1
|
Zhang Z, Liu Y, Liang N, Yu Z, Deme L, Xu D, Liu J, Ren W, Xu S, Yang G. Functional evidence supports the potential role of Tbx4-HLEA in the hindlimb degeneration of cetaceans. EvoDevo 2025; 16:3. [PMID: 40121501 PMCID: PMC11929173 DOI: 10.1186/s13227-025-00239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
The evolution of limb morphology plays an important role in animal adaptation to different ecological niches. To fully adapt to aquatic life, cetaceans underwent hindlimb degeneration and forelimb transformed into flipper; however, the molecular mechanisms underlying the limb changes in cetaceans remain unclear. We previous study had shown that the Tbx4 hindlimb enhancer A (Tbx4-HLEA) in cetaceans exhibited specific deletions and nucleotide substitutions, with significantly reduced regulatory activity. To further investigate whether cetacean HLEA has a potential impact on hindlimb development in vivo, a knock-in mouse model was generated by knocking in the homologous cetacean HLEA in the present study. Phenotypic analysis showed a significant reduction in hindlimb bud development in homozygous knock-in mice at embryonic day (E)10.5; however, the phenotypic difference was rescued after E11.5. Transcriptomic and epigenetic analyses indicated that the cetacean HLEA acts as an enhancer in the mouse embryos and significantly reduces the transcriptional expression levels of Tbx4 at E10.5, supporting that downregulation of cetaceans HLEA regulatory activity reduces the expression of Tbx4. Additionally, both the number of activated non-coding elements and chromatin accessibility near Tbx4 were increased in homozygous knock-in mice at E11.5. The functional redundancy of enhancers compensated for the functional defect of cetacean HLEA, rescuing the expression level of Tbx4, and may account for the phenotype restoration after E11.5. In conclusion, our study suggested that the evolution of cetacean HLEA may be an important link with relevant molecular mechanism for the hindlimb degeneration.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yao Liu
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Na Liang
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Luoying Deme
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Duo Xu
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jia Liu
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Guang Yang
- Jiangsu Key Laboratory for the Conservation and Utilization of Biodiversity in the Middle and Lower Reaches of the Yangtze River, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
2
|
Zhu J, Zhong X, He H, Cao J, Zhou Z, Dong J, Li H, Zhang A, Lyu Y, Li C, Guan J, Deng H. Generation of human expandable limb-bud-like progenitors via chemically induced dedifferentiation. Cell Stem Cell 2024; 31:1732-1740.e6. [PMID: 39442525 DOI: 10.1016/j.stem.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/15/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
In certain highly regenerative animals, cellular dedifferentiation occurs after injury, allowing specialized cells to become progenitor cells for regeneration. However, this capacity is restricted in human cells due to reduced plasticity. Here, we introduce a chemical-induced dedifferentiation approach that reverts the differentiated cells to a progenitor-like state, conferring the features of human limb bud cells from human adult somatic cells. These chemically induced human limb-bud-like progenitors (hCiLBP cells) show a high degree of transcriptomic similarity to human embryonic limb bud progenitors. Importantly, we established culture conditions that allow hCiLBP cells to undergo extensive expansion while maintaining population homogeneity and long-term self-renewal capacity. Moreover, hCiLBP cells exhibit increased osteochondrogenic differentiation ability, providing an innovative platform for generation of skeletal lineage cell types. These results highlight a potential therapeutic approach for repairing damaged human tissues through reversal of developmental pathways from mature cells to expandable progenitor cells.
Collapse
Affiliation(s)
- Jialiang Zhu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; BeiCell Therapeutics, Beijing, China; BeiCell Therapeutics, Suzhou, China
| | - Xinxing Zhong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huanjing He
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jingxiao Cao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Zhengyang Zhou
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jiebin Dong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Honggang Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Anqi Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yulin Lyu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Jingyang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Ningbo Institute of Marine Medicine, Peking University, Beijing, China.
| | - Hongkui Deng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
3
|
Zhu M, Catta-Preta R, Lee C, Tabin C. Shifts in embryonic oxygen levels cue heterochrony in limb initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620348. [PMID: 39484532 PMCID: PMC11527133 DOI: 10.1101/2024.10.25.620348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Heterochrony, or the alteration of developmental timing, is an important mechanism of evolutionary change. Avian species display synchronized growth of the forelimbs and hindlimbs, while mammalian species show delayed hindlimb development. We find that mammalian limb heterochrony is evident from the start of limb bud formation, and is associated with heterochronic expression of T-box transcription factors. This heterochronic shift is not due to changes in cis-regulatory sequences controlling T-box gene expression, but unexpectedly, is dependent upon differential oxygen levels to which avian and mammalian embryos are exposed prior to limb initiation, mediated, at least partially, by an NFKB transcription factor, cRel. Together, these results provide mechanistic understanding of an important example of developmental heterochrony and exemplify how the maternal environment regulates timing during embryonic development.
Collapse
|
4
|
Chen KQ, Kawakami H, Anderson A, Corcoran D, Soni A, Nishinakamura R, Kawakami Y. Sall genes regulate hindlimb initiation in mouse embryos. Genetics 2024; 227:iyae029. [PMID: 38386912 PMCID: PMC11075541 DOI: 10.1093/genetics/iyae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Vertebrate limbs start to develop as paired protrusions from the lateral plate mesoderm at specific locations of the body with forelimb buds developing anteriorly and hindlimb buds posteriorly. During the initiation process, limb progenitor cells maintain active proliferation to form protrusions and start to express Fgf10, which triggers molecular processes for outgrowth and patterning. Although both processes occur in both types of limbs, forelimbs (Tbx5), and hindlimbs (Isl1) utilize distinct transcriptional systems to trigger their development. Here, we report that Sall1 and Sall4, zinc finger transcription factor genes, regulate hindlimb initiation in mouse embryos. Compared to the 100% frequency loss of hindlimb buds in TCre; Isl1 conditional knockouts, Hoxb6Cre; Isl1 conditional knockout causes a hypomorphic phenotype with only approximately 5% of mutants lacking the hindlimb. Our previous study of SALL4 ChIP-seq showed SALL4 enrichment in an Isl1 enhancer, suggesting that SALL4 acts upstream of Isl1. Removing 1 allele of Sall4 from the hypomorphic Hoxb6Cre; Isl1 mutant background caused loss of hindlimbs, but removing both alleles caused an even higher frequency of loss of hindlimbs, suggesting a genetic interaction between Sall4 and Isl1. Furthermore, TCre-mediated conditional double knockouts of Sall1 and Sall4 displayed a loss of expression of hindlimb progenitor markers (Isl1, Pitx1, Tbx4) and failed to develop hindlimbs, demonstrating functional redundancy between Sall1 and Sall4. Our data provides genetic evidence that Sall1 and Sall4 act as master regulators of hindlimb initiation.
