterian body axes in spider embryos: Holm's organizer and self-regulation of embryonic fields. Dev Genes Evol 2020; 230:49-63. [PMID: 30972574 PMCID: PMC7128006 DOI: 10.1007/s00427-019-00631-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Bilaterally symmetric body plans of vertebrates and arthropods are defined by a single set of two orthogonal axes, the anterior-posterior (or head-tail) and dorsal-ventral axes. In vertebrates, and especially amphibians, complete or partial doubling of the bilaterian body axes can be induced by two different types of embryological manipulations: transplantation of an organizer region or bi-sectioning of an embryo. Such axis doubling relies on the ability of embryonic fields to flexibly respond to the situation and self-regulate toward forming a whole body. This phenomenon has facilitated experimental efforts to investigate the mechanisms of vertebrate body axes formation. However, few studies have addressed the self-regulatory capabilities of embryonic fields associated with body axes formation in non-vertebrate bilaterians. The pioneer spider embryologist Åke Holm reported twinning of spider embryos induced by both types of embryological manipulations in 1952; yet, his experiments have not been replicated by other investigators, and access to spider or non-vertebrate twins has been limited. In this review, we provide a historical background on twinning experiments in spiders, and an overview of current twinning approaches in familiar spider species and related molecular studies. Moreover, we discuss the benefits of the spider model system for a deeper understanding of the ancestral mechanisms of body axes formation in arthropods, as well as in bilaterians.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | | | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
6
|
Xu S, Pham T, Neupane S. Delivery methods for CRISPR/Cas9 gene editing in crustaceans. MARINE LIFE SCIENCE & TECHNOLOGY 2020; 2:1-5. [PMID: 33313574 PMCID: PMC7731668 DOI: 10.1007/s42995-019-00011-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/12/2019] [Indexed: 06/12/2023]
Abstract
In this mini-review we provide an up-to-date overview of the delivery methods that have been used for CRISPR/Cas9 genomic editing in crustacean species. With embryonic microinjection as the main workforce for delivering CRISPR/Cas9 reagents, biologists working with crustacean species have to tackle the technical challenges involved in microinjection. We use examples of three crustacean species (the branchiopod Daphnia, amphipod Parhyale hawaiensis, and decapod Exopalaemon carinicauda) to provide a technical guide for embryonic microinjection. Moreover, we outline two potentially useful new techniques for delivering CRISPR/Cas9 components into crustaceans, i.e., Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and electroporation.
Collapse
Affiliation(s)
- Sen Xu
- Corresponding author: Sen Xu, 501 S. Nedderman Dr, Arlington, Texas 76019, USA. Phone: 812-272-3986.
| | | | | |
Collapse
|
7
|
Protein trap: a new Swiss army knife for geneticists? Mol Biol Rep 2019; 47:1445-1458. [PMID: 31728729 DOI: 10.1007/s11033-019-05181-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
The protein trap is a powerful tool for genetic and biochemical studies of gene function in the animal kingdom. Although the original protein trap was developed for flies, it can be easily adapted to other multicellular organisms, both known models and ones with an unsequenced genome. The protein trap has been successfully applied to the fruit fly, crustaceans Parhyale hawaiensis, zebrafish, and insect and animal cell cultures. This approach is based on the integration into genes of an artificial exon that carries DNA encoding a fluorescent marker, standardized immunoepitopes, an integrase docking site, and splice acceptor and donor sites. The protein trap for cell cultures additionally contains an antibiotic resistance gene, which facilitates the selection of trapped clones. Resulting chimeric tagged mRNAs can be interfered by dsRNA against GFP (iGFPi-in vivo GFP interference), or the chimeric proteins can be efficiently knocked down by deGradFP technology. Both RNA and protein knockdowns produce a strong loss of function phenotype in tagged cells. The fluorescent and protein affinity tags can be used for tagged protein localisation within the cell and for identifying their binding partners in their native complexes. Insertion into protein trap integrase docking sites allows the replacement of trap contents by any new constructs, including other markers, cell toxins, stop-codons, and binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS, that reliably reflect endogenous gene expression. A distinctive feature of the protein trap approach is that all manipulations with a gene or its product occur only in the endogenous locus, which cannot be achieved by any other method.
