1
|
Wei Z, Hong Q, Ding Z, Liu J. cxcl12a plays an essential role in pharyngeal cartilage development. Front Cell Dev Biol 2023; 11:1243265. [PMID: 37860819 PMCID: PMC10582265 DOI: 10.3389/fcell.2023.1243265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Background: Neural crest cells constitute a distinct set of multipotent cells that undergo migration along predefined pathways, culmination in the differentiation into a plethora of cell types, including components of the pharyngeal cartilage. The neurocranium is composite structure derived from both cranial neural crest and mesoderm cells, whereas the pharyngeal skeletal elements-including the mandibular and branchial arches-are exclusively formed by craniofacial neural crest cells. Previous studies have elucidated the critical involvement of the chemokine signaling axis Cxcl12b/Cxcr4a in craniofacial development in zebrafish (Danio rerio). Nonetheless, the function contribution of Cxcl12a and Cxcr4b-the homologous counterparts of Cxcl12b and Cxcr4a-remain largely unexplored. Methods: In the present study, mutant lines for cxcl12a and cxcr4b were generated employing CRISPR/Cas9 system. Temporal and spatial expression patterns of specific genes were assessed using in situ hybridization and dual-color fluorescence in situ hybridization techniques. High-resolution confocal microscopy was utilized for in vivo imaging to detect the pharyngeal arch or pouch patterning. Additionally, cartilage formation within the craniofacial region was analyzed via Alcian blue staining, and the proliferation and apoptosis rates of craniofacial neural crest cells were quantified through BrdU incorporation and TUNEL staining. Results: Our data reveals that the deletion of the chemokine gene cxcl12a results in a marked diminution of pharyngeal cartilage elements, attributable to compromised proliferation of post-migratory craniofacial neural crest cells. Subsequent experiments confirmed that Cxcl12a and Cxcl12b exhibit a synergistic influence on pharyngeal arch and pouch formation. Conclusion: Collectively, the present investigation furnishes compelling empirical evidence supporting the indispensable role of Cxcl2a in craniofacial cartilage morphogenesis, albeit cxcr4b mutants exert a minimal impact on this biological process. We delineate that Cxcl12a is essential for chondrogenesis in zebrafish, primarily by promoting the proliferation of craniofacial neural crest cells. Furthermore, we proposed a conceptual framework wherein Cxcl12a and Cxcl12b function synergistically in orchestrating both the pharyngeal arch and pouch morphogenesis.
Collapse
Affiliation(s)
- Zhaohui Wei
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Hong
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Zijiao Ding
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jingwen Liu
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Truszkowski L, Batur D, Long H, Tarbashevich K, Vos BE, Trappmann B, Raz E. Primordial germ cells adjust their protrusion type while migrating in different tissue contexts in vivo. Development 2023; 150:286614. [PMID: 36515556 PMCID: PMC10110502 DOI: 10.1242/dev.200603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
In both physiological processes and disease contexts, migrating cells have the ability to adapt to conditions in their environment. As an in vivo model for this process, we use zebrafish primordial germ cells that migrate throughout the developing embryo. When migrating within an ectodermal environment, the germ cells form fewer and smaller blebs when compared with their behavior within mesodermal environment. We find that cortical tension of neighboring cells is a parameter that affects blebbing frequency. Interestingly, the change in blebbing activity is accompanied by the formation of more actin-rich protrusions. These alterations in cell behavior that correlate with changes in RhoA activity could allow the cells to maintain dynamic motility parameters, such as migration speed and track straightness, in different settings. In addition, we find that the polarity of the cells can be affected by stiff structures positioned in their migration path This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lukasz Truszkowski
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Dilek Batur
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | | | - Bart E Vos
- Third Institute of Physics - Biophysics, Georg August University Göttingen, D-37007 Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| |
Collapse
|
3
|
Ross Stewart KM, Walker SL, Baker AH, Riley PR, Brittan M. Hooked on heart regeneration: the zebrafish guide to recovery. Cardiovasc Res 2022; 118:1667-1679. [PMID: 34164652 PMCID: PMC9215194 DOI: 10.1093/cvr/cvab214] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
