1
|
Sallee JL, Crawford JM, Singh V, Kiehart DP. Mutations in Drosophila crinkled/Myosin VIIA disrupt denticle morphogenesis. Dev Biol 2021; 470:121-135. [PMID: 33248112 PMCID: PMC7855556 DOI: 10.1016/j.ydbio.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Actin filament crosslinking, bundling and molecular motor proteins are necessary for the assembly of epithelial projections such as microvilli, stereocilia, hairs, and bristles. Mutations in such proteins cause defects in the shape, structure, and function of these actin - based protrusions. One protein necessary for stereocilia formation, Myosin VIIA, is an actin - based motor protein conserved throughout phylogeny. In Drosophila melanogaster, severe mutations in the MyoVIIA homolog crinkled (ck) are "semi - lethal" with only a very small percentage of flies surviving to adulthood. Such survivors show morphological defects related to actin bundling in hairs and bristles. To better understand ck/MyoVIIA's function in bundled - actin structures, we used dominant female sterile approaches to analyze the loss of maternal and zygotic (M/Z) ck/MyoVIIA in the morphogenesis of denticles, small actin - based projections on the ventral epidermis of Drosophila embryos. M/Z ck mutants displayed severe defects in denticle morphology - actin filaments initiated in the correct location, but failed to elongate and bundle to form normal projections. Using deletion mutant constructs, we demonstrated that both of the C - terminal MyTH4 and FERM domains are necessary for proper denticle formation. Furthermore, we show that ck/MyoVIIA interacts genetically with dusky - like (dyl), a member of the ZPD family of proteins that links the extracellular matrix to the plasma membrane, and when mutated also disrupts normal denticle formation. Loss of either protein alone does not alter the localization of the other; however, loss of the two proteins together dramatically enhances the defects in denticle shape observed when either protein alone was absent. Our data indicate that ck/MyoVIIA plays a key role in the formation and/or organization of actin filament bundles, which drive proper shape of cellular projections.
Collapse
Affiliation(s)
- Jennifer L Sallee
- Department of Biology, Duke University, Durham, NC, 27708, USA; Department of Biology, North Central College, Naperville, IL, 60540, USA.
| | | | - Vinay Singh
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
2
|
Li C, Liu J, Lü P, Ma S, Zhu K, Gao L, Li B, Chen K. Identification, expression and function of myosin heavy chain family genes in Tribolium castaneum. Genomics 2019; 111:719-728. [DOI: 10.1016/j.ygeno.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023]
|
3
|
Li C, Lu Y, Ma S, Lü P, Li B, Chen K. Crinkled employs wingless pathway for wing development in Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21496. [PMID: 29984841 DOI: 10.1002/arch.21496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Crinkled is associated with embryonic denticle formation and auditory organ development in Drosophila melanogaster. However, the functions of Crinkled have not been fully investigated. Additionally, the genes that participate in the Crinkled pathway are unknown. Phylogenetic analysis indicates that crinkled exhibits a one-to-one orthologous relationship in insects. In Tribolium castaneum, the crinkled gene is 6,498 bp in length and consists of six exons. Crinkled expression peaked during two phases in Tribolium: late embryonic and pupal stages. High levels of crinkled mRNA were detected in the fat body, head, epidermis, ovary, and accessory gland of late adults. Knockdown of crinkled using RNA interference (RNAi) severely affected wing morphogenesis in T. castaneum. We further showed that crinkled silencing reduced forked expression through wingless and shaven-baby, and RNAi of forked phenocopied the effects of crinkled knockdown in T. castaneum. This study investigated the development role of crinkled in postembryonic stages and indicated that forked mediates the functions of crinkled during wing morphogenesis in T. castaneum.
Collapse
Affiliation(s)
- Chengjun Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Li C, Li B, Ma S, Lü P, Chen K. Dusky works upstream of Four-jointed and Forked in wing morphogenesis in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2017; 26:677-686. [PMID: 28677915 DOI: 10.1111/imb.12327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dusky (dy) is required for cytoskeletal reorganization during wing morphogenesis in Drosophila melanogaster, but which genes participate together with dy for wing morphogenesis has remained unclear. In Tribolium castaneum, dy is highly expressed at the late embryonic stage. Tissue-specific expression analysis indicated high expression levels of dy in the epidermis, head and fat body of late-stage larvae. RNA interference (RNAi) targeting dy significantly decreased adult wing size and caused improper folding of the elytra. Meanwhile, dy knockdown reduced the transcription of four-jointed (fj) and forked (f). Our results show that fj RNAi reduces adult wing size and that silencing f results in abnormal wing folding in T. castaneum. Interestingly, knocking down fj and f simultaneously phenocopies dy RNAi, suggesting that dy probably acts upstream of fj and f to regulate wing morphogenesis in T. castaneum.