Collapse
Affiliation(s)
- Katherine Q Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aaron Anderson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aditi Soni
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Pratiwi HM, Hirasawa M, Kato K, Munakata K, Ueda S, Moriyama Y, Yu R, Kawanishi T, Tanaka M. Heterochronic development of pelvic fins in zebrafish: possible involvement of temporal regulation of pitx1 expression. Front Cell Dev Biol 2023; 11:1170691. [PMID: 37691823 PMCID: PMC10483283 DOI: 10.3389/fcell.2023.1170691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Anterior and posterior paired appendages of vertebrates are notable examples of heterochrony in the relative timing of their development. In teleosts, posterior paired appendages (pelvic fin buds) emerge much later than their anterior paired appendages (pectoral fin buds). Pelvic fin buds of zebrafish (Danio rerio) appear at 3 weeks post-fertilization (wpf) during the larva-to-juvenile transition (metamorphosis), whereas pectoral fin buds arise from the lateral plate mesoderm on the yolk surface at the embryonic stage. Here we explored the mechanism by which presumptive pelvic fin cells maintain their fate, which is determined at the embryonic stage, until the onset of metamorphosis. Expression analysis revealed that transcripts of pitx1, one of the key factors for the development of posterior paired appendages, became briefly detectable in the posterior lateral plate mesoderm at early embryonic stages. Further analysis indicated that the pelvic fin-specific pitx1 enhancer was in the poised state at the larval stage and is activated at the juvenile stage. We discuss the implications of these findings for the heterochronic development of pelvic fin buds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
6
|
Identification of Transcription Factor Networks during Mouse Hindlimb Development. Cells 2022; 12:cells12010028. [PMID: 36611822 PMCID: PMC9818828 DOI: 10.3390/cells12010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mammalian hindlimb development involves a variety of cells and the regulation of spatiotemporal molecular events, but regulatory networks of transcription factors contributing to hindlimb morphogenesis are not well understood. Here, we identified transcription factor networks during mouse hindlimb morphology establishment through transcriptome analysis. We used four stages of embryonic hindlimb transcription profiles acquired from the Gene Expression Omnibus database (GSE30138), including E10.5, E11.5, E12.5 and E13.5, to construct a gene network using Weighted Gene Co-expression Network Analysis (WGCNA), and defined seven stage-associated modules. After filtering 7625 hub genes, we further prioritized 555 transcription factors with AnimalTFDB3.0. Gene ontology enrichment showed that transcription factors of different modules were enriched in muscle tissue development, connective tissue development, embryonic organ development, skeletal system morphogenesis, pattern specification process and urogenital system development separately. Six regulatory networks were constructed with key transcription factors, which contribute to the development of different tissues. Knockdown of four transcription factors from regulatory networks, including Sox9, Twist1, Snai2 and Klf4, showed that the expression of limb-development-related genes was also inhibited, which indicated the crucial role of transcription factor networks in hindlimb development.
Collapse
|
7
|
The molecular genetics of human appendicular skeleton. Mol Genet Genomics 2022; 297:1195-1214. [PMID: 35907958 DOI: 10.1007/s00438-022-01930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
Disorders that result from de-arrangement of growth, development and/or differentiation of the appendages (limbs and digit) are collectively called as inherited abnormalities of human appendicular skeleton. The bones of appendicular skeleton have central role in locomotion and movement. The different types of appendicular skeletal abnormalities are well described in the report of "Nosology and Classification of Genetic skeletal disorders: 2019 Revision". In the current article, we intend to present the embryology, developmental pathways, disorders and the molecular genetics of the appendicular skeletal malformations. We mainly focused on the polydactyly, syndactyly, brachydactyly, split-hand-foot malformation and clubfoot disorders. To our knowledge, only nine genes of polydactyly, five genes of split-hand-foot malformation, nine genes for syndactyly, eight genes for brachydactyly and only single gene for clubfoot have been identified to be involved in disease pathophysiology. The current molecular genetic data will help life sciences researchers working on the rare skeletal disorders. Moreover, the aim of present systematic review is to gather the published knowledge on molecular genetics of appendicular skeleton, which would help in genetic counseling and molecular diagnosis.
Collapse
|
8
|
Tarsis K, Gildor T, Morgulis M, Ben-Tabou de-Leon S. Distinct regulatory states control the elongation of individual skeletal rods in the sea urchin embryo. Dev Dyn 2022; 251:1322-1339. [PMID: 35403290 PMCID: PMC9543741 DOI: 10.1002/dvdy.474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Background Understanding how gene regulatory networks (GRNs) control developmental progression is a key to the mechanistic understanding of morphogenesis. The sea urchin larval skeletogenesis provides an excellent platform to tackle this question. In the early stages of sea urchin skeletogenesis, skeletogenic genes are uniformly expressed in the skeletogenic lineage. Yet, during skeletal elongation, skeletogenic genes are expressed in distinct spatial sub‐domains. The regulation of differential gene expression during late skeletogenesis is not well understood. Results Here we reveal the dynamic expression of the skeletogenic regulatory genes that define a specific regulatory state for each pair of skeletal rods, in the sea urchin Paracentrotus lividus. The vascular endothelial growth factor (VEGF) signaling, essential for skeleton formation, specifically controls the migration of cells that form the postoral and distal anterolateral skeletogenic rods. VEGF signaling also controls the expression of regulatory genes in cells at the tips of the postoral rods, including the transcription factors Pitx1 and MyoD1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes. Conclusions Our study illuminates the fine‐tuning of the regulatory system during the transition from early to late skeletogenesis that gives rise to rod‐specific regulatory states. The skeletogenic transcription factors form specific regulatory states in various skeletogenic sub‐populations. Late VEGF signaling controls the regulatory states at the tips of the post‐oral and anterolateral skeletal rods. VEGF signaling controls the expression of the transcription factors, MyoD1 and Pitx1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes.
Collapse
Affiliation(s)
- Kristina Tarsis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Miri Morgulis
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
MILLAN CLARO LUISFELIPE, MÁRQUEZ FLÓREZ KALENIA, DUQUE-DAZA CARLOSA, GARZÓN-ALVARADO DIEGOA. THREE-DIMENSIONAL COMPUTATIONAL MODEL OF EARLY UPPER LIMB DEVELOPMENT. J MECH MED BIOL 2021. [DOI: 10.1142/s021951942250004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Limb development begins during embryogenesis when a series of biochemical interactions are triggered between a particular region of the mesoderm and the ectoderm. These processes affect the morphogenesis and growth of bones, joints, and all the other constituent elements of limbs; nevertheless, how the biochemical regulation affects mesenchymal condensation is not entirely clear. In this study, a three-dimensional computational model is designed to predict the appearance and location of the mesenchymal condensation in the stylopod and zeugopod; the biochemical events were described with reaction–diffusion equations that were solved using the finite elements method. The result of the gene expression in our model was consistent with the one reported in literature; the obtained patterns of Fgf8, Fgf10, and Wnt3a can predict the shape of the mesenchymal condensation of early upper limb development; the simple diffusive patterns of molecules were suitable to explain the areas where sox9 is expressed. Furthermore, our results suggest that the expression of Tgf-[Formula: see text] in the upper limb could be due to the inhibition of retinoic acid. These results suggest the importance of building computational scenarios where pathologies may be comprehensively examined.
Collapse
Affiliation(s)
| | | | - CARLOS A. DUQUE-DAZA
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - DIEGO A. GARZÓN-ALVARADO
- Numerical Methods and Modeling Research Group (GNUM), Biotechnology Institute (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Cell-specific alterations in Pitx1 regulatory landscape activation caused by the loss of a single enhancer. Nat Commun 2021; 12:7235. [PMID: 34903763 PMCID: PMC8668926 DOI: 10.1038/s41467-021-27492-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Developmental genes are frequently controlled by multiple enhancers sharing similar specificities. As a result, deletions of such regulatory elements have often failed to reveal their full function. Here, we use the Pitx1 testbed locus to characterize in detail the regulatory and cellular identity alterations following the deletion of one of its enhancers (Pen). By combining single cell transcriptomics and an in-embryo cell tracing approach, we observe an increased fraction of Pitx1 non/low-expressing cells and a decreased fraction of Pitx1 high-expressing cells. We find that the over-representation of Pitx1 non/low-expressing cells originates from a failure of the Pitx1 locus to coordinate enhancer activities and 3D chromatin changes. This locus mis-activation induces a localized heterochrony and a concurrent loss of irregular connective tissue, eventually leading to a clubfoot phenotype. This data suggests that, in some cases, redundant enhancers may be used to locally enforce a robust activation of their host regulatory landscapes.
Collapse
|
11
|
Swank S, Sanger TJ, Stuart YE. (Non)Parallel developmental mechanisms in vertebrate appendage reduction and loss. Ecol Evol 2021; 11:15484-15497. [PMID: 34824770 PMCID: PMC8601893 DOI: 10.1002/ece3.8226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 01/16/2023] Open
Abstract
Appendages have been reduced or lost hundreds of times during vertebrate evolution. This phenotypic convergence may be underlain by shared or different molecular mechanisms in distantly related vertebrate clades. To investigate, we reviewed the developmental and evolutionary literature of appendage reduction and loss in more than a dozen vertebrate genera from fish to mammals. We found that appendage reduction and loss was nearly always driven by modified gene expression as opposed to changes in coding sequences. Moreover, expression of the same genes was repeatedly modified across vertebrate taxa. However, the specific mechanisms by which expression was modified were rarely shared. The multiple routes to appendage reduction and loss suggest that adaptive loss of function phenotypes might arise routinely through changes in expression of key developmental genes.