Collapse
|
8
|
Wittfoth C, Harzsch S, Wolff C, Sombke A. The "amphi"-brains of amphipods: new insights from the neuroanatomy of Parhyale hawaiensis (Dana, 1853). Front Zool 2019; 16:30. [PMID: 31372174 PMCID: PMC6660712 DOI: 10.1186/s12983-019-0330-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Over the last years, the amphipod crustacean Parhyale hawaiensis has developed into an attractive marine animal model for evolutionary developmental studies that offers several advantages over existing experimental organisms. It is easy to rear in laboratory conditions with embryos available year-round and amenable to numerous kinds of embryological and functional genetic manipulations. However, beyond these developmental and genetic analyses, research on the architecture of its nervous system is fragmentary. In order to provide a first neuroanatomical atlas of the brain, we investigated P. hawaiensis using immunohistochemical labelings combined with laser-scanning microscopy, X-ray microcomputed tomography, histological sectioning and 3D reconstructions. RESULTS As in most amphipod crustaceans, the brain is dorsally bent out of the body axis with downward oriented lateral hemispheres of the protocerebrum. It comprises almost all prominent neuropils that are part of the suggested ground pattern of malacostracan crustaceans (except the lobula plate and projection neuron tract neuropil). Beyond a general uniformity of these neuropils, the brain of P. hawaiensis is characterized by an elaborated central complex and a modified lamina (first order visual neuropil), which displays a chambered appearance. In the light of a recent analysis on photoreceptor projections in P. hawaiensis, the observed architecture of the lamina corresponds to specialized photoreceptor terminals. Furthermore, in contrast to previous descriptions of amphipod brains, we suggest the presence of a poorly differentiated hemiellipsoid body and an inner chiasm and critically discuss these aspects. CONCLUSIONS Despite a general uniformity of amphipod brains, there is also a certain degree of variability in architecture and size of different neuropils, reflecting various ecologies and life styles of different species. In contrast to other amphipods, the brain of P. hawaiensis does not display any striking modifications or bias towards processing one particular sensory modality. Thus, we conclude that this brain represents a common type of an amphipod brain. Considering various established protocols for analyzing and manipulating P. hawaiensis, this organism is a suitable model to gain deeper understanding of brain anatomy e.g. by using connectome approaches, and this study can serve as first solid basis for following studies.
Collapse
Affiliation(s)
- Christin Wittfoth
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Carsten Wolff
- Department of Biology, Comparative Zoology, Humboldt University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andy Sombke
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
9
|
Sun DA, Patel NH. The amphipod crustacean Parhyale hawaiensis: An emerging comparative model of arthropod development, evolution, and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e355. [PMID: 31183976 PMCID: PMC6772994 DOI: 10.1002/wdev.355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Recent advances in genetic manipulation and genome sequencing have paved the way for a new generation of research organisms. The amphipod crustacean Parhyale hawaiensis is one such system. Parhyale are easy to rear and offer large broods of embryos amenable to injection, dissection, and live imaging. Foundational work has described Parhyale embryonic development, while advancements in genetic manipulation using CRISPR-Cas9 and other techniques, combined with genome and transcriptome sequencing, have enabled its use in studies of arthropod development, evolution, and regeneration. This study introduces Parhyale development and life history, a catalog of techniques and resources for Parhyale research, and two case studies illustrating its power as a comparative research system. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Dennis A Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Nipam H Patel
- Marine Biological Laboratory, University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Lai AG, Aboobaker AA. EvoRegen in animals: Time to uncover deep conservation or convergence of adult stem cell evolution and regenerative processes. Dev Biol 2018; 433:118-131. [PMID: 29198565 DOI: 10.1016/j.ydbio.2017.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023]
Abstract
How do animals regenerate specialised tissues or their entire body after a traumatic injury, how has this ability evolved and what are the genetic and cellular components underpinning this remarkable feat? While some progress has been made in understanding mechanisms, relatively little is known about the evolution of regenerative ability. Which elements of regeneration are due to lineage specific evolutionary novelties or have deeply conserved roots within the Metazoa remains an open question. The renaissance in regeneration research, fuelled by the development of modern functional and comparative genomics, now enable us to gain a detailed understanding of both the mechanisms and evolutionary forces underpinning regeneration in diverse animal phyla. Here we review existing and emerging model systems, with the focus on invertebrates, for studying regeneration. We summarize findings across these taxa that tell us something about the evolution of adult stem cell types that fuel regeneration and the growing evidence that many highly regenerative animals harbor adult stem cells with a gene expression profile that overlaps with germline stem cells. We propose a framework in which regenerative ability broadly evolves through changes in the extent to which stem cells generated through embryogenesis are maintained into the adult life history.