While humans lack sufficient capacity to undergo cardiac regeneration following injury, zebrafish can fully recover from a range of cardiac insults. Over the past two decades, our understanding of the complexities of both the independent and co-ordinated injury responses by multiple cardiac tissues during zebrafish heart regeneration has increased exponentially. Although cardiomyocyte regeneration forms the cornerstone of the reparative process in the injured zebrafish heart, recent studies have shown that this is dependent on prior neovascularization and lymphangiogenesis, which in turn require epicardial, endocardial, and inflammatory cell signalling within an extracellular milieu that is optimized for regeneration. Indeed, it is the amalgamation of multiple regenerative systems and gene regulatory patterns that drives the much-heralded success of the adult zebrafish response to cardiac injury. Increasing evidence supports the emerging paradigm that developmental transcriptional programmes are re-activated during adult tissue regeneration, including in the heart, and the zebrafish represents an optimal model organism to explore this concept. In this review, we summarize recent advances from the zebrafish cardiovascular research community with novel insight into the mechanisms associated with endogenous cardiovascular repair and regeneration, which may be of benefit to inform future strategies for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Katherine M Ross Stewart
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sophie L Walker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Paul R Riley
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Sherrington Rd, Oxford OX1 3PT, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
4
|
Stream A, Madigan CA. Zebrafish: an underutilized tool for discovery in host-microbe interactions. Trends Immunol 2022; 43:426-437. [PMID: 35527182 PMCID: PMC11302990 DOI: 10.1016/j.it.2022.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/31/2022]
Abstract
Zebrafish are relatively new to the field of host-pathogen interactions, although they have been a valuable vertebrate model for decades in developmental biology and neuroscience. Transparent zebrafish larvae have most components of the human innate immune system, and adult zebrafish also produce cells of the adaptive immune system. Recent discoveries using zebrafish infection models include mechanisms of pathogen survival and host cell sensing of microbes. These discoveries were enabled by zebrafish technology, which is constantly evolving and providing new opportunities for immunobiology research. Recent tools include CRISPR/Cas9 mutagenesis, in vivo biotinylation, and genetically encoded biosensors. We argue that the zebrafish model - which remains underutilized in immunology - provides fertile ground for a new understanding of host-microbe interactions in a transparent host.
Collapse
Affiliation(s)
- Alexandra Stream
- Department of Biological Sciences, University of California San Diego (UCSD), San Diego, CA, USA
| | - Cressida A Madigan
- Department of Biological Sciences, University of California San Diego (UCSD), San Diego, CA, USA.
| |
Collapse
|
5
|
Yan YL, Titus T, Desvignes T, BreMiller R, Batzel P, Sydes J, Farnsworth D, Dillon D, Wegner J, Phillips JB, Peirce J, Dowd J, Buck CL, Miller A, Westerfield M, Postlethwait JH. A fish with no sex: gonadal and adrenal functions partition between zebrafish NR5A1 co-orthologs. Genetics 2021; 217:iyaa030. [PMID: 33724412 PMCID: PMC8045690 DOI: 10.1093/genetics/iyaa030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
People with NR5A1 mutations experience testicular dysgenesis, ovotestes, or adrenal insufficiency, but we do not completely understand the origin of this phenotypic diversity. NR5A1 is expressed in gonadal soma precursor cells before expression of the sex-determining gene SRY. Many fish have two co-orthologs of NR5A1 that likely partitioned ancestral gene subfunctions between them. To explore ancestral roles of NR5A1, we knocked out nr5a1a and nr5a1b in zebrafish. Single-cell RNA-seq identified nr5a1a-expressing cells that co-expressed genes for steroid biosynthesis and the chemokine receptor Cxcl12a in 1-day postfertilization (dpf) embryos, as does the mammalian adrenal-gonadal (interrenal-gonadal) primordium. In 2dpf embryos, nr5a1a was expressed stronger in the interrenal-gonadal primordium than in the early hypothalamus but nr5a1b showed the reverse. Adult Leydig cells expressed both ohnologs and granulosa cells expressed nr5a1a stronger than nr5a1b. Mutants for nr5a1a lacked the interrenal, formed incompletely differentiated testes, had no Leydig cells, and grew far larger than normal fish. Mutants for nr5a1b formed a disorganized interrenal and their gonads completely disappeared. All homozygous mutant genotypes lacked secondary