Collapse
Affiliation(s)
- Samantha Swank
- Department of BiologyLoyola University ChicagoChicagoIllinoisUSA
| | - Thomas J. Sanger
- Department of BiologyLoyola University ChicagoChicagoIllinoisUSA
| | - Yoel E. Stuart
- Department of BiologyLoyola University ChicagoChicagoIllinoisUSA
| |
Collapse
|
12
|
Duboc V, Sulaiman FA, Feneck E, Kucharska A, Bell D, Holder-Espinasse M, Logan MPO. Tbx4 function during hindlimb development reveals a mechanism that explains the origins of proximal limb defects. Development 2021; 148:271903. [PMID: 34423345 PMCID: PMC8497778 DOI: 10.1242/dev.199580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
We dissect genetically a gene regulatory network that involves the transcription factors Tbx4, Pitx1 and Isl1 acting cooperatively to establish the hindlimb bud, and identify key differences in the pathways that initiate formation of the hindlimb and forelimb. Using live image analysis of murine limb mesenchyme cells undergoing chondrogenesis in micromass culture, we distinguish a series of changes in cellular behaviours and cohesiveness that are required for chondrogenic precursors to undergo differentiation. Furthermore, we provide evidence that the proximal hindlimb defects observed in Tbx4 mutant mice result from a failure in the early differentiation step of chondroprogenitors into chondrocytes, providing an explanation for the origins of proximally biased limb defects.
Collapse
Affiliation(s)
- Veronique Duboc
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Fatima A Sulaiman
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Eleanor Feneck
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Anna Kucharska
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Donald Bell
- Light Microscopy, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Malcolm P O Logan
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
13
|
Royle SR, Tabin CJ, Young JJ. Limb positioning and initiation: An evolutionary context of pattern and formation. Dev Dyn 2021; 250:1264-1279. [PMID: 33522040 PMCID: PMC10623539 DOI: 10.1002/dvdy.308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Before limbs or fins, can be patterned and grow they must be initiated. Initiation of the limb first involves designating a portion of lateral plate mesoderm along the flank as the site of the future limb. Following specification, a myriad of cellular and molecular events interact to generate a bud that will grow and form the limb. The past three decades has provided a wealth of understanding on how those events generate the limb bud and how variations in them result in different limb forms. Comparatively, much less attention has been given to the earliest steps of limb formation and what impacts altering the position and initiation of the limb have had on evolution. Here, we first review the processes and pathways involved in these two phases of limb initiation, as determined from amniote model systems. We then broaden our scope to examine how variation in the limb initiation module has contributed to biological diversity in amniotes. Finally, we review what is known about limb initiation in fish and amphibians, and consider what mechanisms are conserved across vertebrates.
Collapse
Affiliation(s)
- Samantha R Royle
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John J Young
- Department of Biology, Simmons University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
15
|
Newton AH, Smith CA. Regulation of vertebrate forelimb development and wing reduction in the flightless emu. Dev Dyn 2021; 250:1248-1263. [PMID: 33368781 DOI: 10.1002/dvdy.288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
The vertebrate limb is a dynamic structure which has evolved into many diverse forms to facilitate complex behavioral adaptations. The principle molecular and cellular processes that underlie development of the vertebrate limb are well characterized. However, how these processes are altered to drive differential limb development between vertebrates is less well understood. Several vertebrate models are being utilized to determine the developmental basis of differential limb morphogenesis, though these typically focus on later patterning of the established limb bud and may not represent the complete developmental trajectory. Particularly, heterochronic limb development can occur prior to limb outgrowth and patterning but receives little attention. This review summarizes the genetic regulation of vertebrate forelimb diversity, with particular focus on wing reduction in the flightless emu as a model for examining limb heterochrony. These studies highlight that wing reduction is complex, with heterochronic cellular and genetic events influencing the major stages of limb development. Together, these studies provide a broader picture of how different limb morphologies may be established during development.
Collapse
Affiliation(s)
- Axel H Newton
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Byun JS, Oh M, Lee S, Gil JE, Mo Y, Ku B, Kim WK, Oh KJ, Lee EW, Bae KH, Lee SC, Han BS. The transcription factor PITX1 drives astrocyte differentiation by regulating the SOX9 gene. J Biol Chem 2020; 295:13677-13690. [PMID: 32759168 DOI: 10.1074/jbc.ra120.013352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Astrocytes perform multiple essential functions in the developing and mature brain, including regulation of synapse formation, control of neurotransmitter release and uptake, and maintenance of extracellular ion balance. As a result, astrocytes have been implicated in the progression of neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Despite these critical functions, the study of human astrocytes can be difficult because standard differentiation protocols are time-consuming and technically challenging, but a differentiation protocol recently developed in our laboratory enables the efficient derivation of astrocytes from human embryonic stem cells. We used this protocol along with microarrays, luciferase assays, electrophoretic mobility shift assays, and ChIP assays to explore the genes involved in astrocyte differentiation. We demonstrate that paired-like homeodomain transcription factor 1 (PITX1) is critical for astrocyte differentiation. PITX1 overexpression induced early differentiation of astrocytes, and its knockdown blocked astrocyte differentiation. PITX1 overexpression also increased and PITX1 knockdown decreased expression of sex-determining region Y box 9 (SOX9), known initiator of gliogenesis, during early astrocyte differentiation. Moreover, we determined that PITX1 activates the SOX9 promoter through a unique binding motif. Taken together, these findings indicate that PITX1 drives astrocyte differentiation by sustaining activation of the SOX9 promoter.
Collapse
Affiliation(s)
- Jeong Su Byun
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Mihee Oh
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Seonha Lee
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung-Eun Gil
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yeajin Mo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Won-Kon Kim
- Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Baek-Soo Han
- Biodefence Research Center, Korea Research Institute of Bioscience and Biotechnology, Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Functional Genomics, University of Science and Technology of Korea, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Abstract
The vertebrate limb continues to serve as an influential model of growth, morphogenesis and pattern formation. With this Review, we aim to give an up-to-date picture of how a population of undifferentiated cells develops into the complex pattern of the limb. Focussing largely on mouse and chick studies, we concentrate on the positioning of the limbs, the formation of the limb bud, the establishment of the principal limb axes, the specification of pattern, the integration of pattern formation with growth and the determination of digit number. We also discuss the important, but little understood, topic of how gene expression is interpreted into morphology.
Collapse
Affiliation(s)
- Caitlin McQueen
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Matthew Towers
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
18
|
Morel G, Duhamel C, Boussion S, Frénois F, Lesca G, Chatron N, Labalme A, Sanlaville D, Edery P, Thevenon J, Faivre L, Fassier A, Prodhomme O, Escande F, Manouvrier S, Petit F, Geneviève D, Rossi M. Mandibular-pelvic-patellar syndrome is a novel PITX1-related disorder due to alteration of PITX1 transactivation ability. Hum Mutat 2020; 41:1499-1506. [PMID: 32598510 DOI: 10.1002/humu.24070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 02/03/2023]
Abstract
PITX1 is a homeobox transcription factor essential for hindlimb morphogenesis. Two PITX1-related human disorders have been reported to date: PITX1 ectopic expression causes Liebenberg syndrome, characterized by malformation of upper limbs showing a "lower limb" appearance; PITX1 deletions or missense variation cause a syndromic picture including clubfoot, tibial hemimelia, and preaxial polydactyly. We report two novel PITX1 missense variants, altering PITX1 transactivation ability, in three individuals from two unrelated families showing a distinct recognizable autosomal dominant syndrome, including first branchial arch, pelvic, patellar, and male genital abnormalities. This syndrome shows striking similarities with the Pitx1-/- mouse model. A partial phenotypic overlap is also observed with Ischiocoxopodopatellar syndrome caused by TBX4 haploinsufficiency, and with the phenotypic spectrum caused by SOX9 anomalies, both genes being PITX1 downstream targets. Our study findings expand the spectrum of PITX1-related disorders and suggest a common pattern of developmental abnormalities in disorders of the PITX1-TBX4-SOX9 signaling pathway.