Collapse
Affiliation(s)
- C Li
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Ma
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - P Lü
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - K Chen
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Rizzo NP, Bejsovec A. SoxNeuro and Shavenbaby act cooperatively to shape denticles in the embryonic epidermis of Drosophila. Development 2017; 144:2248-2258. [PMID: 28506986 DOI: 10.1242/dev.150169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023]
Abstract
During development, extracellular signals are integrated by cells to induce the transcriptional circuitry that controls morphogenesis. In the fly epidermis, Wingless (Wg)/Wnt signaling directs cells to produce either a distinctly shaped denticle or no denticle, resulting in a segmental pattern of denticle belts separated by smooth, or 'naked', cuticle. Naked cuticle results from Wg repression of shavenbaby (svb), which encodes a transcription factor required for denticle construction. We have discovered that although the svb promoter responds differentially to altered Wg levels, Svb alone cannot produce the morphological diversity of denticles found in wild-type belts. Instead, a second Wg-responsive transcription factor, SoxNeuro (SoxN), cooperates with Svb to shape the denticles. Co-expressing ectopic SoxN with svb rescued diverse denticle morphologies. Conversely, removing SoxN activity eliminated the residual denticles found in svb mutant embryos. Furthermore, several known Svb target genes are also activated by SoxN, and we have discovered two novel target genes of SoxN that are expressed in denticle-producing cells and that are regulated independently of Svb. We conclude that proper denticle morphogenesis requires transcriptional regulation by both SoxN and Svb.
Collapse
Affiliation(s)
| | - Amy Bejsovec
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Wieschaus E, Nüsslein-Volhard C. The Heidelberg Screen for Pattern Mutants of Drosophila: A Personal Account. Annu Rev Cell Dev Biol 2016; 32:1-46. [PMID: 27501451 DOI: 10.1146/annurev-cellbio-113015-023138] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In large-scale mutagenesis screens performed in 1979-1980 at the EMBL in Heidelberg, we isolated mutations affecting the pattern or structure of the larval cuticle in Drosophila. The 600 mutants we characterized could be assigned to 120 genes and represent the majority of such genes in the genome. These mutants subsequently provided a rich resource for understanding many fundamental developmental processes, such as the transcriptional hierarchies controlling segmentation, the establishment of cell states by signaling pathways, and the differentiation of epithelial cells. Most of the Heidelberg genes are now molecularly known, and many of them are conserved in other animals, including humans. Although the screens were initially driven entirely by curiosity, the mutants now serve as models for many human diseases. In this review, we describe the rationale of the screening procedures and provide a classification of the genes on the basis of their initial phenotypes and the subsequent molecular analyses.
Collapse
Affiliation(s)
- Eric Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | | |
Collapse
|
7
|
Glowinski C, Liu RHS, Chen X, Darabie A, Godt D. Myosin VIIA regulates microvillus morphogenesis and interacts with cadherin Cad99C in Drosophila oogenesis. J Cell Sci 2014; 127:4821-32. [PMID: 25236597 DOI: 10.1242/jcs.099242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microvilli and related actin-based protrusions permit multiple interactions between cells and their environment. How the shape, length and arrangement of microvilli are determined remains largely unclear. To address this issue and explore the cooperation of the two main components of a microvillus, the central F-actin bundle and the enveloping plasma membrane, we investigated the expression and function of Myosin VIIA (Myo7A), which is encoded by crinkled (ck), and its interaction with cadherin Cad99C in the microvilli of the Drosophila follicular epithelium. Myo7A is present in the microvilli and terminal web of follicle cells, and associates with several other F-actin-rich structures in the ovary. Loss of Myo7A caused brush border defects and a reduction in the amount of the microvillus regulator Cad99C. We show that Myo7A and Cad99C form a molecular complex and that the cytoplasmic tail of Cad99C recruits Myo7A to microvilli. Our data indicate that Myo7A regulates the structure and spacing of microvilli, and interacts with Cad99C in vivo. A comparison of the mutant phenotypes suggests that Myo7A and Cad99C have co-dependent and independent functions in microvilli.