sex characteristics, including male breeding tubercles and female sex papillae, and had exceedingly low levels of estradiol, 11-ketotestosterone, and cortisol. RNA-seq showed that at 21dpf, some animals were developing as females and others were not, independent of nr5a1 genotype. By 35dpf, all mutant genotypes greatly under-expressed ovary-biased genes. Because adult nr5a1a mutants form gonads but lack an interrenal and conversely, adult nr5a1b mutants lack a gonad but have an interrenal, the adrenal, and gonadal functions of the ancestral nr5a1 gene partitioned between ohnologs after the teleost genome duplication, likely owing to reciprocal loss of ancestral tissue-specific regulatory elements. Identifying such elements could provide hints to otherwise unexplained cases of Differences in Sex Development.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ruth BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Dylan Farnsworth
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Judy Peirce
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - John Dowd
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Charles Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
6
|
Préchoux A, Simorre JP, Lortat-Jacob H, Laguri C. Deciphering the structural attributes of protein-heparan sulfate interactions using chemo-enzymatic approaches and NMR spectroscopy. Glycobiology 2021; 31:851-858. [PMID: 33554262 DOI: 10.1093/glycob/cwab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 11/14/2022] Open
Abstract
Heparan sulfates (HS) is a polysaccharide found at the cell surface, where it mediates interactions with hundreds of proteins and regulates major pathophysiological processes. HS is highly heterogeneous and structurally complex and examples that define their structure-activity relationships remain limited. Here, to characterize a protein-HS interface and define the corresponding saccharide binding domain, we present a chemoenzymatic approach that generate 13C labeled HS-based oligosaccharide structures. NMR spectroscopy that efficiently discriminates between important or redundant chemical groups in the oligosaccharides, is employed to characterize these molecules alone and in interaction with proteins. Using chemokines as model system, docking based on NMR data on both proteins and oligosaccharides enable the identification of the structural determinant involved in the complex. This study shows that both the position of the sulfo-groups along the chain and their mode of presentation, rather than their overall number, are key determinant and further points out the usefulness of these 13C labeled oligosaccharides in obtaining detailed structural information on HS-protein complexes.
Collapse
Affiliation(s)
| | | | | | - Cédric Laguri
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble
| |
Collapse
|
7
|
Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, Cammer M, Meier-Schellersheim M, Knaut H. Cadherin-Mediated Cell Coupling Coordinates Chemokine Sensing across Collectively Migrating Cells. Curr Biol 2020; 29:2570-2579.e7. [PMID: 31386838 DOI: 10.1016/j.cub.2019.06.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
The directed migration of cells sculpts the embryo, contributes to homeostasis in the adult, and, when dysregulated, underlies many diseases [1, 2]. During these processes, cells move singly or as a collective. In both cases, they follow guidance cues, which direct them to their destination [3-6]. In contrast to single cells, collectively migrating cells need to coordinate with their neighbors to move together in the same direction. Recent studies suggest that leader cells in the front sense the guidance cue, relay the directional information to the follower cells in the back, and can pull the follower cells along [7-19]. In this manner, leader cells steer the collective and set the collective's overall speed. However, whether follower cells also participate in steering and speed setting of the collective is largely unclear. Using chimeras, we analyzed the role of leader and follower cells in the collectively migrating zebrafish posterior lateral line primordium. This tissue expresses the chemokine receptor Cxcr4 and is guided by the chemokine Cxcl12a [20-23]. We find that leader and follower cells need to sense the attractant Cxcl12a for efficient migration, are coupled to each other through cadherins, and require coupling to pull Cxcl12a-insensitive cells along. Analysis of cell dynamics in chimeric and protein-depleted primordia shows that Cxcl12a-sensing and cadherin-mediated adhesion contribute jointly to direct migration at both single-cell and tissue levels. These results suggest that all cells in the primordium need to sense the attractant and adhere to each other to coordinate their movements and migrate with robust directionality.