Collapse
Affiliation(s)
- Godelieve Morel
- Service de Génétique, Centre de compétences Anomalies du Développement, CHU de Nice, Nice, France.,Service de Génétique, Centre de Référence Anomalies du Développement et Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France
| | | | | | | | - Gaetan Lesca
- Service de Génétique, Centre de Référence Anomalies du Développement et Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Bron, France
| | - Nicolas Chatron
- Service de Génétique, Centre de Référence Anomalies du Développement et Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Bron, France
| | - Audrey Labalme
- Service de Génétique, Centre de Référence Anomalies du Développement et Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France
| | - Damien Sanlaville
- Service de Génétique, Centre de Référence Anomalies du Développement et Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Bron, France
| | - Patrick Edery
- Service de Génétique, Centre de Référence Anomalies du Développement et Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Bron, France
| | | | - Laurence Faivre
- Service de Génétique, Centre de Référence Anomalies du Développement, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon, and Inserm - Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Dijon, France
| | - Alice Fassier
- Service d'orthopédie pédiatrique, Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France
| | - Olivier Prodhomme
- Service d'imagerie pédiatrique, Hôpital Arnaud de Villeneuve, CHU Montpellier, France
| | - Fabienne Escande
- Université de Lille, Lille, France.,Institut de Biochimie et Génétique moléculaire, CBP, CHU de Lille, France
| | - Sylvie Manouvrier
- Université de Lille, Lille, France.,CHU Lille, Clinique de Génétique, Hôpital Jeanne de Flandre, Lille, France
| | - Florence Petit
- Université de Lille, Lille, France.,CHU Lille, Clinique de Génétique, Hôpital Jeanne de Flandre, Lille, France
| | - David Geneviève
- Département de Génétique, IRMB, Maladies Rares et Médecine Personnalisée, Centre de Référence Maladies Rares ADSOOR, Filière AnDDI-Rare, INSERM U1183, CHU Montpellier, Université Montpellier, Montpellier, France
| | - Massimiliano Rossi
- Service de Génétique, Centre de Référence Anomalies du Développement et Centre de Compétences Maladies Osseuses Constitutionnelles, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Bron, France
| |
Collapse
|
19
|
Diogo R. Cranial or postcranial—Dual origin of the pectoral appendage of vertebrates combining the fin‐fold and gill‐arch theories? Dev Dyn 2020; 249:1182-1200. [DOI: 10.1002/dvdy.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rui Diogo
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| |
Collapse
|
20
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Curr Top Dev Biol 2020; 139:61-88. [DOI: 10.1016/bs.ctdb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Kjosness KM, Reno PL. Identifying the homology of the short human pisiform and its lost ossification center. EvoDevo 2019; 10:32. [PMID: 31788181 PMCID: PMC6876086 DOI: 10.1186/s13227-019-0145-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
Background The pisiform and calcaneus are paralogous bones of the wrist and ankle and are the only carpal and tarsal, respectively, to develop from two ossification centers with an associated growth plate in mammals. Human pisiforms and calcanei have undergone drastic evolutionary changes since our last common ancestor with chimpanzees and bonobos. The human pisiform is truncated and has lost an ossification center with the associated growth plate, while the human calcaneus has expanded and retained two ossification centers and a growth plate. Mammalian pisiforms represent a wide range of morphologies but extremely short pisiforms are rare and ossification center loss is even rarer. This raises the question of whether the sole human pisiform ossification center is homologous to the primary center or the secondary center of other species. We performed an ontogenetic study of pisiform and calcaneus ossification patterns and timing in macaques, apes, and humans (n = 907) from museum skeletal collections to address this question. Results Human pisiforms ossify irregularly and lack characteristic features of other primates while they develop. Pisiform primary and secondary center ossification timing typically matches that of the calcaneus of non-human primates, while the human pisiform corresponds with calcaneal secondary center ossification. Finally, human pisiforms ossify at the same dental stages as pisiform and calcaneal secondary centers in other hominoids. Conclusions These data indicate that the human pisiform is homologous to the pisiform epiphysis of other species, and that humans have lost a primary ossification center and associated growth plate while retaining ossification timing of the secondary center. This represents an exceptional evolutionary event and demonstrates a profound developmental change in the human wrist that is unusual not only among primates, but among mammals.
Collapse
Affiliation(s)
- Kelsey M Kjosness
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131 USA
| | - Philip L Reno
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131 USA
| |
Collapse
|
23
|
Pigeon foot feathering reveals conserved limb identity networks. Dev Biol 2019; 454:128-144. [PMID: 31247188 DOI: 10.1016/j.ydbio.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.
Collapse
|
24
|
Yip RK, Chan D, Cheah KS. Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 2019; 133:343-385. [DOI: 10.1016/bs.ctdb.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Raju R, Chau D, Notelaers T, Myers CL, Verfaillie CM, Hu WS. In Vitro Pluripotent Stem Cell Differentiation to Hepatocyte Ceases Further Maturation at an Equivalent Stage of E15 in Mouse Embryonic Liver Development. Stem Cells Dev 2018; 27:910-921. [PMID: 29851366 DOI: 10.1089/scd.2017.0270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte-like cells (HLCs) can be derived from pluripotent stem cells (PSCs) by sequential treatment of chemical cues to mimic the microenvironment of embryonic liver development. However, these HLCs do not reach the full maturity level of primary hepatocytes. In this study, we carried out a meta-analysis of cross-species transcriptome data of in vitro differentiation of human PSCs to HLCs and in vivo mouse embryonic liver development to identify the developmental stage at which HLC maturation was blocked at. Systematic variations were found associated with the data source and removed by batch correction. Using principal component analysis, HLCs from different stages of differentiation were aligned with mouse embryonic liver development chronologically. A "unified developmental time" (DT) scale was developed after aligning in vitro HLC differentiation and in vivo embryonic liver development. HLCs were found to cease further maturation at an equivalent stage of mouse embryonic day (E)13-15. Genes with discordant time dynamics were identified by aligning in vivo and in vitro data set onto a common DT scale. These genes may be targets of genetic intervention for enhancing the maturity of PSC-derived HLCs.
Collapse
Affiliation(s)
- Ravali Raju
- 1 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota.,2 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota
| | - David Chau
- 1 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota.,2 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota.,3 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Tineke Notelaers
- 4 Department of Development and Regeneration, KU Leuven , Leuven, Belgium .,5 Stem Cell Institute Leuven , KU Leuven, Leuven, Belgium
| | - Chad L Myers
- 6 Department of Computer Science and Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Catherine M Verfaillie
- 4 Department of Development and Regeneration, KU Leuven , Leuven, Belgium .,5 Stem Cell Institute Leuven , KU Leuven, Leuven, Belgium
| | - Wei-Shou Hu
- 1 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota.,2 Stem Cell Institute, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
26
|
Wang JS, Infante CR, Park S, Menke DB. PITX1 promotes chondrogenesis and myogenesis in mouse hindlimbs through conserved regulatory targets. Dev Biol 2017; 434:186-195. [PMID: 29273440 DOI: 10.1016/j.ydbio.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
The PITX1 transcription factor is expressed during hindlimb development, where it plays a critical role in directing hindlimb growth and the specification of hindlimb morphology. While it is known that PITX1 regulates hindlimb formation, in part, through activation of the Tbx4 gene, other transcriptional targets remain to be elucidated. We have used a combination of ChIP-seq and RNA-seq to investigate enhancer regions and target genes that are directly regulated by PITX1 in embryonic mouse hindlimbs. In addition, we have analyzed PITX1 binding sites in hindlimbs of Anolis lizards to identify ancient PITX1 regulatory targets. We find that PITX1-bound regions in both mouse and Anolis hindlimbs are strongly associated with genes implicated in limb and skeletal system development. Gene expression analyses reveal a large number of misexpressed genes in the hindlimbs of Pitx1-/- mouse embryos. By intersecting misexpressed genes with genes that have neighboring mouse PITX1 binding sites, we identified 440 candidate targets of PITX1. Of these candidates, 68 exhibit ultra-conserved PITX1 binding events that are shared between mouse and Anolis hindlimbs. Among the ancient targets of PITX1 are important regulators of cartilage and skeletal muscle development, including Sox9 and Six1. Our data suggest that PITX1 promotes chondrogenesis and myogenesis in the hindlimb by direct regulation of several key members of the cartilage and muscle transcriptional networks.