Collapse
Affiliation(s)
- Alvina G Lai
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - A Aziz Aboobaker
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
11
|
Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Sémon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Eisen MB, Extavour C, Browne WE, Wolff C, Averof M, Patel NH, Sarkies P, Pavlopoulos A, Aboobaker A. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 2016; 5:20062. [PMID: 27849518 PMCID: PMC5111886 DOI: 10.7554/elife.20062] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source. DOI:http://dx.doi.org/10.7554/eLife.20062.001 The marine crustacean known as Parhyale hawaiensis is related to prawns, shrimps and crabs and is found at tropical coastlines around the world. This species has recently attracted scientific interest as a possible new model to study how animal embryos develop before birth and, because Parhyale can rapidly regrow lost limbs, how tissues and organs regenerate. Indeed, Parhyale has many characteristics that make it a good model organism, being small, fast-growing and easy to keep and care for in the laboratory. Several research tools have already been developed to make it easier to study Parhyale. This includes the creation of a system for using the popular gene editing technology, CRISPR, in this animal. However, one critical resource that is available for most model organisms was missing; the complete sequence of all the genetic information of this crustacean, also known as its genome, was not available. Kao, Lai, Stamataki et al. have now compiled the Parhyale genome – which is slightly larger than the human genome – and studied its genetics. Analysis revealed that Parhyale has genes that allow it to fully digest plant material. This is unusual because most animals that do this rely upon the help of bacteria. Kao, Lai, Stamataki et al. also identified genes that provide some of the first insights into the immune system of crustaceans, which protects these creatures from diseases. Kao, Lai, Stamataki et al. have provided a resource and findings that could help to establish Parhyale as a popular model organism for studying several ideas in biology, including organ regeneration and embryonic development. Understanding how Parhyale digests plant matter, for example, could progress the biofuel industry towards efficient production of greener energy. Insights from its immune system could also be adapted to make farmed shrimp and prawns more resistant to infections, boosting seafood production. DOI:http://dx.doi.org/10.7554/eLife.20062.002
Collapse
Affiliation(s)
- Damian Kao
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Alvina G Lai
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Evangelia Stamataki
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Silvana Rosic
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.,Clinical Sciences, Imperial College London, London, United Kingdom
| | - Nikolaos Konstantinides
- Institut de Gé nomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique (CNRS) and É cole Normale Supé rieure de Lyon, Lyon, France
| | - Erin Jarvis
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | | | | | - Marie Sémon
- Institut de Gé nomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique (CNRS) and É cole Normale Supé rieure de Lyon, Lyon, France
| | - Marco Grillo
- Institut de Gé nomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique (CNRS) and É cole Normale Supé rieure de Lyon, Lyon, France
| | - Heather Bruce
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Suyash Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Andy Le
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Andrew Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Michael B Eisen
- Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Cassandra Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - William E Browne
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, United States
| | - Carsten Wolff
- Vergleichende Zoologie, Institut fur Biologie,Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Michalis Averof
- Institut de Gé nomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique (CNRS) and É cole Normale Supé rieure de Lyon, Lyon, France
| | - Nipam H Patel
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Peter Sarkies
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.,Clinical Sciences, Imperial College London, London, United Kingdom
| | | | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Alwes F, Enjolras C, Averof M. Live imaging reveals the progenitors and cell dynamics of limb regeneration. eLife 2016; 5. [PMID: 27776632 PMCID: PMC5079749 DOI: 10.7554/elife.19766] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023] Open
Abstract
Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg.
Collapse
Affiliation(s)
- Frederike Alwes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| | - Camille Enjolras
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| |
Collapse
|
13
|
Grillo M, Konstantinides N, Averof M. Old questions, new models: unraveling complex organ regeneration with new experimental approaches. Curr Opin Genet Dev 2016; 40:23-31. [DOI: 10.1016/j.gde.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
14
|
Non-insect crustacean models in developmental genetics including an encomium to Parhyale hawaiensis. Curr Opin Genet Dev 2016; 39:149-156. [PMID: 27475080 DOI: 10.1016/j.gde.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/25/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022]
Abstract
The impressive diversity of body plans, lifestyles and segmental specializations exhibited by crustaceans (barnacles, copepods, shrimps, crabs, lobsters and their kin) provides great material to address longstanding questions in evolutionary developmental biology. Recent advances in forward and reverse genetics and in imaging approaches applied in the amphipod Parhyale hawaiensis and other emerging crustacean model species have made it possible to probe the molecular and cellular basis of crustacean diversity. A number of biological and technical qualities like the slow tempo and holoblastic cleavage mode, the stereotypy of many cellular processes, the functional and morphological diversity of limbs along the body axis, and the availability of various experimental manipulations, have made Parhyale a powerful system to study normal development and regeneration.