Collapse
Affiliation(s)
- Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Ling Lan
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alisha R Jadhav
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Gayatri Venkiteswaran
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Heta Patel
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Michael Cammer
- NYU Langone's Microscopy Laboratory, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
8
|
Sommer F, Torraca V, Meijer AH. Chemokine Receptors and Phagocyte Biology in Zebrafish. Front Immunol 2020; 11:325. [PMID: 32161595 PMCID: PMC7053378 DOI: 10.3389/fimmu.2020.00325] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Phagocytes are highly motile immune cells that ingest and clear microbial invaders, harmful substances, and dying cells. Their function is critically dependent on the expression of chemokine receptors, a class of G-protein-coupled receptors (GPCRs). Chemokine receptors coordinate the recruitment of phagocytes and other immune cells to sites of infection and damage, modulate inflammatory and wound healing responses, and direct cell differentiation, proliferation, and polarization. Besides, a structurally diverse group of atypical chemokine receptors (ACKRs) are unable to signal in G-protein-dependent fashion themselves but can shape chemokine gradients by fine-tuning the activity of conventional chemokine receptors. The optically transparent zebrafish embryos and larvae provide a powerful in vivo system to visualize phagocytes during development and study them as key elements of the immune response in real-time. In this review, we discuss how the zebrafish model has furthered our understanding of the role of two main classes of chemokine receptors, the CC and CXC subtypes, in phagocyte biology. We address the roles of the receptors in the migratory properties of phagocytes in zebrafish models for cancer, infectious disease, and inflammation. We illustrate how studies in zebrafish enable visualizing the contribution of chemokine receptors and ACKRs in shaping self-generated chemokine gradients of migrating cells. Taking the functional antagonism between two paralogs of the CXCR3 family as an example, we discuss how the duplication of chemokine receptor genes in zebrafish poses challenges, but also provides opportunities to study sub-functionalization or loss-of-function events. We emphasize how the zebrafish model has been instrumental to prove that the major determinant for the functional outcome of a chemokine receptor-ligand interaction is the cell-type expressing the receptor. Finally, we highlight relevant homologies and analogies between mammalian and zebrafish phagocyte function and discuss the potential of zebrafish models to further advance our understanding of chemokine receptors in innate immunity and disease.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
9
|
Zehentmeier S, Pereira JP. Cell circuits and niches controlling B cell development. Immunol Rev 2020; 289:142-157. [PMID: 30977190 DOI: 10.1111/imr.12749] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Studies over the last decade uncovered overlapping niches for hematopoietic stem cells (HSCs), multipotent progenitor cells, common lymphoid progenitors, and early B cell progenitors. HSC and lymphoid niches are predominantly composed by mesenchymal progenitor cells (MPCs) and by a small subset of endothelial cells. Niche cells create specialized microenvironments through the concomitant production of short-range acting cell-fate determining cytokines such as interleukin (IL)-7 and stem cell factor and the potent chemoattractant C-X-C motif chemokine ligand 12. This type of cellular organization allows for the cross-talk between hematopoietic stem and progenitor cells with niche cells, such that niche cell activity can be regulated by the quality and quantity of hematopoietic progenitors being produced. For example, preleukemic B cell progenitors and preB acute lymphoblastic leukemias interact directly with MPCs, and downregulate IL-7 expression and the production of non-leukemic lymphoid cells. In this review, we discuss a novel model of B cell development that is centered on cellular circuits formed between B cell progenitors and lymphopoietic niches.
Collapse
Affiliation(s)
- Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Liu J, Zhu C, Ning G, Yang L, Cao Y, Huang S, Wang Q. Chemokine signaling links cell-cycle progression and cilia formation for left-right symmetry breaking. PLoS Biol 2019; 17:e3000203. [PMID: 31430272 PMCID: PMC6716676 DOI: 10.1371/journal.pbio.3000203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/30/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022] Open
Abstract
Zebrafish dorsal forerunner cells (DFCs) undergo vigorous proliferation during epiboly and then exit the cell cycle to generate Kupffer's vesicle (KV), a ciliated organ necessary for establishing left-right (L-R) asymmetry. DFC proliferation defects are often accompanied by impaired cilia elongation in KV, but the functional and molecular interaction between cell-cycle progression and cilia formation remains unknown. Here, we show that chemokine receptor Cxcr4a is required for L-R laterality by controlling DFC proliferation and KV ciliogenesis. Functional analysis revealed that Cxcr4a accelerates G1/S transition in DFCs and stabilizes forkhead box j1a (Foxj1a), a master regulator of motile cilia, by stimulating Cyclin D1 expression through extracellular regulated MAP kinase (ERK) 1/2 signaling. Mechanistically, Cyclin D1-cyclin-dependent kinase (CDK) 4/6 drives G1/S transition during DFC proliferation and phosphorylates Foxj1a, thereby disrupting its association with proteasome 26S subunit, non-ATPase 4b (Psmd4b), a 19S regulatory subunit. This prevents the ubiquitin (Ub)-independent proteasomal degradation of Foxj1a. Our study uncovers a role for Cxcr4 signaling in L-R patterning and provides fundamental insights into the molecular linkage between cell-cycle progression and ciliogenesis.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengke Zhu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, College of Animal Science in Rongchang Campus, Southwest University, Chongqing, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liping Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
- * E-mail: (SH); (QW)
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SH); (QW)
| |
Collapse
|
11
|
De Filippo K, Rankin SM. CXCR4, the master regulator of neutrophil trafficking in homeostasis and disease. Eur J Clin Invest 2018; 48 Suppl 2:e12949. [PMID: 29734477 PMCID: PMC6767022 DOI: 10.1111/eci.12949] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chemokines play a critical role in orchestrating the distribution and trafficking of neutrophils in homeostasis and disease. RESULTS The CXCR4/CXCL12 chemokine axis has been identified as a central regulator of these processes. CONCLUSION In this review, we focus on the role of CXCR4/CXCL12 chemokine axis in regulating neutrophil release from the bone marrow and the trafficking of senescent neutrophils back to the bone marrow for clearance under homeostasis and disease. We also discuss the role of CXCR4 in fine-tuning neutrophil responses in the context of inflammation.