Collapse
Affiliation(s)
- Jialiang S Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Carlos R Infante
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Chen Y, Xu H, Lin G. Generation of iPSC-derived limb progenitor-like cells for stimulating phalange regeneration in the adult mouse. Cell Discov 2017; 3:17046. [PMID: 29263795 PMCID: PMC5735367 DOI: 10.1038/celldisc.2017.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/08/2017] [Indexed: 01/17/2023] Open
Abstract
The capacity of digit tip regeneration observed both in rodents and humans establishes a foundation for promoting robust regeneration in mammals. However, stimulating regeneration at more proximal levels, such as the middle phalanges (P2) of the adult mouse, remains challenging. Having shown the effectiveness of transplantation of limb progenitor cells in stimulating limb regeneration in Xenopus, we are now applying the cell transplantation approach to the adult mouse. Here we report that both embryonic and induced pluripotent stem cell (iPSC)-derived limb progenitor-like cells can promote adult mouse P2 regeneration. We have established a simple and efficient protocol for deriving limb progenitor-like cells from mouse iPSCs. iPSCs are cultured as three-dimensional fibrin bodies, followed by treatment with combinations of Fgf8, CHIR99021, Purmorphamine and SB43542 during differentiation. These iPSC-derived limb progenitor-like cells resemble embryonic limb mesenchyme cells in their expression of limb-related genes. After transplantation, the limb progenitor-like cells can promote adult mouse P2 regeneration, as embryonic limb bud cells do. Our results provide a basis for further developing progenitor cell-based approaches for improving regeneration in the adult mouse limbs.
Collapse
Affiliation(s)
- Ying Chen
- Department of Genetics Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hanqian Xu
- Research Centre for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Department of Genetics Cell Biology and Development, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
- Research Centre for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Melville J, Hunjan S, McLean F, Mantziou G, Boysen K, Parry LJ. Expression of a hindlimb-determining factor Pitx1 in the forelimb of the lizard Pogona vitticeps during morphogenesis. Open Biol 2017; 6:rsob.160252. [PMID: 27784790 PMCID: PMC5090065 DOI: 10.1098/rsob.160252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022] Open
Abstract
With over 9000 species, squamates, which include lizards and snakes, are the largest group of reptiles and second-largest order of vertebrates, spanning a vast array of appendicular skeletal morphology. As such, they provide a promising system for examining developmental and molecular processes underlying limb morphology. Using the central bearded dragon (Pogona vitticeps) as the primary study model, we examined limb morphometry throughout embryonic development and characterized the expression of three known developmental genes (GHR, Pitx1 and Shh) from early embryonic stage through to hatchling stage via reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). In this study, all genes were found to be transcribed in both the forelimbs and hindlimbs of P. vitticeps. While the highest level of GHR expression occurred at the hatchling stage, Pitx1 and Shh expression was greatest earlier during embryogenesis, which coincides with the onset of the differentiation between forelimb and hindlimb length. We compared our finding of Pitx1 expression—a hindlimb-determining gene—in the forelimbs of P. vitticeps to that in a closely related Australian agamid lizard, Ctenophorus pictus, where we found Pitx1 expression to be more highly expressed in the hindlimb compared with the forelimb during early and late morphogenesis—a result consistent with that found across other tetrapods. Expression of Pitx1 in forelimbs has only rarely been documented, including via in situ hybridization in a chicken and a frog. Our findings from both RT-qPCR and IHC indicate that further research across a wider range of tetrapods is needed to more fully understand evolutionary variation in molecular processes underlying limb morphology.
Collapse
Affiliation(s)
| | | | | | | | - Katja Boysen
- Museum Victoria, Carlton, Victoria 3001, Australia
| | - Laura J Parry
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
29
|
Currey MC, Bassham S, Perry S, Cresko WA. Developmental timing differences underlie armor loss across threespine stickleback populations. Evol Dev 2017; 19:231-243. [PMID: 29115024 DOI: 10.1111/ede.12242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Comparing ontogenetic patterns within a well-described evolutionary context aids in inferring mechanisms of change, including heterochronies or deletion of developmental pathways. Because selection acts on phenotypes throughout ontogeny, any within-taxon developmental variation has implications for evolvability. We compare ontogenetic order and timing of locomotion and defensive traits in three populations of threespine stickleback that have evolutionarily divergent adult forms. This analysis adds to the growing understanding of developmental genetic mechanisms of adaptive change in this evolutionary model species by delineating when chondrogenesis and osteogenesis in two derived populations begin to deviate from the developmental pattern in their immediate ancestors. We found that differences in adult defensive morphologies arise through abolished or delayed initiation of these traits rather than via an overall heterochronic shift, that intra-population ontogenetic variation is increased for some derived traits, and that altered armor developmental timing differentiates the derived populations from each other despite parallels in adult lateral plate armor phenotypes. We found that changes in ossified elements of the pelvic armor are linked to delayed and incomplete development of an early-forming pelvic cartilage, and that this disruption likely presages the variable pelvic vestiges documented in many derived populations.
Collapse
Affiliation(s)
- Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Stephen Perry
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| |
Collapse
|
30
|
Basit S, Khoshhal KI. Genetics of clubfoot; recent progress and future perspectives. Eur J Med Genet 2017; 61:107-113. [PMID: 28919208 DOI: 10.1016/j.ejmg.2017.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022]
Abstract
Clubfoot or talipes equinovarus (TEV) is an inborn three-dimensional deformity of leg, ankle and foot. It results from structural defects of several tissues of foot and lower leg leading to abnormal positioning of foot and ankle joints. TEV can lead to long-lasting functional disability, malformation and discomfort if left untreated. Substantial progress has been achieved in the management and diagnosis of limb defects; however, not much is known about the molecular players and signalling pathways underlying TEV disorder. The homeostasis and development of the limb depends on the complex interactions between the lateral plate mesoderm cells and outer ectoderm. These complex interactions include HOX signalling and PITX1-TBX4 pathways. The susceptibility to develop TEV is determined by a number of environmental and genetic factors, although the nature and level of interplay between them remains unclear. Familial occurrence and inter and intra phenotypic variability of TEV is well documented. Variants in genes that code for contractile proteins of skeletal myofibers might play a role in the aetiology of TEV but, to date, no strong candidate genes conferring increased risk have emerged, although variants in TBX4, PITX1, HOXA, HOXC and HOXD clusters genes, NAT2 and others have been shown to be associated with TEV. The mechanisms by which variants in these genes confer risk and the nature of the physical and genetic interaction between them remains to be determined. Elucidation of genetic players and cellular pathways underlying TEV will certainly increase our understanding of the pathophysiology of this deformity.