Collapse
|
15
|
Li L, Liu P, Sun L, Bin Zhou, Fei J. PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice. Sci Rep 2016; 6:27788. [PMID: 27292714 PMCID: PMC4904408 DOI: 10.1038/srep27788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
We designed a new type of polyadenylation-signal (PAS) trap vector system in living mice, the piggyBac (PB) (PAS-trapping (EGFP)) gene trapping vector, which takes advantage of the efficient transposition ability of PB and efficient gene trap and insertional mutagenesis of PAS-trapping. The reporter gene of PB(PAS-trapping (EGFP)) is an EGFP gene with its own promoter, but lacking a poly(A) signal. Transgenic mouse lines carrying PB(PAS-trapping (EGFP)) and protamine 1 (Prm1) promoter-driven PB transposase transgenes (Prm1-PBase) were generated by microinjection. Male mice doubly positive for PB(PAS-trapping (EGFP)) and Prm1-PBase were crossed with WT females, generating offspring with various insertion mutations. We found that 44.8% (26/58) of pups were transposon-positive progenies. New transposon integrations comprised 26.9% (7/26) of the transposon-positive progenies. We found that 100% (5/5) of the EGFP fluorescence-positive mice had new trap insertions mediated by a PB transposon in transcriptional units. The direction of the EGFP gene in the vector was consistent with the direction of the endogenous gene reading frame. Furthermore, mice that were EGFP-PCR positive, but EGFP fluorescent negative, did not show successful gene trapping. Thus, the novel PB(PAS-trapping (EGFP)) system is an efficient genome-wide gene-trap mutagenesis in mice.
Collapse
Affiliation(s)
- Limei Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangliang Sun
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, PR China
| | - Bin Zhou
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Fei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Metastasis research institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| |
Collapse
|
16
|
Whittle CA, Extavour CG. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea. G3 (BETHESDA, MD.) 2015; 5:2307-21. [PMID: 26384771 PMCID: PMC4632051 DOI: 10.1534/g3.115.021402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 01/24/2023]
Abstract
In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
17
|
Nast AR, Extavour CG. Ablation of a single cell from eight-cell embryos of the amphipod crustacean Parhyale hawaiensis. J Vis Exp 2014. [PMID: 24686416 DOI: 10.3791/51073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The amphipod Parhyale hawaiensis is a small crustacean found in intertidal marine habitats worldwide. Over the past decade, Parhyale has emerged as a promising model organism for laboratory studies of development, providing a useful outgroup comparison to the well studied arthropod model organism Drosophila melanogaster. In contrast to the syncytial cleavages of Drosophila, the early cleavages of Parhyale are holoblastic. Fate mapping using tracer dyes injected into early blastomeres have shown that all three germ layers and the germ line are established by the eight-cell stage. At this stage, three blastomeres are fated to give rise to the ectoderm, three are fated to give rise to the mesoderm, and the remaining two blastomeres are the precursors of the endoderm and germ line respectively. However, blastomere ablation experiments have shown that Parhyale embryos also possess significant regulatory capabilities, such that the fates of blastomeres ablated at the eight-cell stage can be taken over by the descendants of some of the remaining blastomeres. Blastomere ablation has previously been described by one of two methods: injection and subsequent activation of phototoxic dyes or manual ablation. However, photoablation kills blastomeres but does not remove the dead cell body from the embryo. Complete physical removal of specific blastomeres may therefore be a preferred method of ablation for some applications. Here we present a protocol for manual removal of single blastomeres from the eight-cell stage of Parhyale embryos, illustrating the instruments and manual procedures necessary for complete removal of the cell body while keeping the remaining blastomeres alive and intact. This protocol can be applied to any Parhyale cell at the eight-cell stage, or to blastomeres of other early cleavage stages. In addition, in principle this protocol could be applicable to early cleavage stage embryos of other holoblastically cleaving marine invertebrates.