Collapse
Affiliation(s)
- Katia De Filippo
- IRD Section, Respiratory Division, NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Sara M Rankin
- IRD Section, Respiratory Division, NHLI, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
Divergent Expression Patterns and Function of Two cxcr4 Paralogs in Hermaphroditic Epinephelus coioides. Int J Mol Sci 2018; 19:ijms19102943. [PMID: 30262794 PMCID: PMC6213054 DOI: 10.3390/ijms19102943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemokine receptor Cxcr4 evolved two paralogs in the teleost lineage. However, cxcr4a and cxcr4b have been characterized only in a few species. In this study, we identified two cxcr4 paralogs from the orange-spotted grouper, Epinephelus coioides. The phylogenetic relationship and gene structure and synteny suggest that the duplicated cxcr4a/b should result from the teleost-specific genome duplication (Ts3R). The teleost cxcr4 gene clusters in two paralogous chromosomes exhibit a complementary gene loss/retention pattern. Ec_cxcr4a and Ec_cxcr4b show differential and biased expression patterns in grouper adult tissue, gonads, and embryos at different stages. During embryogenesis, Ec_cxcr4a/b are abundantly transcribed from the neurula stage and mainly expressed in the neural plate and sensory organs, indicating their roles in neurogenesis. Ec_Cxcr4a and Ec_Cxcr4b possess different chemotactic migratory abilities from the human SDF-1α, Ec_Cxcl12a, and Ec_Cxcl12b. Moreover, we uncovered the N-terminus and TM5 domain as the key elements for specific ligand⁻receptor recognition of Ec_Cxcr4a-Ec_Cxcl12b and Ec_Cxcr4b-Ec_Cxcl12a. Based on the biased and divergent expression patterns of Eccxcr4a/b, and specific ligand⁻receptor recognition of Ec_Cxcl12a/b⁻Ec_Cxcr4b/a, the current study provides a paradigm of sub-functionalization of two teleost paralogs after Ts3R.