Collapse
Affiliation(s)
- Sulman Basit
- Centre for Genetics and Inherited Diseases, Taibah University Almadinah Almunawwarah, Saudi Arabia.
| | - Khalid I Khoshhal
- College of Medicine, Taibah University Almadinah Almunawwarah, Saudi Arabia
| |
Collapse
|
31
|
Butterfield NC, Qian C, Logan MPO. Pitx1 determines characteristic hindlimb morphologies in cartilage micromass culture. PLoS One 2017; 12:e0180453. [PMID: 28746404 PMCID: PMC5528256 DOI: 10.1371/journal.pone.0180453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/18/2017] [Indexed: 01/13/2023] Open
Abstract
The shapes of homologous skeletal elements in the vertebrate forelimb and hindlimb are distinct, with each element exquisitely adapted to their divergent functions. Many of the signals and signalling pathways responsible for patterning the developing limb bud are common to both forelimb and hindlimb. How disparate morphologies are generated from common signalling inputs during limb development remains poorly understood. We show that, similar to what has been shown in the chick, characteristic differences in mouse forelimb and hindlimb cartilage morphology are maintained when chondrogenesis proceeds in vitro away from the endogenous limb bud environment. Chondrogenic nodules that form in high-density micromass cultures derived from forelimb and hindlimb buds are consistently different in size and shape. We described analytical tools we have developed to quantify these differences in nodule morphology and demonstrate that characteristic hindlimb nodule morphology is lost in the absence of the hindlimb-restricted limb modifier gene Pitx1. Furthermore, we show that ectopic expression of Pitx1 in the forelimb is sufficient to generate nodule patterns characteristic of the hindlimb. We also demonstrate that hindlimb cells are less adhesive to the tissue culture substrate and, within the limb environment, to the extracellular matrix and to each other. These results reveal autonomously programmed differences in forelimb and hindlimb cartilage precursors of the limb skeleton are controlled, at least in part, by Pitx1 and suggest this has an important role in generating distinct limb-type morphologies. Our results demonstrate that the micromass culture system is ideally suited to study cues governing morphogenesis of limb skeletal elements in a simple and experimentally tractable in vitro system that reflects in vivo potential.
Collapse
Affiliation(s)
- Natalie C. Butterfield
- Division of Developmental Biology, Medical Research Council – National Institute for Medical Research, London, United Kingdom
| | - Chen Qian
- Confocal Image Analysis Lab, Medical Research Council – National Institute for Medical Research, London, United Kingdom
| | - Malcolm P. O. Logan
- Division of Developmental Biology, Medical Research Council – National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Abstract
The limb is a commonly used model system for developmental biology. Given the need for precise control of complex signalling pathways to achieve proper patterning, the limb is also becoming a model system for gene regulation studies. Recent developments in genomic technologies have enabled the genome-wide identification of regulatory elements that control limb development, yielding insights into the determination of limb morphology and forelimb versus hindlimb identity. The modulation of regulatory interactions - for example, through the modification of regulatory sequences or chromatin architecture - can lead to morphological evolution, acquired regeneration capacity or limb malformations in diverse species, including humans.
Collapse
Affiliation(s)
- Florence Petit
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California 94158, USA.,University of Lille, CHU Lille, EA 7364-RADEME, F-59000 Lille, France
| | - Karen E Sears
- School of Integrative Biology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California 94158, USA.,Institute for Human Genetics, University of California San Francisco, California 94158, USA
| |
Collapse
|
33
|
Reno PL, Kjosness KM, Hines JE. The Role of Hox in Pisiform and Calcaneus Growth Plate Formation and the Nature of the Zeugopod/Autopod Boundary. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:303-21. [DOI: 10.1002/jez.b.22688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Philip L. Reno
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| | - Kelsey M. Kjosness
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| | - Jasmine E. Hines
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| |
Collapse
|
34
|
Developmental Mechanism of Limb Field Specification along the Anterior-Posterior Axis during Vertebrate Evolution. J Dev Biol 2016; 4:jdb4020018. [PMID: 29615584 PMCID: PMC5831784 DOI: 10.3390/jdb4020018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
In gnathostomes, limb buds arise from the lateral plate mesoderm at discrete positions along the body axis. Specification of these limb-forming fields can be subdivided into several steps. The lateral plate mesoderm is regionalized into the anterior lateral plate mesoderm (ALPM; cardiac mesoderm) and the posterior lateral plate mesoderm (PLPM). Subsequently, Hox genes appear in a nested fashion in the PLPM and provide positional information along the body axis. The lateral plate mesoderm then splits into the somatic and splanchnic layers. In the somatic layer of the PLPM, the expression of limb initiation genes appears in the limb-forming region, leading to limb bud initiation. Furthermore, past and current work in limbless amphioxus and lampreys suggests that evolutionary changes in developmental programs occurred during the acquisition of paired fins during vertebrate evolution. This review presents these recent advances and discusses the mechanisms of limb field specification during development and evolution, with a focus on the role of Hox genes in this process.
Collapse
|
35
|
Subdivision of the lateral plate mesoderm and specification of the forelimb and hindlimb forming domains. Semin Cell Dev Biol 2016; 49:102-8. [DOI: 10.1016/j.semcdb.2015.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 11/15/2022]
|
36
|
Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos. PLoS One 2015; 10:e0143378. [PMID: 26630129 PMCID: PMC4667915 DOI: 10.1371/journal.pone.0143378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM) and the pectoral muscle (PM) of two genetically different duck breeds, Heiwu duck (H) and Peking duck (P), at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P) at the same developmental stage (embryonic 15 days). Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China) on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos) genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were used to functionally annotate DEGs (differentially expression genes). The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05). In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05). In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only improves our understanding of the location-specific and breed-specific genes and pathways but also provides some candidate molecular targets for increasing muscle products and meat quality by genetic control.
Collapse
|
37
|
Christiaens AB, Deprez PML, Amyere M, Mendola A, Bernard P, Gillerot Y, Clapuyt P, Godfraind C, Lengelé BG, Vikkula M, Nyssen-Behets C. Isolated bilateral transverse agenesis of the distal segments of the lower limbs at the level of the knee joint in a human fetus. Am J Med Genet A 2015; 170A:523-530. [PMID: 26544544 DOI: 10.1002/ajmg.a.37462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 10/15/2015] [Indexed: 11/12/2022]
Abstract
Congenital limb anomalies occur in Europe with a prevalence of 3.81/1,000 births and can have a major impact on patients and their families. The present study concerned a female fetus aborted at 23 weeks of gestation because she was affected by non-syndromic bilateral absence of the zeugopod (leg) and autopod (foot). Autopsy of the aborted fetus, X-ray imaging, MRI, and histochemical analysis showed that the distal extremity of both femurs was continued by a cartilage-like mass, without joint cavitation. Karyotype was normal. Moreover, no damaging variant was detected by exome sequencing. The limb characteristics of the fetus, which to our knowledge have not yet been reported in humans, suggest a developmental arrest similar to anomalies described in chicks following surgical experiments on the apical ectodermal ridge of the lower limbs.