Collapse
Affiliation(s)
- Anastasia R Nast
- Department of Organismic and Evolutionary Biology, Harvard University
| | | |
Collapse
|
18
|
Konstantinides N, Averof M. A Common Cellular Basis for Muscle Regeneration in Arthropods and Vertebrates. Science 2014; 343:788-91. [DOI: 10.1126/science.1243529] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Wray GA. Genomics and the Evolution of Phenotypic Traits. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135828] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolutionary genetics has entered an unprecedented era of discovery, catalyzed in large part by the development of technologies that provide information about genome sequence and function. An important benefit is the ability to move beyond a handful of model organisms in lab settings to identify the genetic basis for evolutionarily interesting traits in many organisms in natural settings. Other benefits are the abilities to identify causal mutations and validate their phenotypic consequences more readily and in many more species. Genomic technologies have reinvigorated interest in some of the most fundamental and persistent questions in evolutionary genetics, revealed previously unsuspected evolutionary phenomena, and opened the door to a wide range of new questions.
Collapse
Affiliation(s)
- Gregory A. Wray
- Department of Biology and Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27701
| |
Collapse
|
20
|
Hurt C, Haddock SHD, Browne WE. Molecular phylogenetic evidence for the reorganization of the Hyperiid amphipods, a diverse group of pelagic crustaceans. Mol Phylogenet Evol 2013; 67:28-37. [PMID: 23319084 DOI: 10.1016/j.ympev.2012.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 12/19/2022]
Abstract
Within the crustaceans, the Amphipoda rank as one of the most speciose extant orders. Amphipods have successfully invaded and become major constituents of a variety of ecosystems. The hyperiid amphipods are classically defined as an exclusively pelagic group broadly inhabiting oceanic midwater environments and often having close associations with gelatinous zooplankton. As with other amphipod groups they have largely been classified based on appendage structures, however evidence suggests that at least some of these characters are the product of convergent evolution. Here we present the first multi-locus molecular phylogenetic assessment of relationships among the hyperiid amphipods. We sampled 51 species belonging to 16 of the 23 recognized hyperiidian families for three nuclear loci (18S, 28S, and H3) and mitochondrial COI. We performed both Bayesian Inference and Maximum Likelihood analyses of concatenated sequences. In addition, we also explored the utility of species-tree methods for reconstructing deep evolutionary histories using the Minimize Deep Coalescence (MDC) approach. Our results are compared with previous molecular analyses and traditional systematic groupings. We discuss these results within the context of adaptations correlated with the pelagic life history of hyperiid amphipods. Within the infraorder Physocephalata (Bowman and Gruner, 1973) we inferred support for three reciprocally monophyletic clades; the Platysceloidea, Vibilioidea, and Phronimoidea. Our results also place the enigmatic Cystisomatidae and Paraphronimidae at the base of the infraorder Physosomata (Bowman and Gruner, 1973) suggesting that Physosomata as traditionally recognized is paraphyletic. Based on our multilocus phylogeny, major rearrangements to existing taxonomic groupings of hyperiid amphipods are warranted.
Collapse
Affiliation(s)
- Carla Hurt
- University of Miami, Cox Science Center, Miami, FL 33146, USA
| | | | | |
Collapse
|
21
|
|
22
|
Zeng V, Extavour CG. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012. [PMID: 23180770 PMCID: PMC3504982 DOI: 10.1093/database/bas048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental biology, physiology, evolutionary biology, ecology, comparative genomics and phylogenomics. Database URL:asgard.rc.fas.harvard.edu
Collapse
Affiliation(s)
- Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
23
|
Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi. G3-GENES GENOMES GENETICS 2012; 2:1305-15. [PMID: 23173082 PMCID: PMC3484661 DOI: 10.1534/g3.112.003582] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022]
Abstract
Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with a single Minos element containing the piggyBac-transposase gene under the regulatory control of the hsp70 promoter from Drosophila melanogaster. Enhancer detection depended upon the efficient remobilization of piggyBac-Gal4 transposons, which contain the yeast transcription factor gene Gal4 under the regulatory control of a basal promoter. Gal4 expression was detected through the expression of the fluorescent protein gene tdTomato under the regulatory control of a promoter with Gal4-binding UAS elements. From five genetic screens for larval- and adult-specific enhancers, 314 progeny were recovered from 24,250 total progeny (1.3%) with unique patterns of tdTomato expression arising from the influence of an enhancer. The frequency of piggyBac remobilization and enhancer detection was 2.5- to 3-fold higher in female germ lines compared with male germ lines. A small collection of enhancer-trap lines are described in which Gal4 expression occurred in adult female salivary glands, midgut, and fat body, either singly or in combination. These three tissues play critical roles during the infection of Anopheles stephensi by malaria-causing Plasmodium parasites. This system and the lines generated using it will be valuable resources to ongoing mosquito functional genomics efforts.