Collapse
|
13
|
Malhotra D, Shin J, Solnica-Krezel L, Raz E. Spatio-temporal regulation of concurrent developmental processes by generic signaling downstream of chemokine receptors. eLife 2018; 7:e33574. [PMID: 29873633 PMCID: PMC5990360 DOI: 10.7554/elife.33574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/19/2018] [Indexed: 01/09/2023] Open
Abstract
Chemokines are secreted proteins that regulate a range of processes in eukaryotic organisms. Interestingly, different chemokine receptors control distinct biological processes, and the same receptor can direct different cellular responses, but the basis for this phenomenon is not known. To understand this property of chemokine signaling, we examined the function of the chemokine receptors Cxcr4a, Cxcr4b, Ccr7, Ccr9 in the context of diverse processes in embryonic development in zebrafish. Our results reveal that the specific response to chemokine signaling is dictated by cell-type-specific chemokine receptor signal interpretation modules (CRIM) rather than by chemokine-receptor-specific signals. Thus, a generic signal provided by different receptors leads to discrete responses that depend on the specific identity of the cell that receives the signal. We present the implications of employing generic signals in different contexts such as gastrulation, axis specification and single-cell migration.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cell Movement/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Receptors, CCR/genetics
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Signal Transduction/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
| | - Jimann Shin
- Department of Developmental BiologyWashington University School of MedicineSt LouisMissouri
| | | | - Erez Raz
- Institute for Cell BiologyZMBEMuensterGermany
| |
Collapse
|
14
|
Nelson AC, Cutty SJ, Gasiunas SN, Deplae I, Stemple DL, Wardle FC. In Vivo Regulation of the Zebrafish Endoderm Progenitor Niche by T-Box Transcription Factors. Cell Rep 2018; 19:2782-2795. [PMID: 28658625 PMCID: PMC5494305 DOI: 10.1016/j.celrep.2017.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/28/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023] Open
Abstract
T-box transcription factors T/Brachyury homolog A (Ta) and Tbx16 are essential for correct mesoderm development in zebrafish. The downstream transcriptional networks guiding their functional activities are poorly understood. Additionally, important contributions elsewhere are likely masked due to redundancy. Here, we exploit functional genomic strategies to identify Ta and Tbx16 targets in early embryogenesis. Surprisingly, we discovered they not only activate mesodermal gene expression but also redundantly regulate key endodermal determinants, leading to substantial loss of endoderm in double mutants. To further explore the gene regulatory networks (GRNs) governing endoderm formation, we identified targets of Ta/Tbx16-regulated homeodomain transcription factor Mixl1, which is absolutely required in zebrafish for endoderm formation. Interestingly, we find many endodermal determinants coordinately regulated through common genomic occupancy by Mixl1, Eomesa, Smad2, Nanog, Mxtx2, and Pou5f3. Collectively, these findings augment the endoderm GRN and reveal a panel of target genes underlying the Ta, Tbx16, and Mixl1 mutant phenotypes.
Collapse
Affiliation(s)
- Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Stephen J Cutty
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Saule N Gasiunas
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Isabella Deplae
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
15
|
Gβ1 is required for neutrophil migration in zebrafish. Dev Biol 2017; 428:135-147. [PMID: 28554852 DOI: 10.1016/j.ydbio.2017.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/20/2022]
Abstract
Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo.
Collapse
|
16
|
Pillay LM, Mackowetzky KJ, Widen SA, Waskiewicz AJ. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation. PLoS One 2016; 11:e0166040. [PMID: 27861498 PMCID: PMC5115706 DOI: 10.1371/journal.pone.0166040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/11/2016] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA) functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation.
Collapse
Affiliation(s)
- Laura M Pillay
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Kacey J Mackowetzky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Sonya A Widen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Andrew Jan Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
17
|
Paksa A, Bandemer J, Hoeckendorf B, Razin N, Tarbashevich K, Minina S, Meyen D, Biundo A, Leidel SA, Peyrieras N, Gov NS, Keller PJ, Raz E. Repulsive cues combined with physical barriers and cell-cell adhesion determine progenitor cell positioning during organogenesis. Nat Commun 2016; 7:11288. [PMID: 27088892 PMCID: PMC4837475 DOI: 10.1038/ncomms11288] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/09/2016] [Indexed: 01/15/2023] Open
Abstract
The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell–cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell–cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function. The precise positioning of organ progenitor cells is essential for organ development and function. Here the authors use live imaging and mathematical modelling to show that the confinement of a motile progenitor cell population results from coupled physical barriers and cell-cell interactions.
Collapse
Affiliation(s)
- Azadeh Paksa
- Institute for Cell Biology, ZMBE, Von-Esmarch-Street 56, 48149 Muenster, Germany
| | - Jan Bandemer
- Institute for Cell Biology, ZMBE, Von-Esmarch-Street 56, 48149 Muenster, Germany
| | | | - Nitzan Razin
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Sofia Minina
- Germ Cell Development, Max-Planck Institute of Biophysical Chemistry, Am Fassberg 11, 37070 Göttingen, Germany
| | - Dana Meyen
- Institute for Cell Biology, ZMBE, Von-Esmarch-Street 56, 48149 Muenster, Germany
| | - Antonio Biundo
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Muenster, Germany
| | - Nadine Peyrieras
- USR3695 BioEmergences, CNRS, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Nir S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Erez Raz
- Institute for Cell Biology, ZMBE, Von-Esmarch-Street 56, 48149 Muenster, Germany
| |
Collapse
|
18
|
Tulotta C, Stefanescu C, Beletkaia E, Bussmann J, Tarbashevich K, Schmidt T, Snaar-Jagalska BE. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis Model Mech 2016; 9:141-53. [PMID: 26744352 PMCID: PMC4770151 DOI: 10.1242/dmm.023275] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC. Summary: CXCR4-expressing human tumor cells respond to zebrafish cognate ligands and initiate metastatic events in a zebrafish xenograft model. The CXCR4 antagonist IT1t has promising tumor inhibitory effects.