Collapse
Affiliation(s)
- Antoine B Christiaens
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre M L Deprez
- Ecole de Kinésiologie et Récréologie, Faculté des Sciences de la Santé et Services Communautaires, Université de Moncton, Moncton, New Brunswick, Canada.,Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Mustapha Amyere
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Antonella Mendola
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre Bernard
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Yves Gillerot
- Centre for Human Genetics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe Clapuyt
- Department of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Godfraind
- Laboratory of Pathology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Benoît G Lengelé
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Nyssen-Behets
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
38
|
Tickle C. How the embryo makes a limb: determination, polarity and identity. J Anat 2015; 227:418-30. [PMID: 26249743 DOI: 10.1111/joa.12361] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/11/2022] Open
Abstract
The vertebrate limb with its complex anatomy develops from a small bud of undifferentiated mesoderm cells encased in ectoderm. The bud has its own intrinsic polarity and can develop autonomously into a limb without reference to the rest of the embryo. In this review, recent advances are integrated with classical embryology, carried out mainly in chick embryos, to present an overview of how the embryo makes a limb bud. We will focus on how mesoderm cells in precise locations in the embryo become determined to form a limb and express the key transcription factors Tbx4 (leg/hindlimb) or Tbx5 (wing/forelimb). These Tbx transcription factors have equivalent functions in the control of bud formation by initiating a signalling cascade involving Wnts and fibroblast growth factors (FGFs) and by regulating recruitment of mesenchymal cells from the coelomic epithelium into the bud. The mesoderm that will form limb buds and the polarity of the buds is determined with respect to both antero-posterior and dorso-ventral axes of the body. The position in which a bud develops along the antero-posterior axis of the body will also determine its identity - wing/forelimb or leg/hindlimb. Hox gene activity, under the influence of retinoic acid signalling, is directly linked with the initiation of Tbx5 gene expression in the region along the antero-posterior axis of the body that will form wings/forelimbs and determines antero-posterior polarity of the buds. In contrast, Tbx4 expression in the regions that will form legs/hindlimbs is regulated by the homeoprotein Pitx1 and there is no evidence that Hox genes determine antero-posterior polarity of the buds. Bone morphogenetic protein (BMP) signalling determines the region along the dorso-ventral axis of the body in which both wings/forelimbs and legs/hindlimbs develop and dorso-ventral polarity of the buds. The polarity of the buds leads to the establishment of signalling regions - the dorsal and ventral ectoderm, producing Wnts and BMPs, respectively, the apical ectodermal ridge producing fibroblast growth factors and the polarizing region, Sonic hedgehog (Shh). These signals are the same in both wings/forelimbs and legs/hindlimbs and control growth and pattern formation by providing the mesoderm cells of the limb bud as it develops with positional information. The precise anatomy of the limb depends on the mesoderm cells in the developing bud interpreting positional information according to their identity - determined by Pitx1 in hindlimbs - and genotype. The competence to form a limb extends along the entire antero-posterior axis of the trunk - with Hox gene activity inhibiting the formation of forelimbs in the interlimb region - and also along the dorso-ventral axis.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
39
|
Seoighe DM, Gadancheva V, Regan R, McDaid J, Brenner C, Ennis S, Betts DR, Eadie PA, Lynch SA. A chromosomal 5q31.1 gain involvingPITX1causes Liebenberg syndrome. Am J Med Genet A 2014; 164A:2958-60. [DOI: 10.1002/ajmg.a.36712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 07/07/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Deirdre Máire Seoighe
- Department of Plastic Surgery; Our Lady's Children's Hospital; Crumlin; Dublin 12 Ireland
| | - Veselina Gadancheva
- National Centre for Medical Genetics; Our Lady's Children's Hospital; Crumlin; Dublin 12 Ireland
| | - Regina Regan
- School of Medicine & Health Science; UCD; Dublin 4 Ireland
| | - Jennifer McDaid
- National Centre for Medical Genetics; Our Lady's Children's Hospital; Crumlin; Dublin 12 Ireland
| | - Clare Brenner
- Department of Radiology; Our Lady's Children's Hospital; Crumlin; Dublin 12 Ireland
| | - Sean Ennis
- School of Medicine & Health Science; UCD; Dublin 4 Ireland
| | - David Richard Betts
- National Centre for Medical Genetics; Our Lady's Children's Hospital; Crumlin; Dublin 12 Ireland
| | - Patricia Anne Eadie
- Department of Plastic Surgery; Our Lady's Children's Hospital; Crumlin; Dublin 12 Ireland
| | - Sally Ann Lynch
- National Centre for Medical Genetics; Our Lady's Children's Hospital; Crumlin; Dublin 12 Ireland
| |
Collapse
|
40
|
Pavlicev M, Wagner GP, Noonan JP, Hallgrímsson B, Cheverud JM. Genomic correlates of relationship QTL involved in fore- versus hind limb divergence in mice. Genome Biol Evol 2014; 5:1926-36. [PMID: 24065733 PMCID: PMC3814202 DOI: 10.1093/gbe/evt144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Divergence of serially homologous elements of organisms is a common evolutionary pattern contributing to increased phenotypic complexity. Here, we study the genomic intervals affecting the variational independence of fore- and hind limb traits within an experimental mouse population. We use an advanced intercross of inbred mouse strains to map the loci associated with the degree of autonomy between fore- and hind limb long bone lengths (loci affecting the relationship between traits, relationship quantitative trait loci [rQTL]). These loci have been proposed to interact locally with the products of pleiotropic genes, thereby freeing the local trait from the variational constraint due to pleiotropic mutations. Using the known polymorphisms (single nucleotide polymorphisms [SNPs]) between the parental strains, we characterized and compared the genomic regions in which the rQTL, as well as their interaction partners (intQTL), reside. We find that these two classes of QTL intervals harbor different kinds of molecular variation. SNPs in rQTL intervals more frequently reside in limb-specific cis-regulatory regions than SNPs in intQTL intervals. The intQTL loci modified by the rQTL, in contrast, show the signature of protein-coding variation. This result is consistent with the widely accepted view that protein-coding mutations have broader pleiotropic effects than cis-regulatory polymorphisms. For both types of QTL intervals, the underlying candidate genes are enriched for genes involved in protein binding. This finding suggests that rQTL effects are caused by local interactions among the products of the causal genes harbored in rQTL and intQTL intervals. This is the first study to systematically document the population-level molecular variation underlying the evolution of character individuation.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria
| | | | | | | | | |
Collapse
|
41
|
Nishimoto S, Minguillon C, Wood S, Logan MPO. A combination of activation and repression by a colinear Hox code controls forelimb-restricted expression of Tbx5 and reveals Hox protein specificity. PLoS Genet 2014; 10:e1004245. [PMID: 24651482 PMCID: PMC3961185 DOI: 10.1371/journal.pgen.1004245] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/03/2014] [Indexed: 01/12/2023] Open
Abstract
Tight control over gene expression is essential for precision in embryonic development and acquisition of the regulatory elements responsible is the predominant driver for evolution of new structures. Tbx5 and Tbx4, two genes expressed in forelimb and hindlimb-forming regions respectively, play crucial roles in the initiation of limb outgrowth. Evolution of regulatory elements that activate Tbx5 in rostral LPM was essential for the acquisition of forelimbs in vertebrates. We identified such a regulatory element for Tbx5 and demonstrated Hox genes are essential, direct regulators. While the importance of Hox genes in regulating embryonic development is clear, Hox targets and the ways in which each protein executes its specific function are not known. We reveal how nested Hox expression along the rostro-caudal axis restricts Tbx5 expression to forelimb. We demonstrate that Hoxc9, which is expressed in caudal LPM where Tbx5 is not expressed, can form a repressive complex on the Tbx5 forelimb regulatory element. This repressive capacity is limited to Hox proteins expressed in caudal LPM and carried out by two separate protein domains in Hoxc9. Forelimb-restricted expression of Tbx5 and ultimately forelimb formation is therefore achieved through co-option of two characteristics of Hox genes; their colinear expression along the body axis and the functional specificity of different paralogs. Active complexes can be formed by Hox PG proteins present throughout the rostral-caudal LPM while restriction of Tbx5 expression is achieved by superimposing a dominant repressive (Hoxc9) complex that determines the caudal boundary of Tbx5 expression. Our results reveal the regulatory mechanism that ensures emergence of the forelimbs at the correct position along the body. Acquisition of this regulatory element would have been critical for the evolution of limbs in vertebrates and modulation of the factors we have identified can be molecular drivers of the diversity in limb morphology. The acquisition of limbs during vertebrate evolution was a very successful innovation that enabled this group of species to diversify and colonise land. It has become clear recently that the primary driver behind the evolution of new structures, such as limbs, is the acquisition of novel regulatory elements that control when and where genes are activated rather than the proteins encoded by the genes themselves acquiring novel functions. We have identified the regulatory element from a gene, Tbx5. Activation of Tbx5 in the forelimb-forming region of the developing embryos is essential for forelimbs to form and disruption of human TBX5 causes limb abnormalities. We show that activation of Tbx5 in a restricted territory is achieved through a combination of activation inputs that are present broadly throughout the embryo flank and dominant, repressive inputs present only in more caudal regions of the flank. The sum of these inputs yields restricted activation in the rostral, forelimb-forming flank. Our results explain how the regulatory switches that were harnessed for the acquisition of limbs during evolution operate and how they can be turned off during the evolution of limblessness in species such as the snake.