Collapse
|
24
|
Blythe MJ, Malla S, Everall R, Shih YH, Lemay V, Moreton J, Wilson R, Aboobaker AA. High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies. PLoS One 2012; 7:e33784. [PMID: 22448274 PMCID: PMC3309017 DOI: 10.1371/journal.pone.0033784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/17/2012] [Indexed: 12/19/2022] Open
Abstract
Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community.
Collapse
Affiliation(s)
- Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Richard Everall
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Yu-huan Shih
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Virginie Lemay
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Joanna Moreton
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Raymond Wilson
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Zeng V, Villanueva KE, Ewen-Campen BS, Alwes F, Browne WE, Extavour CG. De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics 2011; 12:581. [PMID: 22118449 PMCID: PMC3282834 DOI: 10.1186/1471-2164-12-581] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arthropods are the most diverse animal phylum, but their genomic resources are relatively few. While the genome of the branchiopod Daphnia pulex is now available, no other large-scale crustacean genomic resources are available for comparison. In particular, genomic resources are lacking for the most tractable laboratory model of crustacean development, the amphipod Parhyale hawaiensis. Insight into shared and divergent characters of crustacean genomes will facilitate interpretation of future developmental, biomedical, and ecological research using crustacean models. RESULTS To generate a transcriptome enriched for maternally provided and zygotically transcribed developmental genes, we created cDNA from ovaries and embryos of P. hawaiensis. Using 454 pyrosequencing, we sequenced over 1.1 billion bases of this cDNA, and assembled them de novo to create, to our knowledge, the second largest crustacean genomic resource to date. We found an unusually high proportion of C2H2 zinc finger-containing transcripts, as has also been reported for the genome of the pea aphid Acyrthosiphon pisum. Consistent with previous reports, we detected trans-spliced transcripts, but found that they did not noticeably impact transcriptome assembly. Our assembly products yielded 19,067 unique BLAST hits against nr (E-value cutoff e-10). These included over 400 predicted transcripts with significant similarity to D. pulex sequences but not to sequences of any other animal. Annotation of several hundred genes revealed P. hawaiensis homologues of genes involved in development, gametogenesis, and a majority of the members of six major conserved metazoan signaling pathways. CONCLUSIONS The amphipod P. hawaiensis has higher transcript complexity than known insect transcriptomes, and trans-splicing does not appear to be a major contributor to this complexity. We discuss the importance of a reliable comparative genomic framework within which to consider findings from new crustacean models such as D. pulex and P. hawaiensis, as well as the need for development of further substantial crustacean genomic resources.
Collapse
Affiliation(s)
- Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Karina E Villanueva
- Department of Biology, University of Miami, 234 Cox Science Center, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Ben S Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Frederike Alwes
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - William E Browne
- Department of Biology, University of Miami, 234 Cox Science Center, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
26
|
Kontarakis Z, Konstantinides N, Pavlopoulos A, Averof M. Reconfiguring gene traps for new tasks using iTRAC. Fly (Austin) 2011; 5:352-5. [PMID: 22004889 DOI: 10.4161/fly.5.4.18108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We recently developed integrase-mediated trap conversion (iTRAC) as a means of exploiting gene traps to create new genetic tools, such as markers for imaging, drivers for gene expression and landing sites for gene and chromosome engineering. The principle of iTRAC is simple: primary gene traps are generated with transposon vectors carrying φC31 integrase docking sites, which are subsequently utilized to integrate different constructs into the selected trapped loci. Thus, iTRAC allows us to reconfigure selected traps for new purposes. Two features make iTRAC an attractive approach for Drosophila research. First, its versatility permits the exploitation of gene traps in an open-ended way, for applications that were not envisaged during the primary trapping screen. Second, iTRAC is readily transferable to new species and provides a means for developing complex genetic tools in drosophilids that lack the facility of Drosophila melanogaster genetics.
Collapse
Affiliation(s)
- Zacharias Kontarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Crete, Greece
| | | | | | | |
Collapse
|