Collapse
Affiliation(s)
- Claudia Tulotta
- Institute of Biology, Animal Sciences and Health, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Cristina Stefanescu
- Institute of Biology, Animal Sciences and Health, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elena Beletkaia
- Physics of Life Processes, Kamerligh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, Leiden 2333 CA, The Netherlands
| | - Jeroen Bussmann
- Institute of Biology, Animal Sciences and Health, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | - Thomas Schmidt
- Physics of Life Processes, Kamerligh Onnes-Huygens Laboratory, Leiden University, Niels Bohrweg 2, Leiden 2333 CA, The Netherlands
| | - B Ewa Snaar-Jagalska
- Institute of Biology, Animal Sciences and Health, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
19
|
Abstract
Migration and positioning of cells is fundamental for complex functioning of multicellular organisms. During an immune response, cells are recruited from remote distances to a distinct location. Cells that are passively transported leave the circulation stimulated by locally produced signals and follow chemotactic cues to reach specific destinations. Such gradients are short (<150 μm) and require a source of production where the concentration is the highest and a sink in apposition where the attractant dissipates and the concentration is the lowest. Several straight forward methods exist to identify in vitro and in vivo cells producing chemoattractants. This can be achieved at the transcriptional level and by measuring secreted proteins. However, to demonstrate the activity of sinks in vitro and in vivo is more challenging. Cell-mediated dissipation of an attractant must be revealed by measuring its uptake and subsequent destruction. Elimination of chemoattractants such as chemokines can be monitored in vitro using radiolabeled ligands or more elegantly with fluorescent-labeled chemoattractants. The latter method can also be used in vivo and enables to monitor the process in real time using time-lapse video microscopy. In this chapter, we describe methods to produce fluorescently labeled chemokines either as fusion proteins secreted from insect cells or as recombinant bacterial proteins that can enzymatically be labeled. We discuss methods that were successfully used to demonstrate sink activities of scavenger receptors. Moreover, fluorescent chemokines can be used to noninvasively analyze receptor expression and activity in living cells.
Collapse
Affiliation(s)
- Barbara Moepps
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
20
|
Chemokine-guided angiogenesis directs coronary vasculature formation in zebrafish. Dev Cell 2015; 33:442-54. [PMID: 26017769 DOI: 10.1016/j.devcel.2015.04.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 10/20/2014] [Accepted: 04/01/2015] [Indexed: 02/02/2023]
Abstract
Interruption of the coronary blood supply severely impairs heart function with often fatal consequences for patients. However, the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults.
Collapse
|
21
|
Zou J, Redmond AK, Qi Z, Dooley H, Secombes CJ. The CXC chemokine receptors of fish: Insights into CXCR evolution in the vertebrates. Gen Comp Endocrinol 2015; 215:117-31. [PMID: 25623148 DOI: 10.1016/j.ygcen.2015.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/15/2022]
Abstract
This article will review current knowledge on CXCR in fish, that represent three distinct vertebrate groups: Agnatha (jawless fishes), Chondrichthyes (cartilaginous fishes) and Osteichthyes (bony fishes). With the sequencing of many fish genomes, information on CXCR in these species in particular has expanded considerably. In mammals, 6 CXCRs have been described, and their homologues will be initially reviewed before considering a number of atypical CXCRs and a discussion of CXCR evolution.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Zhitao Qi
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; Key Laboratory of Aquaculture and Ecology of Coastal Pools of Jiangsu Province, Department of Ocean Technology, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
22
|
Bussmann J, Raz E. Chemokine-guided cell migration and motility in zebrafish development. EMBO J 2015; 34:1309-18. [PMID: 25762592 DOI: 10.15252/embj.201490105] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/04/2015] [Indexed: 12/29/2022] Open
Abstract
Chemokines are vertebrate-specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7-transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single-cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration.