Collapse
Affiliation(s)
- Satoko Nishimoto
- Division of Developmental Biology, MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Carolina Minguillon
- Division of Developmental Biology, MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom
- CSIC-Institut de Biologia Molecular de Barcelona, Parc Científic de Barcelona, Barcelona, Spain
| | - Sophie Wood
- Procedural Services Section, MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Malcolm P. O. Logan
- Division of Developmental Biology, MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
|
43
|
Peterson JF, Ghaloul-Gonzalez L, Madan-Khetarpal S, Hartman J, Surti U, Rajkovic A, Yatsenko SA. Familial microduplication of 17q23.1-q23.2 involving TBX4 is associated with congenital clubfoot and reduced penetrance in females. Am J Med Genet A 2013; 164A:364-9. [DOI: 10.1002/ajmg.a.36238] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jess F. Peterson
- Pittsburgh Cytogenetics Laboratory; Center for Medical Genetics and Genomics, Magee-Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Human Genetics; Graduate School of Public Health, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Lina Ghaloul-Gonzalez
- Department of Medical Genetics; Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Suneeta Madan-Khetarpal
- Department of Medical Genetics; Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Jessica Hartman
- Department of Medical Genetics; Children's Hospital of Pittsburgh of UPMC; Pittsburgh Pennsylvania
| | - Urvashi Surti
- Pittsburgh Cytogenetics Laboratory; Center for Medical Genetics and Genomics, Magee-Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Human Genetics; Graduate School of Public Health, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
- Department of Pathology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Aleksandar Rajkovic
- Pittsburgh Cytogenetics Laboratory; Center for Medical Genetics and Genomics, Magee-Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Human Genetics; Graduate School of Public Health, University of Pittsburgh; Pittsburgh Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
- Department of Pathology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Svetlana A. Yatsenko
- Pittsburgh Cytogenetics Laboratory; Center for Medical Genetics and Genomics, Magee-Womens Hospital of UPMC; Pittsburgh Pennsylvania
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
- Department of Pathology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
44
|
März M, Seebeck F, Bartscherer K. A Pitx transcription factor controls the establishment and maintenance of the serotonergic lineage in planarians. Development 2013; 140:4499-509. [DOI: 10.1242/dev.100081] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In contrast to adult vertebrates, which have limited capacities for neurogenesis, adult planarians undergo constitutive cellular turnover during homeostasis and are even able to regenerate a whole brain after decapitation. This enormous plasticity derives from pluripotent stem cells residing in the planarian body in large numbers. It is still obscure how these stem cells are programmed for differentiation into specific cell lineages and how lineage identity is maintained. Here we identify a Pitx transcription factor of crucial importance for planarian regeneration. In addition to patterning defects that are co-dependent on the LIM homeobox transcription factor gene islet1, which is expressed with pitx at anterior and posterior regeneration poles, RNAi against pitx results in islet1-independent specific loss of serotonergic (SN) neurons during regeneration. Besides its expression in terminally differentiated SN neurons we found pitx in stem cell progeny committed to the SN fate. Also, intact pitx RNAi animals gradually lose SN markers, a phenotype that depends neither on increased apoptosis nor on stem cell-based turnover or transdifferentiation into other neurons. We propose that pitx is a terminal selector gene for SN neurons in planarians that controls not only their maturation but also their identity by regulating the expression of the Serotonin production and transport machinery. Finally, we made use of this function of pitx and compared the transcriptomes of regenerating planarians with and without functional SN neurons, identifying at least three new neuronal targets of Pitx.
Collapse
Affiliation(s)
- Martin März
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Münster, Germany
| | - Florian Seebeck
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Münster, Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Strasse 54, 48149 Münster, Germany
| |
Collapse
|
45
|
Chew KY, Shaw G, Yu H, Pask AJ, Renfree MB. Heterochrony in the regulation of the developing marsupial limb. Dev Dyn 2013; 243:324-38. [PMID: 24115631 DOI: 10.1002/dvdy.24062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/21/2013] [Accepted: 07/30/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND At birth, marsupial neonates have precociously developed forelimbs. The development of the tammar wallaby (Macropus eugenii) hindlimbs lags significantly behind that of the forelimbs. This differs from the grey short-tailed opossum, Monodelphis domestica, which has relatively similar fore- and hindlimbs at birth. This study examines the expression of the key patterning genes TBX4, TBX5, PITX1, FGF8, and SHH in developing limb buds in the tammar wallaby. RESULTS All genes examined were highly conserved with orthologues from opossum and mouse. TBX4 expression appeared earlier in development than in the mouse, but later than in the opossum. SHH expression is restricted to the zone of polarising activity, while TBX5 (forelimb) and PITX1 (hindlimb) showed diffuse mRNA expression. FGF8 is specifically localised to the apical ectodermal ridge, which is more prominent than in the opossum. CONCLUSIONS The most marked divergence in limb size in marsupials occurs in the kangaroos and wallabies. The faster development of the fore limb compared to that of the hind limb correlates with the early timing of the expression of the key patterning genes in these limbs.
Collapse
Affiliation(s)
- Keng Yih Chew
- Department of Zoology, The University of Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Don EK, Currie PD, Cole NJ. The evolutionary history of the development of the pelvic fin/hindlimb. J Anat 2013; 222:114-33. [PMID: 22913749 PMCID: PMC3552419 DOI: 10.1111/j.1469-7580.2012.01557.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2012] [Indexed: 12/20/2022] Open
Abstract
The arms and legs of man are evolutionarily derived from the paired fins of primitive jawed fish. Few evolutionary changes have attracted as much attention as the origin of tetrapod limbs from the paired fins of ancestral fish. The hindlimbs of tetrapods are derived from the pelvic fins of ancestral fish. These evolutionary origins can be seen in the examination of shared gene and protein expression patterns during the development of pelvic fins and tetrapod hindlimbs. The pelvic fins of fish express key limb positioning, limb bud induction and limb outgrowth genes in a similar manner to that seen in hindlimb development of higher vertebrates. We are now at a point where many of the key players in the development of pelvic fins and vertebrate hindlimbs have been identified and we can now readily examine and compare mechanisms between species. This is yielding fascinating insights into how the developmental programme has altered during evolution and how that relates to anatomical change. The role of pelvic fins has also drastically changed over evolutionary history, from playing a minor role during swimming to developing into robust weight-bearing limbs. In addition, the pelvic fins/hindlimbs have been lost repeatedly in diverse species over evolutionary time. Here we review the evolution of pelvic fins and hindlimbs within the context of the changes in anatomical structure and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Emily K Don
- Department of Anatomy & Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
47
|
Infante CR, Park S, Mihala AG, Kingsley DM, Menke DB. Pitx1 broadly associates with limb enhancers and is enriched on hindlimb cis-regulatory elements. Dev Biol 2012. [PMID: 23201014 DOI: 10.1016/j.ydbio.2012.11.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extensive functional analyses have demonstrated that the pituitary homeodomain transcription factor Pitx1 plays a critical role in specifying hindlimb morphology in vertebrates. However, much less is known regarding the target genes and cis-regulatory elements through which Pitx1 acts. Earlier studies suggested that the hindlimb transcription factors Tbx4, HoxC10, and HoxC11 might be transcriptional targets of Pitx1, but definitive evidence for direct regulatory interactions has been lacking. Using ChIP-Seq on embryonic mouse hindlimbs, we have pinpointed the genome-wide location of Pitx1 binding sites during mouse hindlimb development and identified potential gene targets for Pitx1. We determined that Pitx1 binding is significantly enriched near genes involved in limb morphogenesis, including Tbx4, HoxC10, and HoxC11. Notably, Pitx1 is bound to the previously identified HLEA and HLEB hindlimb enhancers of the Tbx4 gene and to a newly identified Tbx2 hindlimb enhancer. Moreover, Pitx1 binding is significantly enriched on hindlimb relative to forelimb-specific cis-regulatory features that are differentially marked by H3K27ac. However, our analysis revealed that Pitx1 also strongly associates with many functionally verified limb enhancers that exhibit similar levels of activity in the embryonic mesenchyme of forelimbs and hindlimbs. We speculate that Pitx1 influences hindlimb morphology both through the activation of hindlimb-specific enhancers as well as through the hindlimb-specific modulation of enhancers that are active in both sets of limbs.
Collapse
Affiliation(s)
- Carlos R Infante
- Department of Genetics, University of Georgia, Coverdell Building, Room 250A, 500 DW Brooks Drive, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
48
|
Rabinowitz AH, Vokes SA. Integration of the transcriptional networks regulating limb morphogenesis. Dev Biol 2012; 368:165-80. [PMID: 22683377 DOI: 10.1016/j.ydbio.2012.05.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.
Collapse
Affiliation(s)
- Adam H Rabinowitz
- Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, One University Station A4800, Austin, TX 78712, USA
| | | |
Collapse
|