Collapse
Affiliation(s)
- Cory Glowinski
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Ri-Hua Sandy Liu
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Xi Chen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Audrey Darabie
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| | - Dorothea Godt
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 2M6, Canada
| |
Collapse
|
8
|
Rand MD. A method of permeabilization of Drosophila embryos for assays of small molecule activity. J Vis Exp 2014:51634. [PMID: 25046169 PMCID: PMC4214599 DOI: 10.3791/51634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Drosophila embryo has long been a powerful laboratory model for elucidating molecular and genetic mechanisms that control development. The ease of genetic manipulations with this model has supplanted pharmacological approaches that are commonplace in other animal models and cell-based assays. Here we describe recent advances in a protocol that enables application of small molecules to the developing fruit fly embryo. The method details steps to overcome the impermeability of the eggshell while maintaining embryo viability. Eggshell permeabilization across a broad range of developmental stages is achieved by application of a previously described d-limonene embryo permeabilization solvent (EPS1) and by aging embryos at reduced temperature (18 °C) prior to treatments. In addition, use of a far-red dye (CY5) as a permeabilization indicator is described, which is compatible with downstream applications involving standard red and green fluorescent dyes in live and fixed preparations. This protocol is applicable to studies using bioactive compounds to probe developmental mechanisms as well as for studies aimed at evaluating teratogenic or pharmacologic activity of uncharacterized small molecules.
Collapse
Affiliation(s)
- Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Dentistry and Medicine;
| |
Collapse
|
9
|
Bejsovec A. Wingless/Wnt signaling in Drosophila: the pattern and the pathway. Mol Reprod Dev 2013; 80:882-94. [PMID: 24038436 DOI: 10.1002/mrd.22228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/07/2013] [Indexed: 01/09/2023]
Abstract
Wnt signaling generates pattern in all animal embryos, from flies and worms to humans, and promotes the undifferentiated, proliferative state critical for stem cells in adult tissues. Inappropriate Wnt pathway activation is the major cause of colorectal cancers, a leading cause of cancer death in humans. Although this pathway has been studied extensively for years, large gaps remain in our understanding of how it switches on and off, and how its activation changes cellular behaviors. Much of what is known about the pathway comes from genetic studies in Drosophila, where a single Wnt molecule, encoded by wingless (wg), directs an array of cell-fate decisions similar to those made by the combined activities of all 19 Wnt family members in vertebrates. Although Wg specifies fate in many tissues, including the brain, limbs, and major organs, the fly embryonic epidermis has proven to be a very powerful system for dissecting pathway activity. It is a simple, accessible tissue, with a pattern that is highly sensitive to small changes in Wg pathway activity. This review discusses what we have learned about Wnt signaling from studying mutations that disrupt epidermal pattern in the fly embryo, highlights recent advances and controversies in the field, and sets these issues in the context of questions that remain about how this essential signaling pathway functions.
Collapse
Affiliation(s)
- Amy Bejsovec
- Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
10
|
Menoret D, Santolini M, Fernandes I, Spokony R, Zanet J, Gonzalez I, Latapie Y, Ferrer P, Rouault H, White KP, Besse P, Hakim V, Aerts S, Payre F, Plaza S. Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization. Genome Biol 2013; 14:R86. [PMID: 23972280 PMCID: PMC4053989 DOI: 10.1186/gb-2013-14-8-r86] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022] Open
Abstract
Background Developmental programs are implemented by regulatory interactions between Transcription Factors (TFs) and their target genes, which remain poorly understood. While recent studies have focused on regulatory cascades of TFs that govern early development, little is known about how the ultimate effectors of cell differentiation are selected and controlled. We addressed this question during late Drosophila embryogenesis, when the finely tuned expression of the TF Ovo/Shavenbaby (Svb) triggers the morphological differentiation of epidermal trichomes. Results We defined a sizeable set of genes downstream of Svb and used in vivo assays to delineate 14 enhancers driving their specific expression in trichome cells. Coupling computational modeling to functional dissection, we investigated the regulatory logic of these enhancers. Extending the repertoire of epidermal effectors using genome-wide approaches showed that the regulatory models learned from this first sample are representative of the whole set of trichome enhancers. These enhancers harbor remarkable features with respect to their functional architectures, including a weak or non-existent clustering of Svb binding sites. The in vivo function of each site relies on its intimate context, notably the flanking nucleotides. Two additional cis-regulatory motifs, present in a broad diversity of composition and positioning among trichome enhancers, critically contribute to enhancer activity. Conclusions Our results show that Svb directly regulates a large set of terminal effectors of the remodeling of epidermal cells. Further, these data reveal that trichome formation is underpinned by unexpectedly diverse modes of regulation, providing fresh insights into the functional architecture of enhancers governing a terminal differentiation program.
Collapse
|