Collapse
Affiliation(s)
- Jeroen Bussmann
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands Gorlaeus Laboratories, Department of Molecular Cell Biology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Grimholt U, Hauge H, Hauge AG, Leong J, Koop BF. Chemokine receptors in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:79-95. [PMID: 25445904 DOI: 10.1016/j.dci.2014.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
Teleost sequence data have revealed that many immune genes have evolved differently when compared to other vertebrates. Thus, each gene family needs functional studies to define the biological role of individual members within major species groups. Chemokine receptors, being excellent markers for various leukocyte subpopulations, are one such example where studies are needed to decipher individual gene function. The unique salmonid whole genome duplication that occurred approximately 95 million years ago has provided salmonids with many additional duplicates further adding to the complexity and diversity. Here we have performed a systematic study of these receptors in Atlantic salmon with particular focus on potential inflammatory receptors. Using the preliminary salmon genome data we identified 48 chemokine or chemokine-like receptors including orthologues to the ten receptors previously published in trout. We found expressed support for 40 of the bona fide salmon receptors. Eighteen of the chemokine receptors are duplicated, and when tested against a diploid sister group the majority were shown to be remnants of the 4R whole genome duplication with subsequent high sequence identity. The salmon chemokine receptor repertoire of 40 expressed bona fide genes is comparably larger than that found in humans with 23 receptors. Diversification has been a major driving force for these duplicate genes with the main variability residing in ligand binding and signalling domains.
Collapse
Affiliation(s)
| | - Helena Hauge
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway
| | | | - Jong Leong
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, Canada
| | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, Canada
| |
Collapse
|
24
|
Temporal control over the initiation of cell motility by a regulator of G-protein signaling. Proc Natl Acad Sci U S A 2014; 111:11389-94. [PMID: 25049415 DOI: 10.1073/pnas.1400043111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The control over the acquisition of cell motility is central for a variety of biological processes in development, homeostasis, and disease. An attractive in vivo model for investigating the regulation of migration initiation is that of primordial germ cells (PGCs) in zebrafish embryos. In this study, we show that, following PGC specification, the cells can polarize but do not migrate before the time chemokine-encoded directional cues are established. We found that the regulator of G-protein signaling 14a protein, whose RNA is a newly identified germ plasm component, regulates the temporal relations between the appearance of the guidance molecules and the acquisition of cellular motility by regulating E-cadherin levels.
Collapse
|
25
|
Stückemann T, Wegleiter T, Stefan E, Nägele O, Tarbashevich K, Böck G, Raz E, Aanstad P. Zebrafish Cxcr4a determines the proliferative response to Hedgehog signalling. Development 2012; 139:2711-20. [PMID: 22782722 DOI: 10.1242/dev.074930] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Hedgehog (Hh) pathway plays dual roles in proliferation and patterning during embryonic development, but the mechanism(s) that distinguish the mitogenic and patterning activities of Hh signalling are not fully understood. An additional level of complexity is provided by the observation that Hh signalling can both promote and inhibit cell proliferation. One model to account for this apparent paradox is that Hh signalling primarily regulates cell cycle kinetics, such that activation of Hh signalling promotes fast cycling and an earlier cell cycle exit. Here we report that activation of Hh signalling promotes endodermal cell proliferation but inhibits proliferation in neighbouring non-endodermal cells, suggesting that the cell cycle kinetics model is insufficient to account for the opposing proliferative responses to Hh signalling. We show that expression of the chemokine receptor Cxcr4a is a critical parameter that determines the proliferative response to Hh signalling, and that loss of Cxcr4a function attenuates the transcription of cell cycle regulator targets of Hh signalling without affecting general transcriptional targets. We show that Cxcr4a inhibits PKA activity independently of Hh signalling, and propose that Cxcr4a enhances Hh-dependent proliferation by promoting the activity of Gli1. Our results indicate that Cxcr4a is required for Hh-dependent cell proliferation but not for Hh-dependent patterning, and suggest that the parallel activation of Cxcr4a is required to modulate the Hh pathway to distinguish between patterning and proliferation.
Collapse
Affiliation(s)
- Tom Stückemann
- Institute of Molecular Biology, University of Innsbruck, Technikerstrasse 25, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|